RESUMO
The in vivo characterization of the exact copy number and the specific function of each composite protein within the nuclear pore complex (NPC) remains both desirable and challenging. Through the implementation of live-cell high-speed super-resolution single-molecule microscopy, we first quantified the native copies of nuclear basket (BSK) proteins (Nup153, Nup50, and Tpr) prior to knocking them down in a highly specific manner via an auxin-inducible degron strategy. Second, we determined the specific roles that BSK proteins play in the nuclear export kinetics of model messenger RNA (mRNA) substrates. Finally, the three-dimensional (3D) nuclear export routes of these mRNA substrates through native NPCs in the absence of specific BSK proteins were obtained and further validated via postlocalization computational simulations. We found that these BSK proteins possess the stoichiometric ratio of 1:1:1 and play distinct roles in the nuclear export of mRNAs within live cells. The absence of Tpr from the NPC predominantly reduces the probability of nuclear mRNAs entering the NPC for export. Complete depletion of Nup153 and Nup50 results in an mRNA nuclear export efficiency decrease of approximately four folds. mRNAs can gain their maximum successful export efficiency as the copy number of Nup153 increased from zero to only half the full complement natively within the NPC. Lastly, the absence of Tpr or Nup153 seems to alter the 3D export routes of mRNAs as they pass through the NPC. However, the removal of Nup50 alone has almost no impact upon mRNA export route and kinetics.
Assuntos
Núcleo Celular/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/fisiologia , Proteínas Nucleares/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/genética , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , RNA Mensageiro/genéticaRESUMO
3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic ß-cells, INS-1E, MFD between F1α were ~80â¯nm at 0 and 3â¯mM glucose, whereas decreased to 61â¯nm and 57â¯nm upon glucose-stimulated insulin secretion (GSIS) at 11â¯mM and 20â¯mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20â¯nm and 15â¯nm cristae width at 0 and 3â¯mM glucose, and 9â¯nm or 8â¯nm after higher glucose simulating GSIS (11, 20â¯mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100â¯nm) and average distances between nucleoids (~1000â¯nm). Double channel PALM/dSTORM with Eos-lactamase-ß plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
Assuntos
DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/instrumentação , Membranas Mitocondriais/metabolismo , Animais , Células Cultivadas , Células Hep G2 , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos , Ratos WistarRESUMO
Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication.
Assuntos
Algoritmos , DNA Mitocondrial/metabolismo , Imageamento Tridimensional , Microscopia de Fluorescência , Análise de Componente Principal , DNA Mitocondrial/química , Proteínas de Ligação a DNA/metabolismo , Células Hep G2 , Humanos , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação de Ácido NucleicoRESUMO
Hypoxia causes mitochondrial cristae widening, enabled by the ~20% degradation of Mic60/mitofilin, with concomitant clustering of the MICOS complex, reflecting the widening of crista junctions (outlets) (Plecitá-Hlavatá et al. FASEB J., 2016 30:1941-1957). Attempting to accelerate metabolism by the addition of membrane-permeant dimethyl-2-oxoglutarate (dm2OG) to HepG2 cells pre-adapted to hypoxia, we found cristae narrowing by transmission electron microscopy. Glycolytic HepG2 cells, which downregulate hypoxic respiration, instantly increased respiration with dm2OG. Changes in intracristal space (ICS) morphology were also revealed by 3D super-resolution microscopy using Eos-conjugated ICS-located lactamase-ß. Cristae topology was resolved in detail by focused-ion beam/scanning electron microscopy (FIB/SEM). The spatial relocations of key cristae-shaping proteins were indicated by immunocytochemical stochastic 3D super-resolution microscopy (dSTORM), while analyzing inter-antibody-distance histograms: i) ATP-synthase dimers exhibited a higher fraction of shorter inter-distances between bound F1-α primary Alexa-Fluor-647-conjugated antibodies, indicating cristae narrowing. ii) Mic60/mitofilin clusters (established upon hypoxia) decayed, restoring isotropic random Mic60/mitofilin distribution (a signature of normoxia). iii) outer membrane SAMM50 formed more focused clusters. Less abundant fractions of higher ATP-synthase oligomers of hypoxic samples on blue-native electrophoresis became more abundant fractions at the high dm2OG load and at normoxia. This indicates more labile ATP-synthase dimeric rows established at crista rims upon hypoxia, strengthened at normoxia or dm2OG-substrate load. Hypothetically, the increased Krebs substrate load stimulates the cross-linking/strengthening of rows of ATP-synthase dimers at the crista rims, making them sharper. Crista narrowing ensures a more efficient coupling of proton pumping to ATP synthesis. We demonstrated that cristae morphology changes even within minutes.
Assuntos
Ácidos Cetoglutáricos/farmacologia , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Respiração Celular , Dimerização , Células Hep G2 , Humanos , Hipóxia , Microscopia Eletrônica de Transmissão , Membranas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismoRESUMO
BACKGROUND: Condensation differences along the lengths of homologous, mitotic metaphase chromosomes are well known. This study reports molecular cytogenetic data showing quantifiable localized differences in condensation between homologs that are related to differences in accessibility (DA) of associated DNA probe targets. Reproducible DA was observed for ~10% of locus-specific, short (1.5-5 kb) single copy DNA probes used in fluorescence in situ hybridization. RESULTS: Fourteen probes (from chromosomes 1, 5, 9, 11, 15, 17, 22) targeting genic and intergenic regions were developed and hybridized to cells from 10 individuals with cytogenetically-distinguishable homologs. Differences in hybridization between homologs were non-random for 8 genomic regions (RGS7, CACNA1B, GABRA5, SNRPN, HERC2, PMP22:IVS3, ADORA2B:IVS1, ACR) and were not unique to known imprinted domains or specific chromosomes. DNA probes within CCNB1, C9orf66, ADORA2B:Promoter-Ex1, PMP22:IVS4-Ex 5, and intergenic region 1p36.3 showed no DA (equivalent accessibility), while OPCML showed unbiased DA. To pinpoint probe locations, we performed 3D-structured illumination microscopy (3D-SIM). This showed that genomic regions with DA had 3.3-fold greater volumetric, integrated probe intensities and broad distributions of probe depths along axial and lateral axes of the 2 homologs, compared to a low copy probe target (NOMO1) with equivalent accessibility. Genomic regions with equivalent accessibility were also enriched for epigenetic marks of open interphase chromatin (DNase I HS, H3K27Ac, H3K4me1) to a greater extent than regions with DA. CONCLUSIONS: This study provides evidence that DA is non-random and reproducible; it is locus specific, but not unique to known imprinted regions or specific chromosomes. Non-random DA was also shown to be heritable within a 2 generation family. DNA probe volume and depth measurements of hybridized metaphase chromosomes further show locus-specific chromatin accessibility differences by super-resolution 3D-SIM. Based on these data and the analysis of interphase epigenetic marks of genomic intervals with DA, we conclude that there are localized differences in compaction of homologs during mitotic metaphase and that these differences may arise during or preceding metaphase chromosome compaction. Our results suggest new directions for locus-specific structural analysis of metaphase chromosomes, motivated by the potential relationship of these findings to underlying epigenetic changes established during interphase.