Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(43): e2209211119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252018

RESUMO

About one-fourth of recurrent estrogen receptor-positive (ER+) breast cancers lose ER expression, leading to endocrine therapy failure. However, the mechanisms underlying ER loss remain to be fully explored. We now show that 14-3-3τ, up-regulated in ∼60% of breast cancer, drives the conversion of ER+ to ER- and epithelial-to-mesenchymal transition (EMT). We identify ERα36, an isoform of ERα66, as a downstream effector of 14-3-3τ. Overexpression of 14-3-3τ induces ERα36 in xenografts and tumor spheroids. The regulation is further supported by a positive correlation between ERα36 and 14-3-3τ expression in human breast cancers. ERα36 can antagonize ERα66 and inhibit ERα66 expression. Isoform-specific depletion of ERα36 blocks the ER conversion and EMT induced by 14-3-3τ overexpression in tumor spheroids, thus establishing ERα36 as a key mediator in 14-3-3τ-driven ER loss and EMT. ERα36 promoter is repressed by GATA3, which can be phosphorylated by AKT at consensus binding sites for 14-3-3. Upon AKT activation, 14-3-3τ binds phosphorylated GATA3 and facilitates the degradation of GATA3 causing GATA3 to lose transcriptional control over its target genes ERα66 and ERα36. We also demonstrate a role for the collaboration between 14-3-3τ and AKT in ERα36 induction and endocrine therapy resistance by three-dimensional spheroid and tamoxifen treatment models in MCF7 and T47D ER+ breast cancer cells. Thus, the 14-3-3τ-ERα36 regulation provides a previously unrecognized mechanism for ER loss and endocrine therapy failure.


Assuntos
Proteínas 14-3-3 , Neoplasias da Mama , Receptor alfa de Estrogênio , Fator de Transcrição GATA3 , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação Neoplásica da Expressão Gênica , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tamoxifeno/farmacologia , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo
2.
Eur J Med Chem ; 277: 116730, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111015

RESUMO

In this paper we report the discovery of structurally novel and highly potent programmed cell death-ligand 1 (PD-L1) inhibitors targeting surface and intracellular PD-L1. A ring fusion design utilizing dimethoxyphenyl indazole derivatives was used, followed by structural extension, which further improved potency by inducing the formation of additional symmetrical interactions within the PD-L1 binding site, leading to the discovery of novel and highly active tetra-aryl-scaffold inhibitors. Key optimizations involved polar tail chain modifications that improve potency and minimize cell cytotoxicity. In addition, druggability issues that exist outside the rule-of-five chemical space were addressed. CB31, a representative compound, was found to exhibit outstanding activity in blocking programmed cell death-1 (PD-1)/PD-L1 interactions (IC50 = 0.2 nM) and enhancing T-cell functions, with minimal cell cytotoxicity. CB31 also displayed favorable oral pharmacokinetic properties, consistent with its high passive permeability and insusceptibility to efflux transporters, as well as its high metabolic stability. Additionally, CB31 demonstrated mechanistically differentiated features from monoclonal antibodies by inducing PD-L1 internalization, intracellular retention of PD-L1 with altered glycosylation pattern, and PD-L1 degradation. It also demonstrated greater effects on tumor size reduction and tumor cell killing, with enhanced T-cell infiltration, in a 3D tumor spheroid model. Overall, results show that CB31 is a promising small-molecule PD-L1 inhibitor that can inhibit PD-1/PD-L1 interactions and promote PD-L1 degradation.


Assuntos
Antígeno B7-H1 , Desenho de Fármacos , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Administração Oral , Camundongos , Relação Dose-Resposta a Droga , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Ensaios de Seleção de Medicamentos Antitumorais , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
3.
SLAS Discov ; 28(3): 65-72, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758833

RESUMO

Solid tumors account for approximately 90% of all adult human cancers. As such, the development of novel cellular therapies has become of increasing importance to target solid tumor malignancies, such as prostate, lung, breast, bladder, colon, and liver cancers. One such cellular therapy relies on the use of chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are engineered to target specific antigens on tumor cells. To date, there are six FDA-approved CAR-T cell therapies that have been utilized for hematologic B cell malignancies. Immune cell trafficking and immunosuppressive factors within the tumor microenvironment increase the relative difficulty in developing a robust CAR-T cell therapy against solid tumors. Therefore, it is critical to develop novel methodologies for high-throughput phenotypic and functional assays using 3D tumor spheroid models to assess CAR-T cell products against solid tumors. In this manuscript, we discuss the use of CAR-T cells targeted towards PSMA, an antigen that is found on prostate cancer tumor cells, the second most common cause of cancer deaths among men worldwide. We demonstrate the use of high-throughput, plate-based image cytometry to characterize CAR-T cell-mediated cytotoxic potency against 3D prostate tumor spheroids. We were able to kinetically evaluate the efficacy and therapeutic value of PSMA CAR-T cells by analyzing the cytotoxicity against prostate tumor spheroids. In addition, the CAR-T cells were fluorescently labeled to visually identify the location of the T cells as cytotoxicity occurs, which may provide more meaningful information for assessing the functionality of the CAR-T cells. The proposed image cytometry method can overcome limitations placed on traditional methodologies to effectively assess cell-mediated 3D tumor spheroid cytotoxicity and efficiently generate time- and dose-dependent results.


Assuntos
Neoplasias da Próstata , Receptores de Antígenos Quiméricos , Masculino , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T/metabolismo , Citometria por Imagem/métodos , Microambiente Tumoral
4.
Adv Sci (Weinh) ; 10(18): e2301295, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083241

RESUMO

Cancer starvation therapy have received continuous attention as an efficient method to fight against wide-spectrum cancer. However, during cancer starvation therapy, the protective autophagy promotes cancer cells survival, compromising the therapeutic effect. Herein, a novel strategy by combination of autophagy-activated fluorescent photosensitizers (PSs) and cancer starvation therapy to realize the controllable and efficient ablation of tumor is conceived. Two dual-emissive self-reporting aggregation-induced emission luminogens (AIEgens), TPAQ and TPAP, with autophagy-activated reactive oxygen species (ROS) generation are prepared to fight against the protective autophagy in cancer starvation therapy. When protective autophagy occurs, a portion of TPAQ and TPAP will translocate from lipid droplets to acidic lysosomes with significant redshift in fluorescence emission and enhanced ROS generation ability. The accumulation of ROS induced by TPAQ-H and TPAP-H causes lysosomal membrane permeabilization (LMP), which further results in cell apoptosis and promotes cell death. In addition, TPAQ and TPAP can enable the real-time self-reporting to cell autophagy and cell death process by observing the change of red-emissive fluorescence signals. Particularly, the efficient ablation of tumor via the combination of cancer starvation therapy and photodynamic therapy (PDT) induced by TPAQ has been successfully confirmed in 3D tumor spheroid chip, suggesting the validation of this strategy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Autofagia
5.
Cells ; 11(4)2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35203404

RESUMO

The inducible isoenzyme cyclooxygenase-2 (COX-2) is an important hub in cellular signaling, which contributes to tumor progression by modulating and enhancing a pro-inflammatory tumor microenvironment, tumor growth, apoptosis resistance, angiogenesis and metastasis. In order to understand the role of COX-2 expression in melanoma, we investigated the functional knockout effect of COX-2 in A2058 human melanoma cells. COX-2 knockout was validated by Western blot and flow cytometry analysis. When comparing COX-2 knockout cells to controls, we observed significantly reduced invasion, colony and spheroid formation potential in cell monolayers and three-dimensional models in vitro, and significantly reduced tumor development in xenograft mouse models in vivo. Moreover, COX-2 knockout alters the metabolic activity of cells under normoxia and experimental hypoxia as demonstrated by using the radiotracers [18F]FDG and [18F]FMISO. Finally, a pilot protein array analysis in COX-2 knockout cells verified significantly altered downstream signaling pathways that can be linked to cellular and molecular mechanisms of cancer metastasis closely related to the enzyme. Given the complexity of the signaling pathways and the multifaceted role of COX-2, targeted suppression of COX-2 in melanoma cells, in combination with modulation of related signaling pathways, appears to be a promising therapeutic approach.


Assuntos
Sistemas CRISPR-Cas , Ciclo-Oxigenase 2 , Melanoma , Invasividade Neoplásica , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Técnicas de Silenciamento de Genes , Humanos , Melanoma/patologia , Camundongos , Microambiente Tumoral
6.
Biochim Biophys Acta Gen Subj ; 1865(12): 129978, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34487824

RESUMO

BACKGROUND: Therapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG. METHODS: 1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed. RESULTS: We found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth. CONCLUSIONS: Comparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis. GENERAL SIGNIFICANCE: Our results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.


Assuntos
Triazenos , Morte Celular , Fármacos Fotossensibilizantes
7.
ACS Appl Bio Mater ; 4(2): 1794-1802, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014525

RESUMO

Tunable and reproducible size with high circularity is an important limitation to obtain three-dimensional (3D) cellular structures and spheroids in scaffold free tissue engineering approaches. Here, we present a facile methodology based on magnetic levitation (MagLev) to fabricate 3D cellular structures rapidly and easily in high-volume and low magnetic field. In this study, 3D cellular structures were fabricated using magnetic levitation directed assembly where cells are suspended and self-assembled by contactless magnetic manipulation in the presence of a paramagnetic agent. The effect of cell seeding density, culture time, and paramagnetic agent concentration on the formation of 3D cellular structures was evaluated for NIH/3T3 mouse fibroblast cells. In addition, magnetic levitation guided cellular assembly and 3D tumor spheroid formation was examined for five different cancer cell lines: MCF7 (human epithelial breast adenocarcinoma), MDA-MB-231 (human epithelial breast adenocarcinoma), SH-SY5Y (human bone-marrow neuroblastoma), PC-12 (rat adrenal gland pheochromocytoma), and HeLa (human epithelial cervix adenocarcinoma). Moreover, formation of a 3D coculture model was successfully observed by using MDA-MB-231 dsRED and MDA-MB-231 GFP cells. Taken together, these results indicate that the developed MagLev setup provides an easy and efficient way to fabricate 3D cellular structures and may be a feasible alternative to conventional methodologies for cellular/multicellular studies.


Assuntos
Materiais Biocompatíveis/química , Técnicas de Cocultura , Imageamento Tridimensional , Esferoides Celulares/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular Tumoral , Humanos , Campos Magnéticos , Teste de Materiais , Tamanho da Partícula , Ratos
8.
Biotechniques ; 69(5): 333-338, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000639

RESUMO

Three-dimensional in vitro spheroids are a reliable model to study tumor biology and drug toxicity. However, inconsistencies exist in terms of seeding cell density that governs spheroid size and shape, influencing the experimental outcome. We investigated the effect of varying cell densities using glioblastoma cells on tumorsphere formation and their responsiveness to drug treatment. Our results demonstrated that in comparison with spheroids formed with lower cell density, spheroids formed with higher cell density were not only larger in size but also had a larger necrotic core surrounded by a higher number of quiescent cells and were irresponsive to drug treatment. Our study highlights the importance of predetermination of cell density to obtain desired/appropriate spheroid size to produce consistent and reliable data on drug toxicity studies in tumor cells.


Assuntos
Neoplasias/patologia , Esferoides Celulares/patologia , Animais , Linhagem Celular Tumoral , Tamanho Celular , Sobrevivência Celular , Humanos , Coloração e Rotulagem
9.
Mater Sci Eng C Mater Biol Appl ; 112: 110932, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409080

RESUMO

Tumor spheroids have been considered valuable miniaturized three dimensional (3D) tissue models for fundamental biological investigation as well as drug screening applications. Most tumor spheroids are generated utilizing the inherent aggregate behavior of tumor cells, and the effect of microenvironmental factors such as extracellular matrix (ECM) on tumor spheroid formation has not been extensively elucidated to date. Herein, uniform-sized spherical microgels encapsulated with different subtypes of breast tumor cells, based on tumor aggressiveness, are developed by flow-focusing microfluidics technology. Mechanical properties of microgels are controlled in a wide range via polymer concentration, and their influence on tumor physiology and spheroid formation is shown to be highly dependent on cell subtype. Specifically, the formation of polyploid/multinucleated giant cancer cells is a key early step in determining initial proliferation and eventual tumor spheroid generation within microgels with varying mechanics. In addition, chemotherapeutic screening performed on these tumor spheroids in microgels also display significantly variable cytotoxic effects based on microgel mechanics for each cell subtype, further highlighting the importance of microenvironmental factors on tumor spheroid physiology.


Assuntos
Antineoplásicos/química , Microgéis/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Cisplatino/química , Cisplatino/farmacologia , Matriz Extracelular/metabolismo , Feminino , Humanos , Microfluídica , Paclitaxel/química , Paclitaxel/farmacologia , Polímeros/química , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
10.
J Control Release ; 275: 201-207, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29474963

RESUMO

In vivo tumors develop in a three-dimensional manner and have unique and complex characteristics. Physico-biochemical barriers on tumors cause drug resistance and limit drug delivery efficiency. Currently, 2D cancer cell monolayer platforms are frequently used to test the efficiency of new drug materials. However, the monolayer platform generally overestimates drug efficiency because of the absence of physico-biochemical barriers. Many literatures indicated that a 3D tumor spheroid model has very similar characteristics to in vivo tumor models, and studies demonstrated the accurate prediction of drug efficiency using this model. The use of a 3D tumor spheroid model in drug development process remains challenging because of the low generation yield and difficulties in size control. In this study, we developed a droplet-based microfluidic system that can generate cancer cells encapsulated by micro-droplets with very high generation yield (16-20 Hz, 1000 droplets/min). The system can control the number of encapsulated cancer cells in the droplet or diameter of the 3D spheroid model precisely between 50 and 150 µm. Moreover, the formed 3D tumor spheroid model can be cultured for >2 weeks by an additional step of droplet disruption and recollection, and can grow up to 245 µm in diameter.


Assuntos
Dispositivos Lab-On-A-Chip , Esferoides Celulares , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Neoplasias/tratamento farmacológico
11.
SLAS Technol ; 22(4): 454-465, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27272155

RESUMO

Oncologists have investigated the effect of protein or chemical-based compounds on cancer cells to identify potential drug candidates. Traditionally, the growth inhibitory and cytotoxic effects of the drugs are first measured in 2D in vitro models, and then further tested in 3D xenograft in vivo models. Although the drug candidates can demonstrate promising inhibitory or cytotoxicity results in a 2D environment, similar effects may not be observed under a 3D environment. In this work, we developed an image-based high-throughput screening method for 3D tumor spheroids using the Celigo image cytometer. First, optimal seeding density for tumor spheroid formation was determined by investigating the cell seeding density of U87MG, a human glioblastoma cell line. Next, the dose-response effects of 17-AAG with respect to spheroid size and viability were measured to determine the IC50 value. Finally, the developed high-throughput method was used to measure the dose response of four drugs (17-AAG, paclitaxel, TMZ, and doxorubicin) with respect to the spheroid size and viability. Each experiment was performed simultaneously in the 2D model for comparison. This detection method allowed for a more efficient process to identify highly qualified drug candidates, which may reduce the overall time required to bring a drug to clinical trial.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Citometria por Imagem/métodos , Esferoides Celulares , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50
12.
ACS Appl Mater Interfaces ; 8(20): 12702-10, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27152695

RESUMO

Lysosomes are the stomachs of the cells that degrade endocytosis and intracellular biomacromolecules and participate in various other cellular processes, such as apoptosis and cell migration. The ability of long-term tracking of lysosomes is very important to understand the details of lysosomal functions and to evaluate drug and gene delivery systems. For studying lysosomes, we designed and synthesized a water-soluble triscyclometalated iridium(III) complex (Ir-lyso) attaching morpholine moieties. The phosphorescent intensity of Ir-lyso is responsive to pH and decreases with an increase in the pH but not quenching in high pH. With excellent two-photon properties, Ir-lyso was used to light up the lysosomes in living cells and 3D tumor spheroids. Moreover, Ir-lyso could label lysosomes more than 4 days, so we developed this complex to act as a long-term probe for tracking lysosomes during cell migration and apoptosis. To the best of our knowledge, this is the first paradigm of metal complexes as the two-photon phosphorescent probe for long-term lysosomes tracking.


Assuntos
Técnicas de Química Analítica/métodos , Irídio/química , Medições Luminescentes , Lisossomos/metabolismo , Complexos de Coordenação , Substâncias Luminescentes/química , Fótons , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA