Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Bioorg Med Chem Lett ; 102: 129671, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387690

RESUMO

Matrine and indole have antibacterial, anticancer, and other biological activities, in order to develop new antibiotics to solve the problem of multi-drug resistant bacteria. In this paper, we synthesized a series of 29 novel matrine derivatives as potential drug candidates by combining indole analogs and matrine. The antibacterial activity of these compounds was evaluated through minimum inhibitory concentration (MIC) assays against five bacterial strains (S. aureus, C. albicans, P. acnes, P. aeruginosa, and E. coli). The obtained results demonstrated promising antibacterial efficacy, particularly for compounds A20 and A18, which exhibited MICs.au values of 0.021 and 0.031 mg/ml, respectively, against S. aureus. Moreover, compounds A20 and A27 displayed remarkable MICc.al values of 2.806 and 4.519 mg/ml, respectively, against C. albicans, surpassing the performance of the clinical antibiotic penicillin G sodium (0.0368 mg/ml) and fluconazole (4.849 mg/ml). These findings underscore the significant bacteriostatic activity of the matrine derivatives. Furthermore, to gain a deeper understanding 3D-QSAR modeling was employed, revealing the critical influence of steric structure, charge distribution, hydrophobic interactions, and hydrogen bonding within the molecular structure on the bacteriostatic activity of the compounds. Additionally, molecular docking simulations shed light on the interaction between compound A20 and bacterial proteins, highlighting the involvement of hydrogen bonding, hydrophobic interactions, and π-π conjugation in the formation of stable complexes that inhibit the normal functioning of the proteins. This comprehensive analysis provided valuable insights into the antibacterial mechanism of the novel matrine derivatives, offering theoretical support for their potential application as antibiotics.


Assuntos
Antibacterianos , Matrinas , Antibacterianos/química , Staphylococcus aureus , Escherichia coli , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Indóis/farmacologia
2.
Bioorg Chem ; 148: 107495, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805850

RESUMO

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC50 value of 4.14 µM, which was about 5-fold increase in potency than the hit compound A1 (IC50 = 21.49 µM). To gain deeper insights into the structure-activity relationship (SAR), a CoMFA model was constructed to yield reasonable statistical results (q2 = 0.658 and R2 = 0.969). Results from magnesium ion chelation experiments and molecular docking studies revealed that these thiazolopyrimidine inhibitors may exert their inhibitory activity by binding to an allosteric site on RNase H at the interface between subunits p51 and p66. Furthermore, this analog demonstrated favorable physicochemical properties. Our findings provide valuable groundwork for further development of allosteric inhibitors targeting HIV-1 RNase H.


Assuntos
Desenho de Fármacos , HIV-1 , Simulação de Acoplamento Molecular , Pirimidinas , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Estrutura Molecular , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Ribonuclease H do Vírus da Imunodeficiência Humana/metabolismo
3.
Bioorg Chem ; 151: 107647, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39024805

RESUMO

Brown rot of stone fruit, a disease caused by the ascomycete fungus Monilinia fructicola, has caused significant losses to the agricultural industry. In order to explore and discover potential fungicides against M. fructicola, thirty-one novel mandelic acid derivatives containing piperazine moieties were designed and synthesized based on the amide skeleton. Among them, target compound Z31 exhibited obvious in vitro antifungal activity with the EC50 value of 11.8 mg/L, and significant effects for the postharvest pears (79.4 % protective activity and 70.5 % curative activity) at a concentration of 200 mg/L. Antifungal activity for the target compounds was found to be significantly improved by the large steric hindrance of the R1 groups and the electronegative of the piperazines in the molecular structure, according to a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. Further mechanism studies have demonstrated that the compound Z31 can disrupt cell membrane integrity, resulting in increased membrane permeability, release of intracellular electrolytes, and affect the normal growth of hyphae. Additional, morphological study also indicated that Z31 may disrupt the integrity of the membrane by inducing generate excess endogenous reactive oxygen species (ROS) and resulting in the peroxidation of cellular lipids, which was further verified by the detection of malondialdehyde (MDA) content. These studies have provided the basis for the creation of novel fungicides to prevent brown rot in stone fruits.

4.
Mol Divers ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110306

RESUMO

Induction of autophagic death in cancer cells is one of the promising strategies for the development of anti-cancer therapeutics. In the present study, we designed and synthesized a series of isatin Schiff base derivatives containing thioether structures. After discovering the highly active target compound H13 (IC50 = 4.83 µM) based on in vitro antiproliferation, we also found it had a high safety against normal cells HEK293 with CC50 of 69.01 µM, indicating a sufficient therapeutic window. In addition, to provide reference for subsequent studies, a model was successfully constructed by Sybyl software. Preliminary mechanistic studies suggested that H13-induced apoptosis may be closely related to ROS accumulation and mitochondrial dysfunction. Subsequent studies revealed that H13 inhibited cell proliferation by inducing cellular autophagy mainly through blocking signal of the PI3K/AKT/mTOR pathway. Altogether, these results suggested that H13 was potentially valuable as a lead compound.

5.
Mol Divers ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38280974

RESUMO

The behavior of a molecule within its environment is governed by chemical fields present in 3D space. However, beyond local descriptors in 3D, the conformations a molecule assumes, and the resulting clusters also play a role in influencing structure-activity models. This study focuses on the clustering of atoms according to the vector space of four atoms aligned in the Z-Matrix Reference system for molecular similarity. Using 3D-QSAR analysis, it was aimed to determine the pharmacophore groups as interaction points in the binding region of the ß2-adrenoceptor target of fenoterol stereoisomers. Different types of local reactive descriptors of ligands have been used to elucidate points of interaction with the target. Activity values for ligand-receptor interaction energy were determined using the Levenberg-Marquardt algorithm. Using the Molecular Comparative Electron Topology method, the 3D pharmacophore model (3D-PhaM) was obtained after aligning and superimposing the molecules and was further validated by the molecular docking method. Best guesses were calculated with a non-output validation (LOO-CV) method. Finally, the data were calculated using the 'graphic fingerprint' technique. Based on the eLKlopman (Electrostatic LUMO Klopman) descriptor, the Q2 value of this derivative set was calculated as 0.981 and the R2ext value is calculated as 0.998.

6.
Mol Divers ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240951

RESUMO

Akt1, as an important member of the Akt family, plays a controlled role in cancer cell growth and survival. Inhibition of Akt1 activity can promote cancer cell apoptosis and inhibit tumor growth. Therefore, in this investigation, a multilayer virtual screening approach, including receptor-ligand interaction-based pharmacophore, 3D-QSAR, molecular docking, and deep learning methods, was utilized to construct a virtual screening platform for Akt1 inhibitors. 17 representative compounds with different scaffolds were identified as potential Akt1 inhibitors from three databases. Among these 17 compounds, the Hit9 exhibited the best inhibitory activity against Akt1 with inhibition rate of 33.08% at concentration of 1 µM. The molecular dynamics simulations revealed that Hit9 and Akt1 could form a compact and stable complex. Moreover, Hit9 interacted with some key residues by hydrophobic, electrostatic, and hydrogen bonding interactions and induced substantial conformation changes in the hinge region of the Akt1 active site. The average binding free energies for the Akt1-CQU, Akt1-Ipatasertib, and Akt1-Hit9 systems were - 34.44, - 63.37, and - 39.14 kJ mol-1, respectively. In summary, the results obtained in this investigation suggested that Hit9 with novel scaffold may be a promising lead compound for developing new Akt1 inhibitor for treatment of various cancers with Akt1 overexpressed.

7.
Mol Divers ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637479

RESUMO

DNA methyl transferases (DNMTs) are one of the crucial epigenetic modulators associated with a wide variety of cancer conditions. Among the DNMT isoforms, DNMT1 is correlated with bladder, pancreatic, and breast cancer, as well as acute myeloid leukemia and esophagus squamous cell carcinoma. Therefore, the inhibition of DNMT1 could be an attractive target for combating cancers and other metabolic disorders. The disadvantages of the existing nucleoside and non-nucleoside DNMT1 inhibitors are the main motive for the discovery of novel promising inhibitors. Here, pharmacophore modeling, 3D-QSAR, and e-pharmacophore modeling of DNMT1 inhibitors were performed for the large fragment database screening. The resulting fragments with high dock scores were combined into molecules. The current study revealed several constitutional pharmacophoric features that can be essential for selective DNMT1 inhibition. The fragment docking and virtual screening identified 10 final hit molecules that exhibited good binding affinities in terms of docking score, binding free energies, and acceptable ADME properties. Also, the modified lead molecules (GL1b and GL2b) designed in this study showed effective binding with DNMT1 confirmed by their docking scores, binding free energies, 3D-QSAR predicted activities and acceptable drug-like properties. The MD simulation studies also suggested that leads (GL1b and GL2b) formed stable complexes with DNMT1. Therefore, the findings of this study can provide effective information for the development/identification of novel DNMT1 inhibitors as effective anticancer agents.

8.
Mar Drugs ; 22(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38393054

RESUMO

PLK1 is found to be highly expressed in various types of cancers, but the development of inhibitors for it has been slow. Most inhibitors are still in clinical stages, and many lack the necessary selectivity and anti-tumor effects. This study aimed to create new inhibitors for the PLK1-PBD by focusing on the PBD binding domain, which has the potential for greater selectivity. A 3D QSAR model was developed using a dataset of 112 compounds to evaluate 500 molecules. ADMET prediction was then used to select three molecules with strong drug-like characteristics. Scaffold hopping was employed to reconstruct 98 new compounds with improved drug-like properties and increased activity. Molecular docking was used to compare the efficient compound abbapolin, confirming the high-activity status of [(14S)-14-hydroxy-14-(pyridin-2-yl)tetradecyl]ammonium,[(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium. Molecular dynamics simulations and MMPBSA were conducted to evaluate the stability of the compounds in the presence of proteins. An in-depth analysis of [(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium identified them as potential candidates for PLK1 inhibitors.


Assuntos
Compostos de Amônio , Produtos Biológicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Farmacóforo , Produtos Biológicos/farmacologia
9.
Ecotoxicol Environ Saf ; 273: 116173, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452703

RESUMO

Per- and polyfluoroalkyl (PFAS) substances are enduring industrial materials. 17ß-Hydroxysteroid dehydrogenase isoform 1 (17ß-HSD1) is an estrogen metabolizing enzyme, which transforms estrone into estradiol in human placenta and rat ovary. Whether PFAS inhibit 17ß-HSD1 and what the structure-activity relationship (SAR) remains unexplored. We screened 18 PFAS for inhibiting human and rat 17ß-HSD1 in microsomes and studied their SAR and mode of action(MOA). Of the 11 perfluorocarboxylic acids (PFCAs), C8-C14 PFCAs at a concentration of 100 µM substantially inhibited human 17ß-HSD1, with order of C11 (half-maximal inhibition concentration, IC50, 8.94 µM) > C10 (10.52 µM) > C12 (14.90 µM) > C13 (30.97 µM) > C9 (43.20 µM) > C14 (44.83 µM) > C8 (73.38 µM) > others. Of the 7 per- and poly-fluorosulfonic acids (PFSAs), the potency was C8S (IC50, 14.93 µM) > C7S (80.70 µM) > C6S (177.80 µM) > others. Of the PFCAs, C8-C14 PFCAs at 100 µM markedly reduced rat 17ß-HSD1 activity, with order of C11 (IC50, 9.11 µM) > C12 (14.30 µM) > C10 (18.24 µM) > C13 (25.61 µM) > C9 (67.96 µM) > C8 (204.39 µM) > others. Of the PFSAs, the potency was C8S (IC50, 37.19 µM) > C7S (49.38 µM) > others. In contrast to PFOS (C6S), the partially fluorinated compound 6:2 FTS with an equivalent number of carbon atoms demonstrated no inhibition of human and rat 17ß-HSD1 activity at a concentration of 100 µM. The inhibition of human and rat enzymes by PFAS followed a V-shaped trend from C4 to C14, with a nadir at C11. Moreover, human 17ß-HSD1 was more sensitive than rat enzyme. PFAS inhibited human and rat 17ß-HSD1 in a mixed mode. Docking analysis revealed that they bind to the NADPH and steroid binding site of both 17ß-HSD1 enzymes. The 3D quantitative SAR (3D-QSAR) showed that hydrophobic region, hydrogen bond acceptor and donor are key factors in binding to 17ß-HSD1 active sites. In conclusion, PFAS exhibit inhibitory effects on human and rat 17ß-HSD1 depending on factors such as carbon chain length, degree of fluorination, and the presence of carboxylic acid or sulfonic acid groups, with a notable V-shaped shift observed at C11.


Assuntos
Fluorocarbonos , Relação Quantitativa Estrutura-Atividade , Gravidez , Feminino , Humanos , Animais , Ratos , Simulação de Acoplamento Molecular , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Estrona , Carbono , Fluorocarbonos/toxicidade
10.
Chem Biodivers ; 21(5): e202400311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494946

RESUMO

Phytopathogenic fungi is the most devastating reason for the decrease of the agricultural production and food safety. To develop new fungicidal agents for resistance concerning, a novel series of aminocoumarin derivatives were synthesized and their fungicidal activity were investigated both in vitro and in vivo. Transmission electron microscope (TEM), scanning electron microscope (SEM), RNA-Seq, 3D-QSAR and molecular docking were applied to reveal the underlying anti-fungal mechanisms. Most of the compounds exhibited significant fungicidal activity. Notably, compound 10c had a more extensive fungicidal effect than positive control. TEM indicated that compound 10c could cause abnormal morphology of cell walls, vacuoles and release of cellular contents. Transcriptional analysis data indicated that 895 and 653 out of 1548 differential expressed genes (DEGs) were up-regulated and down-regulated respectively. The Go and KEGG enrichment indicated that the coumarin derivatives could induce significant changes of succinate dehydrogenase (SDH), Acetyl-coenzyme A synthetase (ACCA) and pyruvate dehydrogenase (PDH) genes, which contributed to the disorders of glucolipid metabolism and the dysfunction of mitochondrial. The results demonstrated that aminocoumarins with schiff-base as core moieties could be the promising lead compounds for the discovery of novel fungicides.


Assuntos
Cumarínicos , Desenho de Fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Relação Quantitativa Estrutura-Atividade , Botrytis/efeitos dos fármacos
11.
Chem Biodivers ; : e202401052, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058413

RESUMO

A series of diversified glucosamine derivatives (3a-3y) was synthesized and their antifungal activity was examined against four kinds of phytopathogens, Fusarium graminearum (F. graminearum), Fusarium moniliforme (F. moniliforme), Curvularia. lunata (C. lunata), and Rhizoctonia solani (R. solani)which cause seriously economic losses worldwide by affecting crops. The compound 3o showed remarkable antifungal activity against F. graminearum with EC50 values of 3.96 µg/mL, compared to the standard drug triadimefon (10.1µg/mL). 3D-QSAR model with the statistically recommended values (r2 = 0.915, q2=0.872) show that positive charge group and bulky group in the benzyl ring were favorable for the antifungal activity. Enzyme activity assays confirmed that 3o has amoderate inhibition of trehalase with inhibition rate of 51.4%at 5 µg/mL, which is comparable to those of commercial inhibitors validamycin A with inhibition rate of 83.3%.Molecular docking analysis revealed that 3o also had a hydrogen bond interaction with key amino acid residue compared to validoxylamine.

12.
Chem Biodivers ; 21(5): e202302064, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38390665

RESUMO

Based on our previous research, a 3D-QSAR model (q2=0.51, ONC=5, r2=0.982, F=271.887, SEE=0.052) was established to predict the inhibitory effects of triazole Schiff base compounds on Fusarium graminearum, and its predictive ability was also confirmed through the statistical parameters. According to the results of the model design, 30 compounds with superior bioactivity compared to the template molecule 4 were obtained. Seven of these compounds (DES2-6, DES9-10) with improved biological activity and readily available raw materials were successfully synthesized. Their structures were confirmed through HRMS, NMR, and single crystal X-ray diffraction analysis (DES-5). The bioactivity of the final products was investigated through an in vitro antifungal assay. There was little difference in the EC50 values between the experimental and predicted values of the model, demonstrating the reliability of the model. Especially, DES-3 (EC50=9.915 mg/L) and DES-5 (EC50=9.384 mg/L) exhibited better inhibitory effects on Fusarium graminearum compared to the standard drug (SD) triadimenol (EC50=10.820 mg/L). These compounds could serve as potential new fungicides for future research. The interaction between the final products and isocitrate lyase (ICL) was investigated through molecular docking. Compounds with R groups that have a higher electron-donating capacity were found to be biologically active.


Assuntos
Antifúngicos , Fusarium , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade , Bases de Schiff , Triazóis , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Fusarium/efeitos dos fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
13.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063195

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) was reported to be a putative target for recovery from chronic pain, producing analgesic effects after its inhibition. A series of drug candidates were previously developed, without the ability to ameliorate the therapeutic outcome. Starting from previously designed compounds, derived from the hybridization of antagonist SB-705498 and partial agonist MDR-652, we performed a virtual screening on a pharmacophore model built by exploiting the Cryo-EM 3D structure of a nanomolar antagonist in complex with the human TRPV1 channel. The pharmacophore model was described by three pharmacophoric features, taking advantage of both the bioactive pose of the antagonist and the receptor exclusion spheres. The results of the screening were implemented inside a 3D-QSAR model, correlating with the negative decadic logarithm of the inhibition rate of the ligands. After the validation of the obtained 3D-QSAR model, we designed a new series of compounds by introducing key modifications on the original scaffold. Again, we determined the compounds' binding poses after alignment to the pharmacophoric model, and we predicted their inhibition rates with the validated 3D-QSAR model. The obtained values resulted in being even more promising than parent compounds, demonstrating that ongoing research still leaves much room for improvement.


Assuntos
Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Canais de Cátion TRPV , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Humanos , Modelos Moleculares , Ligantes
14.
Molecules ; 29(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893377

RESUMO

Plant pathogenic fungi pose a major threat to global food security, ecosystem services, and human livelihoods. Effective and broad-spectrum fungicides are needed to combat these pathogens. In this study, a novel antifungal 2-oxyacetate hydrazide quinoxaline scaffold as a simple analogue was designed and synthesized. Their antifungal activities were evaluated against Botrytis cinerea (B. cinerea), Altemaria solani (A. solani), Gibberella zeae (G. zeae), Rhizoctonia solani (R. solani), Colletotrichum orbiculare (C. orbiculare), and Alternaria alternata (A. alternata). These results demonstrated that most compounds exhibited remarkable inhibitory activities and possessed better efficacy than ridylbacterin, such as compound 15 (EC50 = 0.87 µg/mL against G. zeae, EC50 = 1.01 µg/mL against C. orbiculare) and compound 1 (EC50 = 1.54 µg/mL against A. alternata, EC50 = 0.20 µg/mL against R. solani). The 3D-QSAR analysis of quinoxaline-2-oxyacetate hydrazide derivatives has provided new insights into the design and optimization of novel antifungal drug molecules based on quinoxaline.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade , Quinoxalinas , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Quinoxalinas/farmacologia , Quinoxalinas/química , Quinoxalinas/síntese química , Desenho de Fármacos , Alternaria/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Estrutura Molecular , Colletotrichum/efeitos dos fármacos , Gibberella/efeitos dos fármacos
15.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542850

RESUMO

The farnesoid X receptor (FXR) has been recognized as a potential drug target for the treatment of non-alcoholic fatty liver disease (NAFLD). FXR agonists benefit NAFLD by modulating bile acid synthesis and transport, lipid metabolism, inflammation, and fibrosis pathways. However, there are still great challenges involved in developing safe and effective FXR agonists. To investigate the critical factors contributing to their activity on the FXR, 3D-QSAR molecular modeling was applied to a series of isoxazole derivatives, using comparative molecular field analysis (CoMFA (q2 = 0.664, r2 = 0.960, r2pred = 0.872)) and comparative molecular similarity indices analysis (CoMSIA (q2 = 0.706, r2 = 0.969, r2pred = 0.866)) models, which demonstrated strong predictive ability in our study. The contour maps generated from molecular modeling showed that the presence of hydrophobicity at the R2 group and electronegativity group at the R3 group in these compounds is crucial to their agonistic activity. A molecular dynamics (MD) simulation was carried out to further understand the binding modes and interactions between the FXR and its agonists in preclinical or clinical studies. The conformational motions of loops L: H1/H2 and L: H5/H6 in FXR-ligand binding domain (LBD) were crucial to the protein stability and agonistic activity of ligands. Hydrophobic interactions were formed between residues (such as LEU287, MET290, ALA291, HIS294, and VAL297) in helix H3 and ligands. In particular, our study found that residue ARG331 participated in salt bridges, and HIS447 participated in salt bridges and hydrogen bonds with ligands; these interactions were significant to protein-ligand binding. Eight new potent FXR agonists were designed according to our results, and their activities were predicted to be better than that of the first synthetic FXR agonist, GW4064.


Assuntos
Simulação de Dinâmica Molecular , Hepatopatia Gordurosa não Alcoólica , Humanos , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Ligantes , Isoxazóis/farmacologia , Isoxazóis/química
16.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731613

RESUMO

Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.


Assuntos
Fármacos Anti-HIV , Simulação de Acoplamento Molecular , Pirimidinas , Relação Quantitativa Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Humanos , Simulação de Dinâmica Molecular , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Estrutura Molecular
17.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257339

RESUMO

In this study, using the Comparative Molecular Field Analysis (CoMFA) approach, the structure-activity relationship of 33 small quinoline-based compounds with biological anti-gastric cancer activity in vitro was analyzed in 3D space. Once the 3D geometric and energy structure of the target chemical library has been optimized and their steric and electrostatic molecular field descriptions computed, the ideal 3D-QSAR model is generated and matched using the Partial Least Squares regression (PLS) algorithm. The accuracy, statistical precision, and predictive power of the developed 3D-QSAR model were confirmed by a range of internal and external validations, which were interpreted by robust correlation coefficients (RTrain2=0.931; Qcv2=0.625; RTest2=0.875). After carefully analyzing the contour maps produced by the trained 3D-QSAR model, it was discovered that certain structural characteristics are beneficial for enhancing the anti-gastric cancer properties of Quinoline derivatives. Based on this information, a total of five new quinoline compounds were developed, with their biological activity improved and their drug-like bioavailability measured using POM calculations. To further explore the potential of these compounds, molecular docking and molecular dynamics simulations were performed in an aqueous environment for 100 nanoseconds, specifically targeting serine/threonine protein kinase. Overall, the new findings of this study can serve as a starting point for further experiments with a view to the identification and design of a potential next-generation drug for target therapy against cancer.


Assuntos
Antineoplásicos , Quinolinas , Neoplasias Gástricas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Quinolinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Neoplasias Gástricas/tratamento farmacológico
18.
Molecules ; 29(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202604

RESUMO

This work aimed to find new inhibitors of the CYP3A4 and JAK3 enzymes, which are significant players in autoimmune diseases such as rheumatoid arthritis. Advanced computer-aided drug design techniques, such as pharmacophore and 3D-QSAR modeling, were used. Two strong 3D-QSAR models were created, and their predictive power was validated by the strong correlation (R2 values > 80%) between the predicted and experimental activity. With an ROC value of 0.9, a pharmacophore model grounded in the DHRRR hypothesis likewise demonstrated strong predictive ability. Eight possible inhibitors were found, and six new inhibitors were designed in silico using these computational models. The pharmacokinetic and safety characteristics of these candidates were thoroughly assessed. The possible interactions between the inhibitors and the target enzymes were made clear via molecular docking. Furthermore, MM/GBSA computations and molecular dynamics simulations offered insightful information about the stability of the binding between inhibitors and CYP3A4 or JAK3. Through the integration of various computational approaches, this study successfully identified potential inhibitor candidates for additional investigation and efficiently screened compounds. The findings contribute to our knowledge of enzyme-inhibitor interactions and may help us create more effective treatments for autoimmune conditions like rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Cisteína , Citocromo P-450 CYP3A , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Simulação de Dinâmica Molecular , Janus Quinase 3
19.
J Agric Food Chem ; 72(14): 8072-8080, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547359

RESUMO

To increase the structural diversity of insecticides and meet the needs of effective integrated insect management, the structure of chlorantraniliprole was modified based on a previously established three-dimensional quantitative structure-activity relationship (3D-QSAR) model. The pyridinyl moiety in the structure of chlorantraniliprole was replaced with a 4-fluorophenyl group. Further modifications of this 4-fluorophenyl group by introducing a halogen atom at position 2 and an electron-withdrawing group (e.g., iodine, cyano, and trifluoromethyl) at position 5 led to 34 compounds with good insecticidal efficacy against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. Among them, compound IV f against M. separata showed potency comparable to that of chlorantraniliprole. IV p against P. xylostella displayed a 4.5 times higher potency than chlorantraniliprole. In addition, IV d and chlorantraniliprole exhibited comparable potencies against S. frugiperda. Transcriptome analysis showed that the molecular target of compound IV f is the ryanodine receptor. Molecular docking was further performed to verify the mode of action and insecticidal activity against resistant P. xylostella.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/química , Diamida/farmacologia , Diamida/química , Simulação de Acoplamento Molecular , Mariposas/metabolismo , ortoaminobenzoatos/farmacologia , ortoaminobenzoatos/química , Relação Quantitativa Estrutura-Atividade , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Larva/metabolismo
20.
Pharmaceutics ; 16(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065648

RESUMO

Considering the escalating global prevalence and the huge therapeutic demand for the treatment of hypertension, there is a persistent need to identify novel target sites for vasodilator action. This study aimed to investigate the role of TRPA1 channels in carvacrol-induced vasodilation and to design novel compounds based on carvacrol structure with improved activities. In an isolated tissue bath experiment, it was shown that 1 µM of the selective TRPA1 antagonist A967079 significantly (p < 0.001) reduced vasodilation induced by 3 mM of carvacrol. A reliable 3D-QSAR model with good statistical parameters was created (R2 = 0.83; Q2 = 0.59 and Rpred2 = 0.84) using 29 TRPA1 agonists. Obtained results from this model were used for the design of novel TRPA1 activators, and to predict their activity against TRPA1. Predicted pEC50 activities of these molecules range between 4.996 to 5.235 compared to experimental pEC50 of 4.77 for carvacrol. Molecular docking studies showed that designed molecules interact with similar amino acid residues of the TRPA1 channel as carvacrol, with eight compounds showing lower binding energies. In conclusion, carvacrol-induced vasodilation is partly mediated by the activation of TRPA1 channels. Combining different in silico approaches pointed out that the molecule D27 (2-[2-(hydroxymethyl)-4-methylphenyl]acetamide) is the best candidate for further synthesis and experimental evaluation in in vitro conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA