RESUMO
Spinal cord injury (SCI) induces severe losses of trabecular and cortical volumetric bone mineral density (vBMD), which cannot be discriminated with conventional dual-energy X-ray absorptiometry (DXA) analysis. The objectives were to: (i) determine the effects of SCI on areal BMD (aBMD) and vBMD determined by advanced 3D-DXA-based methods at various femoral regions and (ii) model the profiles of 3D-DXA-derived parameters with the time since injury. Eighty adult males with SCI and 25 age-matched able-bodied (AB) controls were enrolled in this study. Trabecular and cortical vBMD, cortical thickness and derived strength parameters were assessed by 3D-SHAPER® software at various femoral subregions. Individuals with SCI had significantly lower integral vBMD, trabecular vBMD, cortical vBMD, cortical thickness and derived bone strength parameters (p < 0.001 for all) in total proximal femur compared with AB controls. These alterations were approximately to the same degree for all three femoral subregions, and the difference between the two groups tended to be greater for cortical vBMD than trabecular vBMD. There were minor differences according to the lesion level (paraplegics vs tetraplegics) for all 3D-DXA-derived parameters. For total proximal femur, the decreasing bone parameters tended to reach a new steady state after 5.1 years for integral vBMD, 7.4 years for trabecular vBMD and 9.2 years for cortical vBMD following SCI. At proximal femur, lower vBMD (integral, cortical and trabecular) and cortical thickness resulted in low estimated bone strength in individuals with SCI. It remains to be demonstrated whether these new parameters are more closely associated with fragility fracture than aBMD.
Assuntos
Densidade Óssea , Traumatismos da Medula Espinal , Adulto , Masculino , Humanos , Absorciometria de Fóton/métodos , Fêmur/patologia , Osso e Ossos , Traumatismos da Medula Espinal/complicaçõesRESUMO
Introduction: Osteoporosis is currently diagnosed based on areal bone mineral density (aBMD) computed from 2D DXA scans. However, aBMD is a limited surrogate for femoral strength since it does not account for 3D bone geometry and density distribution. QCT scans combined with finite element (FE) analysis can deliver improved femoral strength predictions. However, non-negligible radiation dose and high costs prevent a systematic usage of this technique for screening purposes. As an alternative, the 3D-Shaper software (3D-Shaper Medical, Spain) reconstructs the 3D shape and density distribution of the femur from 2D DXA scans. This approach could deliver a more accurate estimation of femoral strength than aBMD by using FE analysis on the reconstructed 3D DXA. Methods: Here we present the first independent evaluation of the software, using a dataset of 77 ex vivo femora. We extend a prior evaluation by including the density distribution differences, the spatial correlation of density values and an FE analysis. Yet, cortical thickness is left out of this evaluation, since the cortex is not resolved in our FE models. Results: We found an average surface distance of 1.16 mm between 3D DXA and QCT images, which shows a good reconstruction of the bone geometry. Although BMD values obtained from 3D DXA and QCT correlated well (r 2 = 0.92), the 3D DXA BMD were systematically lower. The average BMD difference amounted to 64 mg/cm3, more than one-third of the 3D DXA BMD. Furthermore, the low correlation (r 2 = 0.48) between density values of both images indicates a limited reconstruction of the 3D density distribution. FE results were in good agreement between QCT and 3D DXA images, with a high coefficient of determination (r 2 = 0.88). However, this correlation was not statistically different from a direct prediction by aBMD. Moreover, we found differences in the fracture patterns between the two image types. QCT-based FE analysis resulted mostly in femoral neck fractures and 3D DXA-based FE in subcapital or pertrochanteric fractures. Discussion: In conclusion, 3D-Shaper generates an altered BMD distribution compared to QCT but, after careful density calibration, shows an interesting potential for deriving a standardized femoral strength from a DXA scan.
RESUMO
BACKGROUND: Most obese women with low-trauma fractures present normal areal bone mineral density (aBMD), suggesting that other bone parameters are more determinant for fracture risk in these patients. OBJECTIVES: (i) Determine the effects of obesity in young women on areal bone mineral density (aBMD), bone geometry, strength, and volumetric BMD determined by advanced DXA-based methods; (ii) model the profiles of bone parameters for each population with age; and (iii) determine the factors related to body composition (i.e. lean tissue mass and fat mass) potentially implicated in the "bone adaptation" in the femoral region. SUBJECTS AND METHODS: Two hundred and twenty adolescent and young women from 18 to 35 years old were enrolled in this study: 128 patients with obesity and 92 age-matched (±6 months) normal-weight controls. aBMD was determined with DXA, whereas hip geometry and strength parameters were assessed by hip structural analysis (HSA) and volumetric BMD by 3D-SHAPER® software. RESULTS: Compared with controls, subjects with obesity presented significantly higher aBMD at all bone sites, but the difference was greater at hip compared with lumbar spine or radius. Bone size estimates (i.e. cortical thickness), as well as strength estimates (i.e. cross-sectional area) were higher at all femoral subregions including femoral neck, intertrochanteric region and femoral shaft in young women with obesity. In whole proximal femur and all femoral compartments, vBMD was also higher in subjects with obesity, but the difference between groups was greater for cortical vBMD compared with trabecular vBMD. When hip bone parameters were modelled for each group from individual values, maximal values were reached between 20 and 26 years in both groups but, whatever the age, subjects with obesity presented higher values than controls. In both groups, lean body mass (LBM) was the parameter most positively associated with the greatest number of bone parameters studied. CONCLUSION: Our study confirmed that young women with obesity presented higher aBMD, better hip geometry and greater strength compared with normal-weight controls. Additionally, cortical and trabecular compartments measured by 3D-SHAPER® were favourably and concomitantly modified. However, it remains to be demonstrated whether the evaluation of these new parameters would provide better prediction of fracture risk in this population than aBMD.
Assuntos
Densidade Óssea , Fraturas por Osteoporose , Absorciometria de Fóton , Adolescente , Adulto , Feminino , Colo do Fêmur , Humanos , Lactente , Obesidade , Adulto JovemRESUMO
INTRODUCTION: This study evaluated and compared the shaping ability of the WaveOne Gold (Dentsply/Tulsa Dental Specialties, Tulsa, OK), TRUShape 3D Conforming File (Dentsply/Tulsa Dental Specialties), EdgeCoil (EdgeEndo, Albuquerque, NM), and XP-3D Shaper (Brasseler USA, Savannah, GA) endodontic file systems on oval-shaped canals using micro-computed tomographic (micro-CT) technology. METHODS: Thirty-two oval-shaped, single-canal extracted human teeth were decoronated 1 mm coronal to the cementoenamel junction and scanned via a micro-CT scanner (µCT100; Scanco Medical, Bassersdorf, Switzerland). Teeth were divided into 4 groups (n = 8) and instrumented according to the manufacturer's instructions. Coregistered images, before and after root canal preparation, were evaluated for morphometric measurements of the surface area, volume, structure model index (SMI), conicity, and percent of walls untouched using the manufacturer's evaluation software (IPL Register, Scanco Medical). Data were statistically compared between groups using 1-way analysis of variance and within groups using a paired sample t test. RESULTS: Instrumentation with all file types increased the surface area, volume, and conicity between and within groups. There was no statistically significant difference between the groups for any of the rotary instruments used (P < .05). CONCLUSIONS: Instrumentation of oval-shaped canals with WaveOne Gold, TRUShape, EdgeCoil, and XP-3D Shaper rotary endodontic instruments similarly increase the volume, surface area, and conicity. None of the file systems were capable of contacting all of the surface area in any canal.