Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Neuroimage ; 297: 120718, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964563

RESUMO

N, N-dimethyltryptamine (DMT) is a psychedelic tryptamine acting on 5-HT2A serotonin receptors, which is associated with intense visual hallucinatory phenomena and perceptual changes such as distortions in visual space. The neural underpinnings of these effects remain unknown. We hypothesised that changes in population receptive field (pRF) properties in the primary visual cortex (V1) might underlie visual perceptual experience. We tested this hypothesis using magnetic resonance imaging (MRI) in a within-subject design. We used a technique called pRF mapping, which measures neural population visual response properties and retinotopic maps in early visual areas. We show that in the presence of visual effects, as documented by the Hallucinogen Rating Scale (HRS), the mean pRF sizes in V1 significantly increase in the peripheral visual field for active condition (inhaled DMT) compared to the control. Eye and head movement differences were absent across conditions. This evidence for short-term effects of DMT in pRF may explain perceptual distortions induced by psychedelics such as field blurring, tunnel vision (peripheral vision becoming blurred while central vision remains sharp) and the enlargement of nearby visual space, particularly at the visual locations surrounding the fovea. Our findings are also consistent with a mechanistic framework whereby gain control of ongoing and evoked activity in the visual cortex is controlled by activation of 5-HT2A receptors.

2.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203271

RESUMO

The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine. Psilocybin and ketamine increased the release of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of naive rats as demonstrated using microdialysis. Both drugs influenced glutamate and GABA release in the nucleus accumbens, hippocampus and amygdala and increased ACh levels in the hippocampus. The changes in D2, 5-HT1A and 5-HT2A receptor density in the nucleus accumbens and hippocampus were observed as a long-lasting effect. A marked anxiolytic effect of psilocybin in the acute phase and 24 h post-treatment was shown in the open field test. These data provide the neurobiological background for psilocybin's effect on stress, anxiety and structural changes in the limbic system and translate into the antidepressant effect of psilocybin in depressed patients.


Assuntos
Ketamina , Psilocibina , Humanos , Animais , Ratos , Psilocibina/farmacologia , Ketamina/farmacologia , Sistema Límbico , Ácido Glutâmico , Antidepressivos/farmacologia
3.
J Neurochem ; 156(5): 658-673, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278025

RESUMO

Amyloid-ß (Aß) peptide aggregation into soluble oligomers and insoluble plaques is a precipitating event in the pathogenesis of Alzheimer's disease (AD). Given that synaptic activity can regulate Aß generation, we postulated that 5HT2A -Rs may regulate Aß as well. We treated APP/PS1 transgenic mice with the selective 5HT2A inverse agonists M100907 or Pimavanserin systemically and measured brain interstitial fluid (ISF) Aß levels in real-time using in vivo microdialysis. Both compounds reduced ISF Aß levels by almost 50% within hours, but had no effect on Aß levels in 5HT2A -R knock-out mice. The Aß-lowering effects of Pimavanserin were blocked by extracellular-regulated kinase (ERK) and NMDA receptor inhibitors. Chronic administration of Pimavanserin by subcutaneous osmotic pump to aged APP/PS1 mice significantly reduced CSF Aß levels and Aß pathology and improved cognitive function in these mice. Pimavanserin is FDA-approved to treat Parkinson's disease psychosis, and also has been shown to reduce psychosis in a variety of other dementia subtypes including Alzheimer's disease. These data demonstrate that Pimavanserin may have disease-modifying benefits in addition to its efficacy against neuropsychiatric symptoms of Alzheimer's disease. Read the Editorial Highlight for this article on page 560.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Agonismo Inverso de Drogas , Piperidinas/uso terapêutico , Receptor 5-HT2A de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Ureia/análogos & derivados , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Animais , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Piperidinas/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Ureia/farmacologia , Ureia/uso terapêutico
4.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769417

RESUMO

Experiments were carried out on recombinant B6.CBA-D13Mit76C (B6-M76C) and B6.CBA-D13Mit76B (B6-M76B) mouse lines created by transferring a 102.73-118.83 Mbp fragment of chromosome 13, containing the 5-HT1A receptor gene, from CBA or C57BL/6 strains to a C57BL/6 genetic background, correspondingly. We have recently shown different levels of 5-HT1A receptor functionality in these mouse lines. The administration of BDNF (300 ng/mouse, i.c.v.) increased the levels of exploratory activity and intermale aggression only in B6-M76B mice, without affecting depressive-like behavior in both lines. In B6-M76B mice the behavioral alterations were accompanied by a decrease in the 5-HT2A receptor functional activity and the augmentation of levels of serotonin and its main metabolite, 5-HIAA (5-hydroxyindoleacetic acid), in the midbrain. Moreover, the levels of dopamine and its main metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid), were also elevated in the striatum of B6-M76B mice after BDNF treatment. In B6-M76C mice, central BDNF administration led only to a reduction in the functional activity of the 5-HT1A receptor and a rise in DOPAC levels in the midbrain. The obtained data suggest the importance of the 102.73-118.83 Mbp fragment of mouse chromosome 13, which contains the 5-HT1A receptor gene, for BDNF-induced alterations in behavior and the brain monoamine system.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Encéfalo/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Receptor 5-HT1A de Serotonina/genética
5.
Neurochem Res ; 45(12): 3059-3075, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33095437

RESUMO

Serotonin 5-HT2A receptors and the brain-derived neurotrophic factor (BDNF) are involved in the pathophysiology and treatment of many psychiatric diseases. However, the interaction between 5-HT2A and BDNF is still poorly understood. In the present paper, the effects of chronic treatment with mixed 5-HT2A/2C receptor agonist DOI, highly selective 5-HT2A agonists TCB-2 and 25CN-NBOH on behavior and the BDNF system have been investigated. Chronic treatment of males of C57Bl/6 mice with DOI, TCB-2 and 25CN-NBOH (1 mg/kg, i.p., 14 days) resulted in desensitization of 5-HT2A receptors. Treatment with 25CN-NBOH significantly increased startle amplitude. At the same time all used drugs failed to affect anxiety, exploratory and stereotyped behavior as well as spatial memory and learning. TCB-2 and 25CN-NBOH increased the BDNF mRNA level. All 5-HT2A agonists increased the proBDNF level but failed to alter the mature BDNF protein level. TrkB and p75NTR mRNA levels were affected by all utilized agonists. All drugs decreased the total level as well as membrane TrkB protein one indicating downregulation of TrkB receptors. All agonists decreased the membrane p75NTR protein level. Thus, we have shown for the first time that the chronic activation of the 5-HT2A receptor with agonists has affected the BDNF system almost on all levels-transcription, proBDNF production, TrkB and p75NTR receptors' level. The obtained data suggested possible suppression in BDNF-TrkB signaling under chronic treatment with 5-HT2A agonists.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Anfetaminas/farmacologia , Animais , Encéfalo/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/metabolismo , Metilaminas/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Tirosina Quinases/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Regulação para Cima
6.
Proc Natl Acad Sci U S A ; 113(10): E1382-91, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26903620

RESUMO

Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.


Assuntos
Aprendizagem por Associação/fisiologia , Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Tálamo/fisiologia , Animais , Western Blotting , Córtex Cerebral/metabolismo , Fenômenos Eletrofisiológicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Plasticidade Neuronal/genética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Tálamo/metabolismo , Fosfolipases Tipo C/metabolismo
7.
Pharmacol Res ; 118: 93-103, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27663259

RESUMO

Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT2A) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT2A receptor-PDZ protein interactions. This enhancement depends on 5-HT2A receptor activation, spinal GABA release and GABAA receptor activation.


Assuntos
Fluoxetina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptor 5-HT2A de Serotonina/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Sinergismo Farmacológico , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia , Medula Espinal/fisiologia
8.
Hippocampus ; 26(9): 1107-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27328460

RESUMO

The hippocampus receives robust serotonergic innervation that is thought to control the excitability of both pyramidal cells and GABAergic interneurons. Previous work has addressed serotonergic regulation of pyramidal cells but considerable gaps remain in our understanding of how serotonin regulates different interneuron subclasses. 5-HT2A receptors (5-HT2A Rs) appear to localize predominantly, if not solely, on interneurons in the hippocampus and have been implicated in the regulation of hippocampal function including mnemonic and novelty recognition processes. Interneurons are functionally diverse. Therefore in the current work, we have used a BAC transgenic mouse line expressing EGFP under the control of the 5-HT2A R promoter to identify the interneuron subtype(s) regulated by serotonin via 5-HT2A Rs. We find that EGFP expression in this mouse identifies a group of interneurons that resides predominantly along the border of the stratum radiatum (SR) and stratum lacunosum moleculare (SLM) of the CA1 region. We then show that these cells are depolarized and excited by serotonin acting through 5-HT2A Rs and appear to belong predominantly to the perforant pathway-associated and Schaffer collateral/commissural pathway-associated subtypes. These results indicate that serotonin interneurons expressing 5-HT2A Rs are localized primarily along the SR-SLM border of the CA1 region and represent a newly identified target for serotonin regulation in the hippocampus. © 2016 Wiley Periodicals, Inc.


Assuntos
Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Serotonina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Interneurônios/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Técnicas de Patch-Clamp , Via Perfurante/citologia , Via Perfurante/efeitos dos fármacos , Via Perfurante/metabolismo , Regiões Promotoras Genéticas , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Técnicas de Cultura de Tecidos
9.
Neurotherapeutics ; 21(2): e00322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278658

RESUMO

In recent years, psychedelics have generated considerable excitement and interest as potential novel therapeutics for an array of conditions, with the most advanced evidence base in the treatment of certain severe and/or treatment-resistant psychiatric disorders. An array of clinical and pre-clinical evidence has informed our current understanding of how psychedelics produce profound alterations in consciousness. Mechanisms of psychedelic action include receptor binding and downstream cellular and transcriptional pathways, with long-term impacts on brain structure and function-from the level of single neurons to large-scale circuits. In this perspective, we first briefly review and synthesize separate lines of research on potential mechanistic processes underlying the acute and long-term effects of psychedelic compounds, with a particular emphasis on highlighting current theoretical models of psychedelic drug action and their relationships to therapeutic benefits for psychiatric and brain-based disorders. We then highlight an existing area of ongoing controversy we argue is directly informed by theoretical models originating from disparate levels of inquiry, and we ultimately converge on the notion that bridging the current chasm in explanatory models of psychedelic drug action across levels of inquiry (molecular, cellular, circuit, and psychological/behavioral) through innovative methods and collaborative efforts will ultimately yield the comprehensive understanding needed to fully capitalize on the potential therapeutic properties of these compounds.


Assuntos
Alucinógenos , Transtornos Mentais , Neurociências , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Encéfalo , Transtornos Mentais/tratamento farmacológico
10.
J Neurosci Res ; 91(12): 1628-38, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24105724

RESUMO

The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Predisposição Genética para Doença , Genótipo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT2A de Serotonina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serotonina/genética , Serotonina/metabolismo
11.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37111259

RESUMO

Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Serotonin (5-HT) release during myocardial ischemia plays an important role in the progression of myocardial cellular injury. This study was conducted to investigate the possible cardioprotective effect of flibanserin (FLP) against isoproterenol (ISO)-induced MI in rats. Rats were randomly divided into five groups and were treated orally (p.o.) with FLP (15, 30, and 45 mg/kg) for 28 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 27th and 28th days to induce MI. ISO-induced myocardial infarcted rats exhibited a significant increase in cardiac markers, oxidative stress markers, cardiac and serum 5-HT levels, and total cardiac calcium (Ca2+) concentration. ISO-induced myocardial infarcted rats also revealed a remarkable alteration of electrocardiogram (ECG) pattern and significantly upregulated expression of the 5-Hydroxytryptamine 2A (5-HT2A) receptors gene. Moreover, ISO-induced myocardial infarcted rats showed significant histopathological findings of MI and hypertrophic signs. However, pretreatment with FLP significantly attenuated the ISO-induced MI in a dose-dependent manner, as the effect of FLP (45 mg/kg) was more pronounced than that of the other two doses, FLP (15 and 30 mg/kg). The present study provides evidence for the cardioprotective efficacy of FLP against ISO-induced MI in rats.

12.
Biol Psychiatry ; 93(12): 1089-1098, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36635177

RESUMO

BACKGROUND: The serotonin hypothesis of depression proposes that diminished serotonergic (5-HT) neurotransmission is causal in the pathophysiology of the disorder. Although the hypothesis is over 50 years old, there is no firm in vivo evidence for diminished 5-HT neurotransmission. We recently demonstrated that the 5-HT2A receptor agonist positron emission tomography (PET) radioligand [11C]Cimbi-36 is sensitive to increases in extracellular 5-HT induced by an acute d-amphetamine challenge. Here we applied [11C]Cimbi-36 PET to compare brain 5-HT release capacity in patients experiencing a major depressive episode (MDE) to that of healthy control subjects (HCs) without depression. METHODS: Seventeen antidepressant-free patients with MDE (3 female/14 male, mean age 44 ± 13 years, Hamilton Depression Rating Scale score 21 ± 4 [range 16-30]) and 20 HCs (3 female/17 male, mean age 32 ± 9 years) underwent 90-minute dynamic [11C]Cimbi-36 PET before and 3 hours after a 0.5-mg/kg oral dose of d-amphetamine. Frontal cortex (main region of interest) 5-HT2A receptor nondisplaceable binding was calculated from kinetic analysis using the multilinear analysis-1 approach with the cerebellum as the reference region. RESULTS: Following d-amphetamine administration, frontal nondisplaceable binding potential (BPND) was significantly reduced in the HC group (1.04 ± 0.31 vs. 0.87 ± 0.24, p < .001) but not in the MDE group (0.97 ± 0.25 vs. 0.92 ± 0.22, not significant). ΔBPND of the MDE group was significantly lower than that of the HC group (HC: 15% ± 14% vs. MDE: 6.5% ± 20%, p = .041). CONCLUSIONS: This first direct assessment of 5-HT release capacity in people with depression provides clear evidence for dysfunctional serotonergic neurotransmission in depression by demonstrating reduced 5-HT release capacity in patients experiencing an MDE.


Assuntos
Transtorno Depressivo Maior , Serotonina , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Serotonina/metabolismo , Anfetamina , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/metabolismo , Cinética , Depressão , Receptor 5-HT2A de Serotonina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Dextroanfetamina
13.
Biomed Pharmacother ; 154: 113612, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36049313

RESUMO

The psychedelic 5-HT2A receptor (5HT2AR) agonist psilocybin (or the active metabolite psilocin) has emerged as potential useful drug for various neuropsychiatric diseases, with a rapid onset of therapeutic activity. However, the mechanisms responsible for such effects remain incompletely characterized. We aimed to study in vitro pharmacological profile and in vivo acute mechanism of psilocin/psilocybin. Competition binding studies with psilocin were performed in brain and cell cultures. The role of 5HT2AR, 5-HT2C receptors (5HT2CR) and 5-HT1A receptors (5HT1AR) on the psychosis-like head-twitch response (HTR) and on body temperature in mice after psilocybin administration were evaluated. Psilocin showed similar affinities for 5HT2AR (Ki: 120-173 nM), 5HT2CR (Ki: 79-311 nM) and 5-HT1AR (Ki: 152-146 nM) in human and mice brain. Psilocybin induced a dose-dependent HTR (maximal effect 17.07 ± 1.31 at 1 mg/kg i.p.) that was completely suppressed by the 5HT2AR antagonist MDL11939 (1 mg/kg). Higher doses of psilocybin (3 mg/kg) induced lower HTR (9.00 ± 0.53). The 5HT2CR antagonist SB242084 (0.1 mg/kg) increased HTR exerted by psilocybin (3 mg/kg). Psilocybin significantly raised core body temperature at low dose (0.125 mg/kg) (Emax=0.67 ± 0.15 °C), whereas a significant decrease was induced by doses over 1 mg/kg (Emax = -1.31 ± 0.16 °C). Pre-treatment with the 5HT1AR antagonist WAY100635 reversed the decrease of body temperature after psilocybin (1 mg/kg), causing hyperthermia (Emax = 0.94 ± 0.26 °C). The present work provides key findings on the 5HT2AR, 5-HT2CR and 5HT1AR involvement in the acute central effects of psilocybin. The results may be relevant for understanding the mechanism of action underlying the therapeutic effects and side effects of this psychedelic drug.


Assuntos
Alucinógenos , Psilocibina , Animais , Regulação da Temperatura Corporal , Alucinógenos/farmacologia , Humanos , Camundongos , Psilocibina/farmacologia , Receptor 5-HT1A de Serotonina , Serotonina
14.
Pharmacol Rep ; 73(5): 1361-1372, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34115343

RESUMO

BACKGROUND: Antiplatelet drugs have been used in the treatment of acute coronary syndromes and for the prevention of recurrent events. Unfortunately, many patients remain resistant to the available antiplatelet treatment. Therefore, there is a clinical need to synthesize novel antiplatelet agents, which would be associated with different pathways of platelet aggregation, to develop an alternative or additional treatment for resistant patients. Recent studies have revealed that 5-HT2A receptor antagonists could constitute alternative antiplatelet therapy. METHODS: Based on the structures of the conventional 5-HT2A receptor ligands, two series of compounds with 4-phenylcyclohexane-5-spiro- or 5-methyl-5-phenyl-hydantoin core linked to various arylpiperazine moieties were synthesized and their affinity for 5-HT2A receptor was assessed. Further, we evaluated their antagonistic potency at 5-HT2A receptors using isolated rat aorta and cells expressing human 5-HT2A receptors. Finally, we studied their anti-aggregation effect and compared it with ketanserin and sarpogrelate, the reference 5-HT2A receptor antagonists. Moreover, the structure-activity relationships were studied following molecular docking to the 5-HT2A receptor model. RESULTS: Functional bioassays revealed some of the synthesized compounds to be moderate antagonists of 5-HT2A receptors. Among them, 13, 8-phenyl-3-(3-(4-phenylpiperazin-1-yl)propyl)-1,3-diazaspiro[4.5]decane-2,4-dione, inhibited collagen stimulated aggregation (IC50 = 27.3 µM) being more active than sarpogrelate (IC50 = 66.8 µM) and comparable with ketanserin (IC50 = 32.1 µM). Moreover, compounds 2-5, 9-11, 13, 14 inhibited 5-HT amplified, ADP- or collagen-induced aggregation. CONCLUSIONS: Our study confirmed that the 5-HT2A antagonists effectively suppress platelet aggregation and remain an interesting option for the development of novel antiplatelet agents with an alternative mechanism of action.


Assuntos
Hidantoínas/síntese química , Hidantoínas/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/síntese química , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Aorta , Células CHO , Cricetinae , Cricetulus , Humanos , Mianserina/farmacologia , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Ratos
15.
Prog Brain Res ; 259: 135-175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33541675

RESUMO

Accumulating evidence has proven that both exogenous cannabinoids as well as imbalances in the endocannabinoid system are involved in the onset and development of mental disorders such as anxiety, depression, or schizophrenia. Extensive recent research in this topic has mainly focused on the molecular mechanisms by which cannabinoid agonists may contribute to the pathophysiology of these disorders. Initially, serotonin neurotransmitter garnered most attention due to its relationship to mood disorders and mental diseases, with little attention to specific receptors. To date, the focus has redirected toward the understanding of different serotonin receptors, through a demonstration of its versatile pharmacology and synergy with different modulators. Serotonin 2A receptors are a good example of this phenomenon, and the complex signaling that they trigger appears of high relevance in the context of mental disorders, especially in schizophrenia. This chapter will analyze most relevant attributes of serotonin 2A receptors and the endocannabinoid system, and will highlight the evidence toward the functional bidirectional interaction between these elements in the brain as well as the impact of the endocannabinoid system dysregulation on serotonin 2A receptors functionality.


Assuntos
Canabinoides , Esquizofrenia , Moduladores de Receptores de Canabinoides , Canabinoides/farmacologia , Endocanabinoides , Humanos , Receptor 5-HT2A de Serotonina , Esquizofrenia/tratamento farmacológico
16.
Chem Biol Interact ; 349: 109662, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560070

RESUMO

As a widely used anticancer drug in the clinic, cisplatin has obvious side effects, especially nephrotoxicity. Previous studies have suggested that the accumulation of intracellular reactive oxygen species (ROS) is a hallmark of cisplatin-induced acute kidney injury. This study aimed to investigate the relationship between ROS accumulation induced by cisplatin and 5-HT degradation. In vivo, by HE and TUNEL staining, we found that cisplatin-induced renal lesions and apoptotic regions, which were located in proximal tubular epithelial cells, were also the regions in which tryptophan hydroxylase 1 (Tph1), aromatic l-amino acid decarboxylase (AADC), 5-HT2A receptor (5-HT2AR) and monoamine oxidase A (MAO-A) were overexpressed, as determined by immunohistochemistry. Notably, the 5-HT2AR antagonist sarpogrelate hydrochloride (SH) and the AADC inhibitor carbidopa (CDP) significantly attenuated cisplatin-induced increases in serum creatinine and blood urea nitrogen levels, renal ROS levels, oxidative stress (SOD activity and MDA), proinflammatory cytokine levels (NF-κB, TNF-α and IL-1ß), proapoptotic factor levels (Bax, Bcl-2, C-caspase 3 and C-caspase 9) and the phosphorylation of p38 and STAT3, as well as renal lesions and apoptosis. The combination of SH and CDP could almost abolish the effects of cisplatin challenge. In vitro, the effects of cisplatin challenge and the inhibitory effects of SH and CDP were also observed in HK-2 cells. Additionally, similar to the combination of SH and CDP, the MAO-A inhibitor clorgyline could also abolish the effects of cisplatin challenge. More importantly, by western blotting, we detected that the upregulation of Tph1, AADC and MAO-A expression induced by cisplatin both in vivo and in vitro could be obviously suppressed by SH to decrease 5-HT synthesis and mitochondrial 5-HT degradation. Altogether, these findings suggested that cisplatin-induced nephrotoxicity is due to the activation of the 5-HT degradation system in proximal tubular epithelial cells, including 5-HT2AR and 5-HT synthesis and degradation. 5-HT2AR plays a role by mediating the expression of MAO-A and the 5-HT synthases Tph1 and AADC.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Serotonina/metabolismo , Animais , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
17.
J Biomol Struct Dyn ; 38(3): 860-885, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30916624

RESUMO

The extrapyramidal side effects of schizophrenia treatment can be significantly reduced by simultaneously targeting dopamine D2 and serotonin 5-HT2A receptors. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) models of D2 receptor (CoMFA-1, q2 = 0.767, r2 = 0.969; CoMSIA-1, q2 = 0.717, r2 = 0.978) and 5-HT2A receptor antagonists (CoMFA-2, q2 = 0.703, r2 = 0.946; CoMSIA-2, q2 = 0.675, r2 = 0.916) were successfully constructed using 35 tetrahydropyridopyrimidinone derivatives. Topomer CoMFA and HQSAR models were then constructed to further validate and supplement above models. Results showed that all models had good predictive power and stability. Contour map analysis revealed that the electrostatic and hydrophobic fields played vital roles in the bioactivity of dual antagonists. Molecular docking and molecular dynamic studies also suggested that the hydrogen bonding, electrostatic and hydrophobic interactions played key roles in the formation of stable binding sites. Meanwhile, several key residues like ASP114, TRP100, PHE389 of dopamine D2 receptor and ASP134, PHE328, TRP324 of serotonin 5-HT2A receptor were identified. Based on above findings, seven compounds were obtained through bioisostere replacement and ten compounds were designed by contour map analysis, in which the predicted activity of compounds S6 and DS2 were equivalent to that of the template compound 15. 3D-QSAR and ADMET predictions indicated that all newly designed compounds had great biological activity and physicochemical properties. Moreover, based on the best pharmacophore model, four compounds (Z1, Z2, Z3 and Z4) with new backbones were obtained by virtual screening. Overall, this study could provide theoretical guidance for the structural optimization, design and synthesis of novel dopamine D2 and serotonin 5-HT2A receptors dual antagonists. Abbreviations3D-QSARThree-dimensional quantitative structure-activity relationship5-HT2ARSerotonin 5-hydroxytryptamine 5-HT2A receptor5-HT2CRSerotonin 5-hydroxytryptamine 5-HT2C receptor receptorCADDComputer-aided drug designCoMFAComparative molecular field analysisCoMSIAComparative molecular similarity index analysisD2RDopamine D(2) receptorGPCRG-protein coupled receptorPLSPartial least squares regressionHQSARHologram quantitative structure-activity relationship. Communicated by Ramaswamy H. Sarma.


Assuntos
Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Esquizofrenia/tratamento farmacológico , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Domínio Catalítico , Antagonistas dos Receptores de Dopamina D2/análise , Antagonistas dos Receptores de Dopamina D2/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes , Antagonistas do Receptor 5-HT2 de Serotonina/análise , Antagonistas do Receptor 5-HT2 de Serotonina/química , Eletricidade Estática
18.
Eur Neuropsychopharmacol ; 36: 83-89, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517960

RESUMO

Pimavanserin is claimed as the first antipsychotic drug that shows selectivity for serotonin 5-HT2 receptors (5-HT2Rs) and lacks of affinity for dopamine D2 receptors (D2Rs). Cell-based functional assays suggest that pimavanserin and antipsychotics with D2R/5-HT2R affinity could act as inverse agonists of 5-HT2ARs. However, there is not evidence of such pharmacological profile in native brain tissue. 5-HT2ARs are able to engage both canonical Gαq/11- and non-canonical Gαi1-proteins. In the present study, the response to pimavanserin of the 5-HT2AR coupling to Gαq/11- and Gαi1-proteins was measured in membranes of postmortem human prefrontal cortex by antibody-capture [35S]GTPγS binding scintillation proximity assays. Pimavanserin promoted a concentration-dependant inhibition of the 5-HT2AR coupling to Gαi1-proteins whereas the response of Gαq/11-proteins was unaltered, suggesting inverse agonism and neutral antagonism properties, respectively. The inhibition was abolished in the presence of the selective 5-HT2AR antagonist MDL-11,939 and was absent in brain cortex of 5-HT2AR knock-out mice when compared to respective 5-HT2AR wild-type animals. In conclusion, the results demonstrate the existence of constitutive 5-HT2AR activity in human brain for the signalling pathway mediated by Gαi1-proteins. Pimavanserin demonstrates 5-HT2AR functional selectivity and exhibits inverse agonist profile towards Gαi1-proteins, which is considered the effector pathway promoting hallucinogenic responses. In contrast, pimavanserin behaves as neutral antagonist on the 5-HT2AR coupling to the canonical Gαq/11-protein pathway. The results strengthen the relevance of inverse agonism as potential mechanism of antipsychotic activity. Moreover, the existence of functional selectivity of 5-HT2ARs for different Gα-proteins could contribute to better design of 5-HT2AR-related antipsychotic drugs.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Agonismo Inverso de Drogas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Piperidinas/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Ureia/análogos & derivados , Adulto , Idoso , Animais , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptor 5-HT2A de Serotonina/metabolismo , Ureia/farmacologia
19.
Front Pharmacol ; 10: 1465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920655

RESUMO

According to the World Alzheimer's report, dementia was estimated to affect 50 million worldwide in 2018, number expected to increase to more than 150 million within 30 years. Alzheimer's disease is the most common type of dementia, accounting on its own for 2/3 of all dementia cases. The initial signs and symptoms of Alzheimer's disease relate to progressive cognitive decline, inexorably progressing until the loss of independence. Neuropsychiatric and behavioral symptoms may occur during the progression of the disease; around 20% of patients without any behavioral symptoms at the diagnosis will experience some of them within 2 years. Consequences are early institutionalization, lower quality of life, of both patients and carers, and more severe cognitive impairment. Treatment options for behavioral symptoms include pharmacological and non-pharmacological approaches. The latter are usually preferred, since antipsychotic therapy is not free from several, and often serious, adverse events. However, behavioral symptoms are not always controllable with non-pharmacological intervention. The psychotropic class of medication more frequently prescribed for behavioral symptoms are atypical antipsychotics; among them, risperidone is the only one licensed for the treatment of aggression, in Europe but not in the USA. On that regard, the use of antipsychotic drugs should be limited, due to the increased risk of mortality, stroke, hallucination, and higher risk of relapse after discontinuation. Some new agents are under evaluation, such as pimavanserin and lumateperone. In this review, we are evaluating the current available pharmacological options to treat behavioral symptoms as well as the forthcoming new agents.

20.
ACS Chem Neurosci ; 10(11): 4476-4491, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31618004

RESUMO

G-protein-coupled receptors (GPCRs), also known as 7-transmembrane receptors, are the single largest class of drug targets. Consequently, a large amount of preclinical assays having GPCRs as molecular targets has been released to public sources like the Chemical European Molecular Biology Laboratory (ChEMBL) database. These data are also very complex covering changes in drug chemical structure and assay conditions like c0 = activity parameter (Ki, IC50, etc.), c1 = target protein, c2 = cell line, c3 = assay organism, etc., making difficult the analysis of these databases that are placed in the borders of a Big Data challenge. One of the aims of this work is to develop a computational model able to predict new GPCRs targeting drugs taking into consideration multiple conditions of assay. Another objective is to perform new predictive and experimental studies of selective 5-HTA2 receptor agonist, antagonist, or inverse agonist in human comparing the results with those from the literature. In this work, we combined Perturbation Theory (PT) and Machine Learning (ML) to seek a general PTML model for this data set. We analyzed 343 738 unique compounds with 812 072 end points (assay outcomes), with 185 different experimental parameters, 592 protein targets, 51 cell lines, and/or 55 organisms (species). The best PTML linear model found has three input variables only and predicted 56 202/58 653 positive outcomes (sensitivity = 95.8%) and 470 230/550 401 control cases (specificity = 85.4%) in training series. The model also predicted correctly 18 732/19 549 (95.8%) of positive outcomes and 156 739/183 469 (85.4%) of cases in external validation series. To illustrate its practical use, we used the model to predict the outcomes of six different 5-HT2A receptor drugs, namely, TCB-2, DOI, DOB, altanserin, pimavanserin, and nelotanserin, in a very large number of different pharmacological assays. 5-HT2A receptors are altered in schizophrenia and represent drug target for antipsychotic therapeutic activity. The model correctly predicted 93.83% (76 of 86) experimental results for these compounds reported in ChEMBL. Moreover, [35S]GTPγS binding assays were performed experimentally with the same six drugs with the aim of determining their potency and efficacy in the modulation of G-proteins in human brain tissue. The antagonist ketanserin was included as inactive drug with demonstrated affinity for 5-HT2A/C receptors. Our results demonstrate that some of these drugs, previously described as serotonin 5-HT2A receptor agonists, antagonists, or inverse agonists, are not so specific and show different intrinsic activity to that previously reported. Overall, this work opens a new gate for the prediction of GPCRs targeting compounds.


Assuntos
Big Data , Bases de Dados de Compostos Químicos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Aprendizado de Máquina , Receptores Acoplados a Proteínas G/metabolismo , Radioisótopos de Enxofre/metabolismo , Adulto , Idoso , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Serotoninérgicos/metabolismo , Serotoninérgicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA