Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Br J Clin Pharmacol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830622

RESUMO

AIMS: Early clinical studies have indicated that the pharmacokinetics of Atuliflapon (AZD5718) are time and dose dependent. The reason(s) for these findings is(are) not fully understood, but pre-clinical profiling suggests that time-dependent CYP3A4 inhibition cannot be excluded. In clinical practice, Atuliflapon will be co-administered with CYP3A4 substrates; thus, it is important to determine the impact of Atuliflapon on the pharmacokinetics (PK) of CYP3A4 substrates. The aim of this study was to evaluate the effect of Atuliflapon on the pharmacokinetics of a sensitive CYP3A4 substrate, midazolam, and to explore if the time-/dose-dependent effect seen after repeated dosing could be an effect of change in CYP3A4 activity. METHODS: Open-label, fixed-sequence study in healthy volunteers to assess the PK of midazolam alone and in combination with Atuliflapon. Fourteen healthy male subjects received single oral dose of midazolam 2 mg on days 1 and 7 and single oral doses of Atuliflapon (125 mg) from days 2 to 7. A physiologically based pharmacokinetic (PBPK) model was developed to assess this drug-drug interaction. RESULTS: Mean midazolam values of maximum plasma concentration (Cmax) and area under the curve (AUC) to infinity were increased by 39% and 56%, respectively, when co-administered with Atuliflapon vs. midazolam alone. The PBPK model predicted a 27% and 44% increase in AUC and a 23% and 35% increase in Cmax of midazolam following its co-administrations with two predicted therapeutically relevant doses of Atuliflapon. CONCLUSIONS: Atuliflapon is a weak inhibitor of CYP3A4; this was confirmed by the validated PBPK model. This weak inhibition is predicted to have a minor PK effect on CYP3A4 metabolized drugs.

2.
Bioorg Chem ; 139: 106685, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418786

RESUMO

Inflammatory responses are orchestrated by a plethora of lipid mediators, and perturbations of their biosynthesis or degradation hinder resolution and lead to uncontrolled inflammation, which contributes to diverse pathologies. Small molecules that induce a switch from pro-inflammatory to anti-inflammatory lipid mediators are considered valuable for the treatment of chronic inflammatory diseases. Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) are afflicted with side effects caused by the inhibition of beneficial prostanoid formation and redirection of arachidonic acid (AA) into alternative pathways. Multi-target inhibitors like diflapolin, the first dual inhibitor of soluble epoxide hydrolase (sEH) and 5-lipoxygenase-activating protein (FLAP), promise improved efficacy and safety but are confronted by poor solubility and bioavailability. Four series of derivatives bearing isomeric thiazolopyridines as bioisosteric replacement of the benzothiazole core and two series additionally containing mono- or diaza-isosteres of the phenylene spacer were designed and synthesized to improve solubility. The combination of thiazolo[5,4-b]pyridine, a pyridinylen spacer and a 3,5-Cl2-substituted terminal phenyl ring (46a) enhances solubility and FLAP antagonism, while preserving sEH inhibition. Moreover, the thiazolo[4,5-c]pyridine derivative 41b, although being a less potent sEH/FLAP inhibitor, additionally decreases thromboxane production in activated human peripheral blood mononuclear cells. We conclude that the introduction of nitrogen, depending on the position, not only enhances solubility and FLAP antagonism (46a), but also represents a valid strategy to expand the scope of application towards inhibition of thromboxane biosynthesis.


Assuntos
Inibidores da Proteína Ativadora de 5-Lipoxigenase , Inibidores de Lipoxigenase , Humanos , Inibidores de Lipoxigenase/farmacologia , Inibidores da Proteína Ativadora de 5-Lipoxigenase/farmacologia , Solubilidade , Leucócitos Mononucleares/metabolismo , Epóxido Hidrolases/metabolismo , Inibidores Enzimáticos/farmacologia , Anti-Inflamatórios/farmacologia , Piridinas/farmacologia , Tromboxanos , Lipídeos
3.
Cancer Cell Int ; 22(1): 149, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410355

RESUMO

Abnormal expression of 5-Lipoxygenase Activating Protein (FLAP) has been detected in many tumor cells. MicroRNAs (miRNAs) negatively regulate gene expression post-transcriptionally by binding to the 3'-untranslated region (3'-UTR) of the target mRNA sequences and have been shown to be involved in various types of cancers. Herein, we aimed to demonstrate the expression of miR-146a and FLAP in human HCC tissues and liver cancer cell lines. We demonstrated that miR-146a expression is overexpressed, while FLAP protein and mRNA are suppressed in hepatocellular carcinoma tissues and HepG2 cells compared to para-carcinoma tissues and HL-7702 cells. Dual luciferase reporter gene assay showed that miR-146a-5p can directly target FLAP mRNA. Knockdown of miR-146a also resulted in increased FLAP expression of cancer cells. Additionally, miR-146a silencing or restoration of FLAP led to a reduction of HepG2 cell proliferation, cell cycle progression, migration, and invasion. This study showed that miR-146a has a stimulatory role in HepG2 cells and promotes HepG2 cell migration and invasion by targeting FLAP mRNA. Thus, miR-146a may be a tumor promoter and a potential therapeutic target for the treatment of HCC patients.

4.
Cell Mol Life Sci ; 79(1): 40, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971430

RESUMO

Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.


Assuntos
Antagonistas de Leucotrienos/farmacologia , Leucotrienos , Nanopartículas/química , Animais , Feminino , Voluntários Saudáveis , Humanos , Leucotrienos/biossíntese , Leucotrienos/metabolismo , Masculino , Camundongos
5.
J Enzyme Inhib Med Chem ; 37(1): 1752-1764, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36124840

RESUMO

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesised, and characterised. These novel compounds, which contain a benzimidazole subunit were evaluated for their inhibitory activity against sEH and FLAP. Molecular modelling tools were applied to analyse structure-activity relationships (SAR) on both targets and to predict solubility and gastrointestinal (GI) absorption. The most promising dual inhibitors of these series are 5a, 6b, and 6c.


Assuntos
Benzimidazóis , Epóxido Hidrolases , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Relação Estrutura-Atividade
6.
Bioorg Chem ; 112: 104861, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826984

RESUMO

Microsomal prostaglandin E2 synthase-1 (mPGES-1), 5-lipoxygenase (5-LO) and 5- lipoxygenase-activating protein (FLAP) are key for biosynthesis of proinflammatory lipid mediators and pharmacologically relevant drug targets. In the present study, we made an attempt to explore the role of small heteroaromatic fragments on the 4,5-diarylisoxazol-3-carboxylic acid scaffold, which are selected to interact with focused regions in the active sites of mPGES-1, 5-LO and FLAP. We report that the simple structural variations on the benzyloxyaryl side-arm of the scaffold significantly influence the selectivity against mPGES-1, 5-LO and FLAP, enabling to produce multi-target inhibitors of these protein targets, exemplified by compound 18 (IC50 mPGES-1 = 0.16 µM; IC50 5-LO = 0.39 µM) with in vivo efficacy in animal model of inflammation. The computationally modeled binding structures of these new inhibitors for three targets provide clues for rational design of modified structures as multi-target inhibitors. In conclusion, the simple synthetic procedure, and the possibility of enhancing the potency of this class of inhibitors through structural modifications pave the way for further development of new multi-target inhibitors against mPGES-1, 5-LO and FLAP, with potential application as anti-inflammatory agents.


Assuntos
Androstenóis/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Carboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Prostaglandina-E Sintases/antagonistas & inibidores , Adolescente , Adulto , Idoso , Androstenóis/síntese química , Androstenóis/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Estrutura Molecular , Prostaglandina-E Sintases/metabolismo , Relação Estrutura-Atividade , Adulto Jovem
7.
Semin Immunol ; 33: 3-15, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29042025

RESUMO

Leukotriene B4 (LTB4) is a lipid mediator derived from arachidonic acid (AA) by the sequential action of 5-lipoxygenase (5-LOX), 5-lipoxygenase-activating protein (FLAP) and LTA4 hydrolase (LTA4H). It was initially recognized for its involvement in the recruitment of neutrophils and is one of the most potent chemotactic agents known to date. A large body of data has indicated that LTB4 plays a significant role in many chronic inflammatory diseases, such as arthritis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, cancer and more recently, metabolic disorder. In this review, we focus on the biosynthesis of LTB4 and its biological effects. In particular, we will describe a basic biochemical understanding integrated with recent developments in the field of structural biology of the three key enzymes (5-LOX, FLAP and LTA4H) in LTB4 biosynthesis, and also summarize the most outstanding work on in vivo biological and pathogenic roles of these enzymes and the development of enzyme inhibitors.


Assuntos
Artrite/imunologia , Doenças Cardiovasculares/imunologia , Leucotrieno B4/biossíntese , Neoplasias/imunologia , Neutrófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Endonucleases Flap/metabolismo , Humanos , Relação Estrutura-Atividade
8.
Lipids Health Dis ; 18(1): 25, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678701

RESUMO

BACKGROUND: Genetic variation in the genes ALOX5 (arachidonate 5-lipoxygenase), ALOX5AP (arachidonate 5-lipoxygenase-activating protein) and LTA4H (leukotriene A4 hydrolase) has previously been shown to contribute to the risk of MI (myocardial infarction) in Caucasian and African American populations. All genes encode proteins playing a role in the synthesis of the pro-inflammatory leukotriene B mediators, possibly providing a link between MI and inflammation. The aim of the present study was to investigate whether these associations could be confirmed in the study of China MI patients. The study included 401 Han Chinese MI patients and 409 controls. Six tag single nucleotide polymorphisms (SNPs)-ALOX5 rs12762303 and rs12264801, ALOX5AP rs10507391, LTA4H rs2072512, rs2540487 and rs2540477-were selected. SNP genotyping was performed by an improved multiplex ligation detection reaction assay. RESULTS: The rs2540487 genotype was associated with the risk of MI in overdominant model (P = 0.008). rs12762303 and rs10507391 SNPs were significantly associated with lipid levels in MI patients (P < 0.006-0.008). Several SNPs interacted with alcohol consumption, cigarette smoking, and hypertension to modify TC, TG, LDL-C and CRE levels, and the risk of MI (P < 0.0017 for all). No association between the SNPs of LT pathway and susceptibility to MI was found (P > 0.05 for all). CONCLUSIONS: Taken together, this study provides additional evidence that functional genetic variation of the LT pathway can mediate atherogenic processes and the risk of MI in Chinese.


Assuntos
Proteínas Ativadoras de 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/genética , Aterosclerose/genética , Epóxido Hidrolases/genética , Infarto do Miocárdio/genética , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/fisiopatologia , Aterosclerose/fisiopatologia , China , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Haplótipos/genética , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Leucotrieno B4/genética , Leucotrieno B4/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Infarto do Miocárdio/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , População Branca
10.
J Labelled Comp Radiopharm ; 59(9): 340-5, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27298225

RESUMO

An AstraZeneca effort to identify a 5-lipoxygenase activating protein inhibitor with good drug-like properties resulted in the identification of AZD6642. To further understand its drug metabolism and pharmacokinetic properties, it was required labeled with tritium. The tritiation of AZD6642 was effected by Ir-catalyzed exchange chemistry to give an average of one tritium per molecule. Additionally, a stable isotope labeled version of AZD6642 was required to support bioanalytical studies. The synthesis originated from [(2) H6 ]acetone which was converted to the trimethylsilyl cyanide adduct and subsequently reduced to give 2-(aminomethyl)-[1,1,1,3,3,3-(2) H6 ]propan-2-ol in good yield. Carbonylation to give an amide adduct resulted in an intermediate that was converted to the final compound in four steps.


Assuntos
Inibidores da Proteína Ativadora de 5-Lipoxigenase/síntese química , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Ácidos Picolínicos/síntese química , Pirazinas/síntese química , Trítio/química , Inibidores da Proteína Ativadora de 5-Lipoxigenase/química , Inibidores da Proteína Ativadora de 5-Lipoxigenase/farmacologia , Acetona/química , Técnicas de Química Sintética , Marcação por Isótopo , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Pirazinas/química , Pirazinas/farmacologia
11.
Biochim Biophys Acta ; 1840(9): 2961-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24905297

RESUMO

BACKGROUND: Subcellular distribution of 5-lipoxygenase (5-LO) to the perinuclear region and interaction with the 5-LO-activating protein (FLAP) are assumed as key steps in leukotriene biosynthesis and are prone to FLAP antagonists. METHODS: FLAP and/or 5-LO were stably expressed in HEK293 cells, 5-LO products were analyzed by HPLC, and 5-LO and FLAP subcellular localization was visualized by immunofluorescence microscopy. RESULTS: 5-LO and FLAP were stably expressed in HEK293 cells, and upon Ca(2+)-ionophore A23187 stimulation exogenous AA was efficiently transformed into the 5-LO products 5-hydro(pero)xyeicosatetraenoic acid (5-H(p)ETE) and the trans-isomers of LTB4. A23187 stimulation caused 5-LO accumulation at the nuclear membrane only when FLAP was co-expressed. Unexpectedly, A23187 stimulation of HEK cells expressing 5-LO and FLAP without exogenous AA failed in 5-LO product synthesis. HEK cells liberated AA in response to A23187, and transfected HEK cells expressing 12-LO generated 12-HETE after A23187 challenge from endogenous AA. FLAP co-expression increased 5-LO product formation in A23187-stimulated cells at low AA concentrations. Only in cells expressing FLAP and 5-LO, the FLAP antagonist MK886 blocked FLAP-mediated increase in 5-LO product formation, and prevented 5-LO nuclear membrane translocation and co-localization with FLAP. CONCLUSION: The cellular biosynthesis of 5-LO products from endogenously derived substrate requires not only functional 5-LO/FLAP co-localization but also additional prerequisites which are dispensable when exogenous AA is supplied; identification of these determinants is challenging. GENERAL SIGNIFICANCE: We present a cell model to study the role of FLAP as 5-LO interacting protein in LT biosynthesis in intact cells and for characterization of putative FLAP antagonists.


Assuntos
Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Núcleo Celular/enzimologia , Indóis/farmacologia , Leucotrienos/biossíntese , Inibidores de Lipoxigenase/farmacologia , Proteínas Ativadoras de 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/genética , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Núcleo Celular/genética , Células HEK293 , Humanos , Leucotrienos/genética
12.
J Stroke Cerebrovasc Dis ; 24(3): 521-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534367

RESUMO

BACKGROUND: The contributions of gene-gene interactions to pathogenesis of stroke remain largely elusive. The present study was designed to investigate the associations between genetic variations and ischemic stroke risk, the roles of gene-gene interactions in ischemic stroke, and their associations with atherothrombotic events. METHODS: Among 396 patients with ischemic stroke and 378 controls, we examined 8 variants from 5 genes, including ALOX5AP-SG13S32 (rs9551963), SG13S42 (rs4769060), SG13S89 (rs4769874), SG13S114 (rs10507391), EPHX2 G860A (rs751141), CYP2C9*2 C430T (rs1799853), CYP2C9*3 A1075C (rs1057910), and CYP3A5 A6986G (rs776746), using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Gene-gene interactions were determined by the generalized multifactor dimensionality reduction (GMDR) method. All ischemic stroke patients were followed up 12 months for atherothrombotic events, including recurrent ischemic stroke and other vascular events. RESULTS: Single-gene variant analysis showed no significant differences in the genotype distributions of the 8 variants between the 2 groups. However, the GMDR analysis showed a significant interaction between rs10507391 and rs776746, in those cases carrying rs10507391 AA and rs776746 GG, the risk of ischemic stroke increased by 2.014 times (95% confidence interval [CI], 1.896-6.299; P = .006), and the atherothrombotic events occurred more frequently in those patients during follow-up period (P < .001). Multiple Cox regression analysis showed that the interaction between rs10507391 AA and rs776746 GG was an independent risk factor for atherothrombotic events (relative risk = 2.921; 95% CI, 1.118-7.012; P = .008). CONCLUSIONS: The interaction between rs10507391 and rs776746 increases the susceptibility to ischemic stroke and is associated with atherothrombotic events in stroke patients.


Assuntos
Proteínas Ativadoras de 5-Lipoxigenase/genética , Aterosclerose/genética , Isquemia Encefálica/genética , Citocromo P-450 CYP3A/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/genética , Trombose/genética , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/diagnóstico , Aterosclerose/enzimologia , Aterosclerose/mortalidade , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/enzimologia , Isquemia Encefálica/mortalidade , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , China , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Fenótipo , Prognóstico , Modelos de Riscos Proporcionais , Recidiva , Fatores de Risco , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/mortalidade , Trombose/diagnóstico , Trombose/enzimologia , Trombose/mortalidade
13.
Pulm Pharmacol Ther ; 27(1): 62-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24333186

RESUMO

Patients with refractory asthma frequently have neutrophilic airway inflammation and respond poorly to inhaled corticosteroids. This study evaluated the effects of an oral 5-lipoxygenase-activating protein (FLAP) inhibitor, GSK2190915, in patients with asthma and elevated sputum neutrophils. Patients received 14 (range 13-16) days treatment with GSK2190915 100 mg and placebo with a minimum 14 day washout in a double-blind, cross-over, randomised design (N = 14). Sputum induction was performed twice pre-dose in each treatment period to confirm sputum neutrophilia, and twice at the end of each treatment period. The primary endpoint was the percentage and absolute sputum neutrophil count, averaged for end-of-treatment visits. GSK2190915 did not significantly reduce mean percentage sputum neutrophils (GSK2190915-placebo difference [95% CI]: -0.9 [-12.0, 10.3]), or mean sputum neutrophil counts (GSK2190915/placebo ratio [95% CI]: 1.06 [0.43, 2.61]). GSK2190915 resulted in a marked suppression (>90%) of sputum LTB4 and urine LTE4, but did not alter clinical endpoints. There were no safety issues. Despite suppressing the target mediator LTB4, FLAP inhibitor GSK2190915 had no short-term effect on sputum cell counts or clinical endpoints in patients with asthma and sputum neutrophilia.


Assuntos
Inibidores da Proteína Ativadora de 5-Lipoxigenase/uso terapêutico , Asma/tratamento farmacológico , Indóis/uso terapêutico , Neutrófilos/metabolismo , Ácidos Pentanoicos/uso terapêutico , Inibidores da Proteína Ativadora de 5-Lipoxigenase/farmacologia , Adulto , Idoso , Asma/fisiopatologia , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Indóis/farmacologia , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Ácidos Pentanoicos/farmacologia , Escarro/metabolismo , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
14.
J Hepatol ; 59(3): 583-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23567086

RESUMO

Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes.


Assuntos
Morte Celular/fisiologia , Hepatite/patologia , Hepatite/fisiopatologia , Animais , Apoptose , Autofagia , Senescência Celular , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Humanos , Lipídeos/fisiologia , Fígado/patologia , Fígado/fisiopatologia , Modelos Biológicos , Estresse Oxidativo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/fisiologia
15.
Cond Med ; 6(2): 33-41, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38800614

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and disability worldwide. As such, new treatments are needed to prevent the onset and progression of atherosclerosis to improve outcomes in patients with coronary, cerebrovascular, and peripheral arterial disease. In this regard, inflammation is known to be a critical driver of atherosclerosis formation and progression, thus it is a viable target for vascular protection in patients at risk of developing ASCVD. Leukotrienes, key pro-inflammatory lipid mediators derived from arachidonic acid, are associated with atheroma inflammation and progression. Genetic mutations in key components of the leukotriene synthesis pathway, such as 5-lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP), are associated with an increased risk of cardiovascular disease, and pharmacological inhibition of 5-LO and FLAP has been reported to prevent atheroma formation in pre-clinical and early clinical studies. In this article, we provide an overview of these studies and highlight the therapeutic potential of targeting leukotriene synthesis to prevent atheroma inflammation and progression and improve outcomes in patients at risk of ASCVD.

16.
Front Pharmacol ; 14: 1219160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680719

RESUMO

Lipoxygenases (LOX) transform arachidonic acid (AA, C20:4) and docosahexaenoic acid (DHA, C22:6) into bioactive lipid mediators (LMs) that comprise not only pro-inflammatory leukotrienes (LTs) but also the specialized pro-resolving mediators (SPMs) that promote inflammation resolution and tissue regeneration. The 5-LOX-activating protein (FLAP) is known to provide AA as a substrate to 5-LOX for generating LTs, such as LTB4, a potent chemoattractant and activator of phagocytes. Notably, 5-LOX is also involved in the biosynthesis of certain SPMs, namely, lipoxins and D-resolvins, implying a role of FLAP in SPM formation. FLAP antagonists have been intensively developed as LT biosynthesis inhibitors, but how they impact SPM formation is a matter of debate. Here, we show that FLAP antagonism suppresses the conversion of AA by 5-LOX to LT and lipoxins, while the conversion of DHA to SPM is unaffected. Screening of multiple prominent FLAP antagonists for their effects on LM formation in human M1- and M2-monocyte-derived macrophages by comprehensive LM profiling showed that all nine compounds reduced the production of 5-LOX-derived LTs but increased the formation of SPMs from DHA, e.g., resolvin D5. Some FLAP antagonists, especially those that contain an indole or benzimidazole moiety, even elicited SPM formation in resting M2-monocyte-derived macrophages. Intriguingly, in coincubations of human neutrophils and platelets that produce substantial AA-derived lipoxin and DHA-derived RvD5, FLAP antagonism abolished lipoxin formation, but resolvin D5 levels remained unaffected. Conclusively, antagonism of FLAP suppresses the conversion of AA by 5-LOX to LTs and lipoxins but not the conversion of DHA by 5-LOX to SPM, which should be taken into account for the development of such compounds as anti-inflammatory drugs.

17.
Int J Cardiol ; 365: 34-40, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35842004

RESUMO

BACKGROUND: Leukotrienes are pro-inflammatory vasoactive lipid mediators implicated in the pathophysiology of atherosclerotic cardiovascular disease. We studied the effect of the 5-lipoxygenase-activating protein inhibitor AZD5718 on leukotriene biosynthesis and coronary microvascular function in a single-blind, phase 2a study. METHODS: Patients 7-28 days after myocardial infarction (±ST elevation), with <50% left anterior descending coronary artery stenosis and Thrombolysis in Myocardial Infarction flow grade ≥ 2 after percutaneous coronary intervention, were randomized 2:1:2 to once-daily AZD5718 200 mg or 50 mg, or placebo, in 4- and 12-week cohorts. Change in urine leukotriene E4 (uLTE4) was the primary endpoint, and coronary flow velocity reserve (CFVR; via echocardiography) was the key secondary endpoint. RESULTS: Of 129 randomized patients, 128 received treatment (200 mg, n = 52; 50 mg, n = 25; placebo, n = 51). Statistically significant reductions in uLTE4 levels of >80% were observed in both AZD5718 groups versus the placebo group at 4 and 12 weeks. No significant changes in CFVR were observed for AZD5718 versus placebo. Adverse events (AEs) occurred in 12/18, 3/6 and 6/13 patients receiving 200 mg, 50 mg and placebo, respectively, in the 4-week cohort, and in 27/34, 14/19 and 24/38 patients, respectively, in the 12-week cohort. Serious AEs in seven patients receiving AZD5718 and four receiving placebo were not treatment-related, and there were no deaths. CONCLUSIONS: In patients with recent myocardial infarction, AZD5718 was well tolerated, and leukotriene biosynthesis was dose-dependently inhibited. No significant changes in CFVR were detected. CLINICALTRIALS: gov identifier: NCT03317002.


Assuntos
Inibidores da Proteína Ativadora de 5-Lipoxigenase , Infarto do Miocárdio , Inibidores da Proteína Ativadora de 5-Lipoxigenase/efeitos adversos , Estenose Coronária/tratamento farmacológico , Humanos , Infarto do Miocárdio/tratamento farmacológico , Pirazóis , Método Simples-Cego , Resultado do Tratamento
18.
Front Pharmacol ; 13: 825741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300294

RESUMO

Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid (AA), and their high production has been reported in multiple allergic, autoimmune, and cardiovascular disorders. The biological synthesis of leukotrienes is instigated by transfer of AA to 5-lipoxygenase (5-LO) via the 5-lipoxygenase-activating protein (FLAP). Suppression of FLAP can inhibit LT production at the earliest level, providing relief to patients requiring anti-leukotriene therapy. Over the last 3 decades, several FLAP modulators have been synthesized and pharmacologically tested, but none of them could be able to reach the market. Therefore, it is highly desirable to unveil the structural requirement of FLAP modulators. Here, in this study, supervised machine learning techniques and molecular modeling strategies are adapted to vaticinate the important 2D and 3D anti-inflammatory properties of structurally diverse FLAP inhibitors, respectively. For this purpose, multiple machine learning classification models have been developed to reveal the most relevant 2D features. Furthermore, to probe the 3D molecular basis of interaction of diverse anti-inflammatory compounds with FLAP, molecular docking studies were executed. By using the most probable binding poses from docking studies, the GRIND model was developed, which indicated the positive contribution of four hydrophobic, two hydrogen bond acceptor, and two shape-based features at certain distances from each other towards the inhibitory potency of FLAP modulators. Collectively, this study sheds light on important two-dimensional and three-dimensional structural requirements of FLAP modulators that can potentially guide the development of more potent chemotypes for the treatment of inflammatory disorders.

19.
Kidney Int Rep ; 6(11): 2803-2810, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34805632

RESUMO

INTRODUCTION: Patients with chronic kidney disease (CKD) remain at risk for kidney and cardiovascular events resulting from residual albuminuria, despite available treatments. Leukotrienes are proinflammatory and vasoconstrictive lipid mediators implicated in the etiology of chronic inflammatory diseases. AZD5718 is a potent, selective, and reversible 5-lipoxygenase activating protein (FLAP) inhibitor that suppresses leukotriene production. METHODS: FLAIR (FLAP Inhibition in Renal disease) is an ongoing phase 2b, randomized, double-blind, placebo-controlled, multicenter study to evaluate the efficacy and safety of AZD5718 in patients with proteinuric CKD with or without type 2 diabetes. Participants receive AZD5718 at 3 different doses or placebo once daily for 12 weeks, followed by an 8-week extension in which they also receive dapagliflozin (10 mg/d) as anticipated future standard of care. The planned sample size is 632 participants, providing 91% power to detect 30% reduction in urinary albumin-to-creatinine ratio (UACR) between the maximum dose of AZD5718 and placebo. The dose-response effect of AZD5718 on UACR after the dapagliflozin extension is the primary efficacy objective. Key secondary objectives are the dose-response effect of AZD5718 plus current standard of care on UACR and acute effects of treatment on the estimated glomerular filtration rate. Safety, tolerability, AZD5718 pharmacokinetics, and analyses of biomarkers that may predict or reflect response to AZD5718 are additional objectives. CONCLUSION: FLAIR will provide data on the effects of 5-lipoxygenase pathway inhibition in patients with proteinuric CKD with or without type 2 diabetes, and will form the basis for future clinical trials (ClinicalTrials.gov: NCT04492722).

20.
Exp Ther Med ; 22(6): 1484, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34765025

RESUMO

5-lipoxygenase-activating protein (FLAP), encoded by the arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene, can adjust the biogenesis of proinflammatory leukotrienes to increase the adhesion and permeability of the vascular internal wall. Moreover, it participates in the process of atherosclerosis and is closely associated with ischemic stroke (IS). Accumulating evidence has shown that the expression levels of the ALOX5AP gene are upregulated in patients with IS. However, the mechanism of ALOX5AP action in IS remain elusive. The present study hypothesized that epigenetic regulation, including DNA methylation and microRNA (miR/miRNA) regulation, affects the expression levels of the ALOX5AP gene. Therefore, 200 patients with a first diagnosis of acute IS and 200 healthy control subjects were enrolled in the present study. Initially, the mRNA expression levels of the ALOX5AP gene were examined by reverse transcription-quantitative PCR. It was found that the mRNA levels of ALOX5AP gene in the IS group were significantly higher compared with controls (P<0.05). Subsequently, the methylation status of 17 CpG sites located in the promoter region of ALOX5AP was assessed by MethyTarget sequencing. However, the levels of methylation exhibited no significant differences between IS and control groups (P>0.05). Moreover, the expression levels of miR-335 and miR-495 were examined as two potential miRNAs targeting the ALOX5AP gene. The expression levels of miR-335 and miR-495 in the IS group were significantly lower compared with the control group (P<0.05). Finally, the luciferase assay results indicated that the luciferase activity of the experimental group following co-transfection of miRNA mimic and wild-type reporter gene plasmid was significantly lower compared with the other experimental groups (P<0.05), suggesting that miR-335 and miR-495 could specifically bind to the 3'-untranslated region of the ALOX5AP gene, thereby downregulating its expression. The present study provided preliminary evidence demonstrating that epigenetic regulation affects the expression of the ALOX5AP gene in patients with IS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA