Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 48(10): 6094-6105, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34410014

RESUMO

PURPOSE: To examine the use of multiple fast-helical free breathing computed tomography (FHFBCT) scans for ventilation measurement. METHODS: Ten patients were scanned 25 times in alternating directions using a FHFBCT protocol. Simultaneously, an abdominal pneumatic bellows was used as a real-time breathing surrogate. Regions-of-interest (ROIs) were selected from the upper right lungs of each patient for analysis. The ROIs were first registered using a published registration technique (pTV). A subsequent follow-up registration employed an objective function with two terms, a ventilation-adjusted Hounsfield Unit difference and a conservation-of-mass term labeled ΔΓ that denoted the difference between the deformation Jacobian and the tissue density ratio. The ventilations were calculated voxel-by-voxel as the slope of a first-order fit of the Jacobian as a function of the breathing amplitude. RESULTS: The ventilations of the 10 patients showed different patterns and magnitudes. The average ventilation calculated from the deformation vector fields (DVFs) of the pTV and secondary registration was nearly identical, but the standard deviation of the voxel-to-voxel differences was approximately 0.1. The mean of the 90th percentile values of ΔΓ was reduced from 0.153 to 0.079 between the pTV and secondary registration, implying first that the secondary registration improved the conservation-of-mass criterion by almost 50% and that on average the correspondence between the Jacobian and density ratios as demonstrated by ΔΓ was less than 0.1. This improvement occurred in spite of the average of the 90th percentile changes in the DVF magnitudes being only 0.58 mm. CONCLUSIONS: This work introduces the use of multiple free-breathing CT scans for free-breathing ventilation measurements. The approach has some benefits over the traditional use of 4-dimensional CT (4DCT) or breath-hold scans. The benefit over 4DCT is that FHFBCT does not have sorting artifacts. The benefits over breath-hold scans include the relatively small motion induced by quiet respiration versus deep-inspiration breath hold and the potential for characterizing dynamic breathing processes that disappear during breath hold.


Assuntos
Neoplasias Pulmonares , Artefatos , Tomografia Computadorizada Quadridimensional , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Respiração , Tomografia Computadorizada Espiral
2.
Med Phys ; 47(11): 5555-5567, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32521048

RESUMO

PURPOSE: Lung biomechanical models are important for understanding and characterizing lung anatomy and physiology. A key parameter of biomechanical modeling is the underlying tissue elasticity distribution. While human lung elasticity estimations do not have ground truths, model consistency checks can and should be employed to gauge the stability of the estimation techniques. This work proposes such a consistency check using a set of 10 subjects. METHODS: We hypothesize that lung dynamics will be stable over a 2-3 min time period and that this stability can be employed to check biomechanical estimation stability. For this purpose, two sets of 12 fast helical free breathing computed tomography scans (FHFBCT) were acquired back-to-back for each of the subjects. A published breathing motion model [five-dimensional CT (5DCT)] was generated from each set. Both of the models were used to generate two biomechanical modeling input sets: (a) The lung geometry at the end-exhalation, and (b) the voxel displacement map that mapped the end-exhalation lung geometry with the end-inhalation lung geometry. Finite element biomechanical lung models were instantiated using the end-exhalation lung geometries. The models included voxel-specific lung tissue elasticity values and were optimized using a gradient search approach until the biomechanical model-generated displacement maps matched those of the 5DCT voxel displacement maps. Finally, the two elasticity distributions associated with each of the patient 5DCTs were quantitatively compared. Because the end-exhalation geometries differed slightly between the two scan datasets, the elasticity distributions were deformably mapped to one of the exhalation datasets. RESULTS: For the 10 patients, on average, 90% of parenchymal voxels had <2 kPa Young's modulus difference between the two estimations, with a mean voxel difference of only 0.6 kPa. Similarly, 97% of the parenchymal voxels had <2 mm displacement difference between the two models with a mean difference of 0.48 mm. Furthermore, overlapping elasticity histograms for voxels between -600 and -900 HU (parenchymal tissues) showed that the histograms were consistent between the two estimations. CONCLUSION: In this paper, we demonstrated that biomechanical lung models can be consistently estimated when using motion-model based imaging datasets, even though the models were created from scans acquired at different breaths.


Assuntos
Pulmão , Respiração , Elasticidade , Humanos , Pulmão/diagnóstico por imagem , Movimento (Física) , Tomografia Computadorizada Espiral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA