Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Chemistry ; 30(32): e202400366, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38506263

RESUMO

Discussed are two picolinate appended bispidine ligands (3,7-diazabicyclo[3.3.1]nonane derivatives) in comparison with an earlier described bis-pyridine derivative, which are all known to strongly bind CuII. The radiopharmacological characterization of the two isomeric bispidine complexes includes quantitative labeling with 64CuII at ambient conditions with high radiochemical purities and yields (molar activities >200 MBq/nmol). Challenge experiments in presence of EDTA, cyclam, human serum and SOD demonstrate high stability and inertness of the 64Cu-bispidine complexes. Biodistribution studies performed in Wistar rats indicate a rapid renal elimination for both 64Cu-labeled chelates. The bispidine ligand with the picolinate group in N7 position was selected for further biological experiments, and its backbone was therefore substituted with a benzyl-NCS group at C9. Two tumor target modules (TMs), targeting prostate stem cell antigen (PSCA), overexpressed in prostate cancer, and the fibroblast activation protein (FAP) in fibrosarcoma, were selected for thiourea coupling with the NCS-functionalized ligand and lysine residues of TMs. Small animal PET experiments on tumor-bearing mice showed specific accumulation of the 64Cu-labeled TMs in PSCA- and FAP-overexpressing tumors (standardized uptake value (SUV) for PC3: 2.7±0.6 and HT1080: 7.2±1.25) with almost no uptake in wild type tumors.


Assuntos
Radioisótopos de Cobre , Imunoconjugados , Ácidos Picolínicos , Ratos Wistar , Ácidos Picolínicos/química , Animais , Ratos , Radioisótopos de Cobre/química , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Camundongos , Distribuição Tecidual , Compostos Radiofarmacêuticos/química , Ligantes , Masculino , Tomografia por Emissão de Pósitrons , Complexos de Coordenação/química , Compostos Bicíclicos Heterocíclicos com Pontes
2.
Part Fibre Toxicol ; 21(1): 2, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297341

RESUMO

INTRODUCTION: Recent studies showed the presence of microplastic in human lungs. There remains an unmet need to identify the biodistribution of microplastic after inhalation. In this study, we traced the biodistribution of inhaled micro-sized polystyrene (mPS) and/or nano-sized PS (nPS) using 64Cu with PET in mice. METHODS: We used 0.2-0.3-µm sized mPS and 20-nm sized nPS throughout. 64Cu-DOTA-mPS, 64Cu-DOTA-nPS and/or 64CuCl2 were used to trace the distribution in the murine inhalation model. PET images were acquired using an INVEON PET scanner at 1, 12, 24, 48, and 72 h after intratracheal instillation, and the SUVmax for interesting organs were determined, biodistribution was then determined in terms of percentage injected dose/gram of tissue (%ID/g). Ex vivo tissue-radio thin-layer chromatography (Ex vivo-radioTLC) was used to demonstrate the existence of 64Cu-DOTA-PS in tissue. RESULTS: PET image demonstrated that the amount of 64Cu-DOTA-mPS retained within the lung was significantly higher than 64Cu-DOTA-nPS until 72 h; SUVmax values of 64Cu-DOTA-mPS in lungs was 11.7 ± 5.0, 48.3 ± 6.2, 65.5 ± 2.3, 42.2 ± 13.1, and 13.2 ± 2.3 at 1, 12, 24, 48, and 72 h respectively whereas it was 31.2 ± 3.1, 17.3 ± 5.9, 10.0 ± 3.4, 8.1 ± 2.4 and 8.9 ± 3.6 for 64Cu-DOTA-nPS at the corresponding timepoints. The biodistribution data supported the PET data with a similar pattern of clearance of the radioactivity from the lung. nPS cleared rapidly post instillation in comparison to mPS within the lungs. Higher accumulation of %ID/g for nPS (roughly 2 times) were observed compared to mPS in spleen, liver, intestine, thymus, kidney, brain, salivary gland, ovary, and urinary bladder. Ex vivo-radioTLC was used to demonstrate that the detected gamma rays originated from 64Cu-DOTA-mPS or nPS. CONCLUSION: PET image demonstrated the differences in accumulations of mPS and/or nPS between lungs and other interesting organs. The information provided may be used as the basis for future studies on the toxicity of mPS and/or nPS.


Assuntos
Radioisótopos de Cobre , Poliestirenos , Feminino , Camundongos , Humanos , Animais , Radioisótopos de Cobre/química , Distribuição Tecidual , Microplásticos , Plásticos , Tomografia por Emissão de Pósitrons/métodos
3.
Eur J Nucl Med Mol Imaging ; 50(12): 3576-3588, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37382663

RESUMO

PURPOSE: Hypoxic tumors are associated with therapy resistance and poor cancer prognosis, but methods to detect and counter tumor hypoxia remain insufficient. Our purpose was to investigate 64Cu(II)-elesclomol ([64Cu][Cu(ES)]) as a novel theranostic agent for hypoxic tumors, by implementing an improved production method and assessing its therapeutic and diagnostic potential compared to the established Cu-64 radiopharmaceuticals [64Cu]CuCl2 and [diacetyl-bis(N4-methylthiosemicarbazone) [64Cu][Cu(ATSM)]. METHODS: Cu-64 was produced using a biomedical cyclotron at 12 MeV with the reaction 64Ni(p,n)64Cu, followed by synthesis of [64Cu]CuCl2, [64Cu][Cu(ATSM)], and [64Cu][Cu(ES)]. In vitro therapeutic effects were assessed in both normoxic and hypoxic cells (22Rv1 and PC3 prostate cancer cells, and U-87MG glioblastoma cells) using the clonogenic assay and analyzing cellular uptake and internalization. In vivo therapeutic effects were assessed in 22Rv1 xenografts in BALB/cAnN-Foxn1nu/nu/Rj mice receiving a single or multiple doses of radiopharmaceutical, before their feasibility to detect tumor hypoxia was assessed by positron emission tomography (PET) in 22Rv1 and U-87MG xenografts. RESULTS: In vitro and in vivo studies demonstrated that [64Cu][Cu(ES)] reduced cell survival and inhibited tumor growth more effectively than [64Cu][Cu(ATSM)] and [64Cu]CuCl2. Hypoxia increased the cellular uptake and internalization of [64Cu][Cu(ES)] and [64Cu][Cu(ATSM)]. [64Cu][Cu(ES)]-PET tumor hypoxia detection was feasible and also revealed an unexpected finding of uptake in the brain. CONCLUSION: To the best of our knowledge, this is the first time that ES is radiolabeled with [64Cu]CuCl2 to [64Cu][Cu(ES)]. We demonstrated superior therapeutic effects of [64Cu][Cu(ES)] compared to [64Cu][Cu(ATSM)] and [64Cu]CuCl2 and that [64Cu][Cu(ES)]-PET is feasible. [64Cu][Cu(ES)] is a promising theranostic agent for hypoxic solid tumors.

4.
Mol Pharm ; 20(11): 5856-5864, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37851927

RESUMO

The aim of this study is to evaluate a radioactive metal complex platform for brain tumor targeting. Herein, we introduce a new porphyrin derivative, 5,10,15,20-(tetra-N,N-dimethyl-4-aminophenyl)porphyrin (TDAP), in which four N,N-dimethyl-4-p-phenylenediamine (DMPD) moieties are conjugated to the porphyrin labeled with the radiometal 64Cu. DMPD affected the pharmacokinetics of porphyrin in terms of retention time in vivo and tumor-targeting ability relative to those of unmodified porphyrin. [64Cu]Cu-TDAP showed stronger enhancement than [64Cu]Cu-porphyrin in U87MG glioblastoma cells, especially in the cytoplasm and nucleus, indicating its tumor-targeting properties and potential use as a therapeutic agent. In the subcutaneous and orthotopic models of brain-tumor-bearing mice, [64Cu]Cu-TDAP was clearly visualized in the tumor site via positron emission tomography imaging and showed a tumor-to-brain ratio as high as 13. [64Cu]Cu-TDAP deserves attention as a new diagnostic agent that is suitable for the early diagnosis and treatment of brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Porfirinas , Animais , Camundongos , Linhagem Celular Tumoral , Radioisótopos de Cobre/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico
5.
Mol Pharm ; 20(1): 267-278, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542354

RESUMO

Early diagnosis of radiation-induced pulmonary fibrosis (RIPF) in lung cancer patients after radiation therapy is important. A gastrin-releasing peptide receptor (GRPR) mediates the inflammation and fibrosis after irradiation in mice lungs. Previously, our group synthesized a GRPR-targeted positron emission tomography (PET) imaging probe, [64Cu]Cu-NODAGA-galacto-bombesin (BBN), an analogue peptide of GRP. In this study, we evaluated the usefulness of [64Cu]Cu-NODAGA-galacto-BBN for the early prediction of RIPF. We prepared RIPF mice and acquired PET/CT images of [18F]F-FDG and [64Cu]Cu-NODAGA-galacto-BBN at 0, 2, 5, and 11 weeks after irradiation (n = 3-10). We confirmed that [64Cu]Cu-NODAGA-galacto-BBN targets GRPR in irradiated RAW 264.7 cells. In addition, we examined whether [64Cu]Cu-NODAGA-galacto-BBN monitors the therapeutic efficacy in RIPF mice (n = 4). As a result, the lung uptake ratio (irradiated-to-normal) of [64Cu]Cu-NODAGA-galacto-BBN was the highest at 2 weeks, followed by its decrease at 5 and 11 weeks after irradiation, which matched with the expression of GRPR and was more accurately predicted than [18F]F-FDG. These uptake results were also confirmed by the cell uptake assay. Furthermore, [64Cu]Cu-NODAGA-galacto-BBN could monitor the therapeutic efficacy of pirfenidone in RIPF mice. We conclude that [64Cu]Cu-NODAGA-galacto-BBN is a novel PET imaging probe for the early prediction of RIPF-targeting GRPR expressed during the inflammatory response.


Assuntos
Fibrose Pulmonar , Receptores da Bombesina , Animais , Camundongos , Receptores da Bombesina/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/etiologia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Bombesina/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Linhagem Celular Tumoral
6.
Mol Pharm ; 20(4): 2029-2038, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862642

RESUMO

Two-chain hepatocyte growth factor (tcHGF), the mature form of HGF, is associated with malignancy and anticancer drug resistance; therefore, its quantification is an important indicator for cancer diagnosis. In tumors, activated tcHGF hardly discharges into the systemic circulation, indicating that tcHGF is an excellent target for molecular imaging using positron emission tomography (PET). We recently discovered HGF-inhibitory peptide-8 (HiP-8) that binds specifically to human tcHGF with nanomolar affinity. The purpose of this study was to investigate the usefulness of HiP-8-based PET probes in human HGF knock-in humanized mice. 64Cu-labeled HiP-8 molecules were synthesized using a cross-bridged cyclam chelator, CB-TE1K1P. Radio-high-performance liquid chromatography-based metabolic stability analyses showed that more than 90% of the probes existed in intact form in blood at least for 15 min. In PET studies, significantly selective visualization of hHGF-overexpressing tumors versus hHGF-negative tumors was observed in double-tumor-bearing mice. The accumulation of labeled HiP-8 into the hHGF-overexpressing tumors was significantly reduced by competitive inhibition. In addition, the radioactivity and distribution of phosphorylated MET/HGF receptor were colocalized in tissues. These results demonstrate that the 64Cu-labeled HiP-8 probes are suitable for tcHGF imaging in vivo, and secretory proteins like tcHGF can be a target for PET imaging.


Assuntos
Fator de Crescimento de Hepatócito , Neoplasias , Camundongos , Humanos , Animais , Fator de Crescimento de Hepatócito/metabolismo , Peptídeos/química , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Quelantes/química , Radioisótopos de Cobre/química , Linhagem Celular Tumoral
7.
Mol Pharm ; 20(8): 4256-4267, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37368947

RESUMO

Programmed cell death receptor 1 (PD-1) and its ligand PD-L1 are particularly interesting immune checkpoint proteins for human cancer treatment. Positron emission tomography (PET) imaging allows for the dynamic monitoring of PD-L1 status during tumor progression, thus informing patients' response index. Herein, we report the synthesis of two linear peptide-based radiotracers, [64Cu]/[68Ga]HKP2201 and [64Cu]/[68Ga]HKP2202, and validate their utility for PD-L1 visualization in preclinical models. The precursor peptide HKP2201 was derived from a linear peptide ligand, CLP002, which was previously identified by phage display and showed nanomolar affinity toward PD-L1. Appropriate modification of CLP002 via PEGylation and DOTA conjugation yielded HKP2201. The dimerization of HKP2201 generated HKP2202. The 64Cu and 68Ga radiolabeling of both precursors was studied and optimized. PD-L1 expression in mouse melanoma cell line B16F10, mouse colon cancer cell line MC38, and their allografts were assayed by immunofluorescence and immunohistochemistry staining. Cellular uptake and binding assays were conducted in both cell lines. PET imaging and ex vivo biodistribution studies were employed in tumor mouse models bearing B16F10 and MC38 allografts. [64Cu]/[68Ga]HKP2201 and [64Cu]/[68Ga]HKP2202 were obtained with satisfactory radiocharacteristics. They all showed lower liver accumulation compared to [64Cu]/[68Ga]WL12. B16F10 and MC38 cells and their tumor allografts sections were verified to express PD-L1. These tracers demonstrated a concentration-dependent cell affinity and a comparable half-maximal effect concentration (EC50) with radiolabeled WL12. Competitive binding and blocking studies demonstrated the specific target of these tracers to PD-L1. PET imaging and ex vivo biodistribution studies revealed notable tumor uptake in tumor-bearing mice and rapid clearance from blood and major organs. Importantly, [64Cu]/[68Ga]HKP2202 showed higher tumor uptake compared to [64Cu]/[68Ga]HKP2201. Of note, [64Cu] labeled tracers showed longer retention in tumors than [68Ga] labeled traces, indicating advantages in the long-term tracking of PD-L1 dynamics. In comparison, [68Ga]HKP2201 and [68Ga]HKP2202 showed lower liver accumulation, enabling its great potential in the fast detection of both primary and metastatic tumors, including hepatic carcinoma. [64Cu]/[68Ga]HKP2201 and [64Cu]/[68Ga]HKP2202 are promising PET tracers for visualizing PD-L1 status. Notably, their combination would cooperate in rapid diagnosis and subsequent treatment guidance. Future assessment of the radiotracers in patients is needed to fully evaluate their clinical value.


Assuntos
Radioisótopos de Gálio , Melanoma , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Distribuição Tecidual , Ligantes , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral
8.
Eur J Nucl Med Mol Imaging ; 49(8): 2735-2745, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35089375

RESUMO

PURPOSE: Tumor heterogeneity limits the predictive value of PD-L1 expression and influences the outcomes of the immunohistochemical assay for therapy-induced changes in PD-L1 levels. This study aimed to determine the predictive value of PD-L1 for non-small cell lung carcinoma (NSCLC), thereby developing imaging agents to non-invasively image and examine the effect of the therapeutic response to PD-L1 blockade therapy. METHODS: A cohort of 102 patients with lung cancer was analyzed, and the prognostic significance of PD-L1 expression level was investigated. Recombinant human PD-1 ECD protein (rhPD1) was expressed, purified, and labeled with 64Cu for the evaluation of PD-L1 status in tumors. Mice subcutaneously bearing PD-L1 high-expressing tumor HCC827 and PD-L1 low-expressing tumor A549 were used to determine tracer-target specificity and examine the effect of therapeutic response to PD-L1 blockade therapy. RESULTS: PD-L1 was proved to be a good prognosis marker for NSCLC, and its expression was correlated with the histology of NSCLC. PET imaging revealed high tumor accumulation of 64Cu-NOTA-rhPD1 in HCC827 tumors (9.0 ± 0.5%ID/g), whereas it was 3.2 ± 0.4%ID/g in A549 tumors at 3 h post-injection. The lower tumor uptake (3.1 ± 0.3%ID/g) of 64Cu-labeled denatured rhPD1 in HCC827 tumors at 3 h post-injection (p < 0.001) demonstrated the target specificity of 64Cu-NOTA-rhPD1. Furthermore, PET showed that 64Cu-NOTA-rhPD1 sensitively monitored treatment-related changes in PD-L1 expression, and seemed to be superior to [18F]FDG. CONCLUSION: We identified PD-L1 as a good prognosis marker for surgically resected NSCLC and developed the PET tracer 64Cu-NOTA-rhPD1 with high target specificity for PD-L1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Receptor de Morte Celular Programada 1
9.
Mol Pharm ; 19(7): 2535-2541, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35486894

RESUMO

The aim of this study was to evaluate the effect of linker on tumor targeting and biodistribution of 64Cu-NOTA-PEG2Nle-CycMSHhex {64Cu-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-polyethylene glycol-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 64Cu-NOTA-AocNle-CycMSHhex {64Cu-NOTA-8-aminooctanoic acid-Nle-CycMSHhex} on melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were synthesized and purified by HPLC. The melanocortin-1 (MC1) receptor binding affinities of the peptides were examined on B16/F10 melanoma cells. The biodistributions of 64Cu-NOTA-PEG2Nle-CycMSHhex and 64Cu-NOTA-AocNle-CycMSHhex were determined on B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of 64Cu-NOTA-PEG2Nle-CycMSHhex was further examined on B16/F10 melanoma-bearing C57 mice because of its higher melanoma uptake than 64Cu-NOTA-AocNle-CycMSHhex. The IC50 values of NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were 1.24 ± 0.07 and 2.75 ± 0.48 nM on B10/F10 melanoma cells. 64Cu-NOTA-PEG2Nle-CycMSHhex and 64Cu-NOTA-AocNle-CycMSHhex were readily prepared with more than 90% radiolabeling yields and showed MC1R-specific binding on B16/F10 cells. 64Cu-NOTA-PEG2Nle-CycMSHhex exhibited higher tumor uptake than 64Cu-NOTA-AocNle-CycMSHhex at 0.5, 2, 4, and 24 h post-injection. The tumor uptake of 64Cu-NOTA-PEG2Nle-CycMSHhex was 16.23 ± 0.42, 19.59 ± 1.48, 12.83 ± 1.69, and 8.78 ± 2.29% ID/g at 0.5, 2, 4, and 24 h post-injection, respectively. Normal organ uptake of 64Cu-NOTA-PEG2Nle-CycMSHhex was lower than 2% ID/g at 2 h post-injection except for kidney uptake. The renal uptake of 64Cu-NOTA-PEG2Nle-CycMSHhex was 3.66 ± 0.52, 3.27 ± 0.52, and 1.47 ± 0.56 ID/g at 2, 4, and 24 h post-injection, respectively. 64Cu-NOTA-PEG2Nle-CycMSHhex showed high tumor to normal organ uptake ratios after 2 h post-injection. The B16/F10 melanoma lesions could be clearly visualized by positron emission tomography (PET) using 64Cu-NOTA-PEG2Nle-CycMSHhex as an imaging probe at 2 h post-injection. High tumor uptake and low kidney uptake of 64Cu-NOTA-PEG2Nle-CycMSHhex underscored its potential as an MC1R-targeted theranostic peptide for melanoma imaging and therapy.


Assuntos
Melanoma Experimental , alfa-MSH , Animais , Linhagem Celular Tumoral , Compostos Heterocíclicos com 1 Anel , Rim/metabolismo , Lactamas/química , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor Tipo 1 de Melanocortina/metabolismo , Distribuição Tecidual , alfa-MSH/química
10.
J Labelled Comp Radiopharm ; 65(7): 191-202, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35466453

RESUMO

Cyclotron-produced copper-64 radioisotope tracers offer the possibility to perform both diagnostic investigation by positron emission tomography (PET) and radiotherapy by a theranostic approach with bifunctional chelators. The versatile chemical properties of copper add to the importance of this isotope in medicinal investigation. [64 Cu][Cu (ATSM)] has shown to be a viable candidate for imaging of tumor hypoxia; a critical tumor microenvironment characteristic that typically signifies tumor progression and resistance to chemo-radiotherapy. Various production and radiosynthesis methods of [64 Cu][Cu (ATSM)] exist in labs, but usually involved non-standardized equipment with varying production qualities and may not be easily implemented in wider hospital settings. [64 Cu][Cu (ATSM)] was synthesized on a modified GE TRACERlab FXN automated synthesis module. End-of-synthesis (EOS) molar activity of [64 Cu][Cu (ATSM)] was 2.2-5.5 Ci/µmol (HPLC), 2.2-2.6 Ci/µmol (ATSM-titration), and 3.0-4.4 Ci/µmol (ICP-MS). Radiochemical purity was determined to be >99% based on radio-HPLC. The final product maintained radiochemical purity after 20 h. We demonstrated a simple and feasible process development and quality control protocols for automated cyclotron production and synthesis of [64 Cu][Cu (ATSM)] based on commercially distributed standardized synthesis modules suitable for PET imaging and theranostic studies.


Assuntos
Complexos de Coordenação/química , Compostos Organometálicos , Tiossemicarbazonas/química , Hipóxia Celular , Radioisótopos de Cobre , Compostos Organometálicos/química , Tomografia por Emissão de Pósitrons/métodos , Medicina de Precisão , Compostos Radiofarmacêuticos
11.
Int J Mol Sci ; 23(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628616

RESUMO

Peritoneal dissemination of pancreatic cancer has a poor prognosis. We have reported that intraperitoneal radioimmunotherapy using a 64Cu-labeled antibody (64Cu-ipRIT) is a promising adjuvant therapy option to prevent this complication. To achieve personalized 64Cu-ipRIT, we developed a new in vitro tumor cell-binding assay (64Cu-TuBA) system with a panel containing nine candidate 64Cu-labeled antibodies targeting seven antigens (EGFR, HER2, HER3, TfR, EpCAM, LAT1, and CD98), which are reportedly overexpressed in patients with pancreatic cancer. We investigated the feasibility of 64Cu-TuBA to select the highest-binding antibody for individual cancer cell lines and predict the treatment response in vivo for 64Cu-ipRIT. 64Cu-TuBA was performed using six human pancreatic cancer cell lines. For three cell lines, an in vivo treatment study was performed with 64Cu-ipRIT using high-, middle-, or low-binding antibodies in each peritoneal dissemination mouse model. The high-binding antibodies significantly prolonged survival in each mouse model, while low-and middle-binding antibodies were ineffective. There was a correlation between in vitro cell binding and in vivo therapeutic efficacy. Our findings suggest that 64Cu-TuBA can be used for patient selection to enable personalized 64Cu-ipRIT. Tumor cells isolated from surgically resected tumor tissues would be suitable for analysis with the 64Cu-TuBA system in future clinical studies.


Assuntos
Neoplasias Pancreáticas , Radioimunoterapia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas
12.
Eur J Nucl Med Mol Imaging ; 48(13): 4508-4516, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34170361

RESUMO

PURPOSE: Develop a 64Cu labeled radiopharmaceutical targeting prostate specific membrane antigen (PSMA) and investigate its application for prostate cancer imaging. METHODS: 64Cu-PSMA-BCH was prepared and investigated for stability, PSMA specificity, and micro-PET imaging. With the approval of Ethics Committee of Beijing Cancer Hospital (No. 2017KT97), PET/CT imaging in 4 patients with suspected prostate cancer was performed and the radiation dosimetry was estimated. Then, PSMA PET-ultrasound image-guided biopsies were performed on 3 patients and the fine needle aspirates were further performed for autoradiography and immunohistochemistry analysis. RESULTS: 64Cu-PSMA-BCH was prepared with high radiochemical yield and stability. In vivo study showed higher uptake in PSMA ( +) 22Rv1 cells than PSMA ( -) PC-3 cells (5.59 ± 0.36 and 1.97 ± 0.22 IA%/106 cells at 1 h). It accumulated in 22Rv1 tumor with increasing radioactivity uptake and T/N ratios from 1 to 24 h post-injection. In patients with suspected prostate cancer, SUVmax and T/N ratios increased within 24 h post-injection. Compared with image at 1 h post-injection, more tumor lesions were detected at 6 h and 24 h post-injection. The human organ radiation dosimetry showed gallbladder wall was most critical, liver and kidneys were followed, and the whole-body effective dose was 0.0292 mSv/MBq. Two fine needle aspirates obtained by PET-ultrasound-guided targeted biopsy showed high radioactive signal by autoradiography, with 100% PSMA expression in cytoplasm and 30% expression in nucleus. CONCLUSION: 64Cu-PSMA-BCH was PSMA specific and showed high stability in vivo with lower uptake in liver than 64Cu-PSMA-617. Biodistribution in mice and PCa patients showed similar profile compared with other PSMA ligands and it was safe with moderate effective dosimetry. The increased tumor uptake and T/N ratios by delayed imaging may facilitate the detection of small lesions and guiding targeted biopsies.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Amidas , Animais , Hidrocarbonetos Aromáticos com Pontes , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Distribuição Tecidual
13.
Bioorg Med Chem Lett ; 40: 127901, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705912

RESUMO

As an indicative biomarker for immunotherapy, PD-L1 plays an important role in the clinical decision-making of the immune checkpoint blockade therapy. PET imaging through radiotracer can real-timely, quantitatively, and non-invasively assess the expression of PD-L1 in tumors. Here, we reported a copper-64 radiolabeled NOTA-WL12, 64Cu-NOTA-WL12, and preliminarily evaluated its application in non-invasively detecting the PD-L1 expression.64Cu-NOTA-WL12 was produced with high radiochemical yield (>90%), radiochemical purity (>98%), and specific activity (20 MBq/nmol). 64Cu-NOTA-WL12 showed high in vitro stability and high binding affinity to the PD-L1 (KD ≈ 3.012 nM). The micro-positron emission tomography/computerized tomography (micro-PET/CT) imaging indicated that 64Cu-NOTA-WL12 was specifically accumulated in the tumor with PD-L1 expression. All results demonstrated that 64Cu-NOTA-WL12 holds great potential for noninvasive evaluation of PD-L1 expression levels.


Assuntos
Antígeno B7-H1/análise , Antígeno B7-H1/genética , Radioisótopos de Cobre/economia , Peptídeos/química , Compostos Radiofarmacêuticos/química , Animais , Células CHO , Cricetulus , Expressão Gênica , Humanos , Neoplasias Experimentais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica , Coloração e Rotulagem , Relação Estrutura-Atividade
14.
Eur J Nucl Med Mol Imaging ; 47(4): 991-1002, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31897587

RESUMO

PURPOSE: The role that gut microbiota plays in determining the efficacy of the anti-tumor effect of immune checkpoint inhibitors is gaining increasing attention, and fecal bacterial transplantation has been recognized as a promising strategy for improving or rescuing the effect of immune checkpoint inhibition. However, techniques for the precise monitoring of in vivo bacterial behaviors after transplantation are limited. In this study, we aimed to use metabolic labeling and subsequent positron emission tomography (PET) imaging to track the in vivo behaviors of gut bacteria that are responsible for the efficacy of anti-PD-1 therapy in living mice. METHODS: The antitumor effect of anti-PD-1 blockade was tested in a low-response 4T1 syngeneic mouse model with or without fecal transplantation and with or without broad-spectrum antibiotic imipenem treatment. High-throughput sequencing analyses of 16S rRNA gene amplicons in feces of 4T1 tumor-bearing mice pre- and post-anti-PD-1 treatment were performed. The identified bacteria, Bacteroides fragilis (B. fragilis), were labeled with 64Cu and fluorescence dye by the metabolic labeling of N3 followed by click chemistry. In vivo PET and optical imaging of B. fragilis were performed in mice after oral gavage. RESULTS: The disturbance of gut microbiota reduced the efficacy of anti-PD-1 treatment, and the combination of B. fragilis gavage and PD-1 blockade was beneficial in rescuing the antitumor effect of anti-PD-1 therapy. Metabolic oligosaccharide engineering and biorthogonal click chemistry resulted in successful B. fragilis labeling with 64Cu and fluorescence dye with high in vitro and in vivo stability and no effect on viability. PET imaging successfully detected the in vivo behaviors of B. fragilis after transplantation. CONCLUSION: PET tracking by metabolic labeling is a powerful, noninvasive tool for the real-time tracking and quantitative imaging of gut microbiota. This strategy is clinically translatable and may also be extended to the PET tracking of other functional cells to guide cell-based adoptive therapies.


Assuntos
Microbioma Gastrointestinal , Animais , Antibacterianos , Camundongos , Imagem Óptica , Tomografia por Emissão de Pósitrons , RNA Ribossômico 16S
15.
Mol Pharm ; 17(5): 1470-1481, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32233491

RESUMO

Polymeric micellar nanoparticles represent versatile and biocompatible platforms for targeted drug delivery. However, tracking their biodistribution, stability, and clearance profile in vivo is challenging. The goal of this study was to prepare surface-modified micelles with peptide GE11 for targeting the epidermal growth factor receptor (EGFR). In vitro fluorescence studies demonstrated significantly higher internalization of GE11 micelles into EGFR-expressing HCT116 colon cancer cells versus EGFR-negative SW620 cells. Azo coupling chemistry of tyrosine residues in the peptide backbone with aryl diazonium salts was used to label the micelles with radionuclide 64Cu for positron emission tomography (PET) imaging. In vivo analysis of 64Cu-labeled micelles showed prolonged blood circulation and predominant hepatobiliary clearance. The biodistribution profile of EGFR-targeting GE11 micelles was compared with nontargeting HW12 micelles in HCT116 tumor-bearing mice. PET revealed increasing tumor-to-muscle ratios for both micelles over 48 h. Accumulation of GE11-containing micelles in HCT116 tumors was higher compared to HW12-decorated micelles. Our data suggest that the efficacy of image-guided therapies with micellar nanoparticles could be enhanced by active targeting, as demonstrated with cancer biomarker EGFR.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Radioisótopos de Cobre/farmacocinética , Receptores ErbB/antagonistas & inibidores , Imagem Molecular/métodos , Peptídeos/metabolismo , Compostos Radiofarmacêuticos/síntese química , Animais , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Nanopartículas , Polímeros/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética
16.
Bioorg Med Chem Lett ; 30(14): 127262, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527560

RESUMO

We previously reported on the monobody E1, which specifically targets the tumor marker hEphA2. In this study, we labeled NOTA-conjugated E1 with 64Cu (64Cu-NOTA-E1) and evaluated biologic characteristics. The uptake of 64Cu-NOTA-E1 in PC3 cells (a human prostate cancer cell line) with high expression of hEphA2 increased in a time-dependent manner. In PC3 xenograft mice, 64Cu-NOTA-E1 injected via the tail vein allowed visualization of tumors on positron emission tomography after 1 h and the highest uptake measured at 24 h post-injection. By contrast, the radioactivity of other tissues either did not increase or decreased over 24 h. This indicates that 64Cu-NOTA-E1 has high tumor uptake and retention, with rapid clearance, and low background values in other tissues. Therefore, 64Cu-NOTA-E1 should be suitable as a novel PET imaging agent for hEphA2-expressing tumors.


Assuntos
Anticorpos/química , Efrina-A2/genética , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Animais , Radioisótopos de Cobre , Efrina-A2/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Camundongos , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptor EphA2
17.
Acta Pharmacol Sin ; 41(1): 101-109, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31534200

RESUMO

Monoclonal antibodies are believed to be magic bullets and hold great potential for lots of biological process. About 100 µg of mAb109 was expressed in 5 × 106 cells after 10 days' immunization. 64Cu-NOTA-mAb109 was synthesized with the specific activity of 0.74 MBq/µg and high in vitro stability. The binding affinity of 64Cu-NOTA-mAb109 in A549 cells was determined to be 29.64 nM. 64Cu-NOTA-mAb109 displayed prominent tumor accumulation from 2 h to 60 h p.i. (9.34 ± 0.67 %ID/g). NIRF imaging of Cy5.5-mAb109 showed high accumulation till 9 days p.i., while tumors nearly can not be observed in negative groups, which was confirmed by autoradiography. Immunohistological study confirmed that mAb109 had strong and specific capacity to bind lung adenocarcinoma (concentration to 58 nM). Our study demonstrated mAb109 was a new platform for the development of novel agent for lung adenocarcinoma noninvasive imaging. The resulted 64Cu-NOTA-mAb109/Cy5.5-mAb109 show favorable imaging properties/specificity for A549 tumor and high sensitivity to human lung adenocarcinoma tissues.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Anticorpos Monoclonais/química , Carbocianinas/química , Corantes Fluorescentes/química , Neoplasias Pulmonares/diagnóstico por imagem , Imagem Óptica , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Células A549 , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Carbocianinas/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/imunologia , Células Tumorais Cultivadas
18.
Nanomedicine ; 29: 102248, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574686

RESUMO

Melanin is a group of natural pigments found in living organism. It can be used for positron emission tomography (PET) imaging due to its inherent chelating ability to radioactive cupric ion. This study was to prepare 64Cu-labeled PEGylated melanin nanoparticles (64Cu-PEG-MNPs), and to further take advantage of the enhanced permeability and retention (EPR) effect of radiolabeled nanoparticles to realize the integration of tumor diagnosis and treatment. We successfully synthesized PEG-MNPs. Saline and serum stability experiments demonstrated good stability. PET/CT showed high tumor aggregation. Moreover, 64Cu-PEG-MNPs resulted in a therapeutic effect on the A431 tumor-bearing mice in the treatment group. The pathological results further confirmed that the therapeutic doses of 64Cu-PEG-MNPs cause pathological changes of tumor tissues while showing minimal toxicity to normal tissues. Our data successfully demonstrate the good imaging performance of 64Cu-PEG-MNPs on A431 tumors and further proved its therapeutic effect, highlighting a great potential in targeted radionuclide therapy.


Assuntos
Melaninas/farmacologia , Nanopartículas/química , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Linhagem Celular Tumoral , Radioisótopos de Cobre/farmacologia , Humanos , Melaninas/química , Camundongos , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Cancer ; 19(1): 1000, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651282

RESUMO

BACKGROUNDS: Overexpression of epidermal growth factor receptor (EGFR) has been established as a valid therapeutic target of non-small cell lung cancer (NSCLC). However, the clinical benefit of cetuximab as an EGFR-targeting drug is still controversial, partially due to the lack of effective means to identify suitable patients. This study aimed to investigate the potential of radiolabeled cetuximab as a non-invasive tool to predict cetuximab accumulation in NSCLC tumor xenografts with varying EGFR expression levels. METHODS: The NSCLC tumors in model mice were subjected to in vivo biodistribution study and positron emission tomography (PET) imaging 48 h after injection of either 111In- or 64Cu-labeled cetuximab. The EGFR expression levels of NSCLC tumors were determined by ex vivo immunoblotting. RESULTS: We found that tumors with high EGFR expression had significantly higher [111In]In-DOTA-cetuximab accumulation than tumors with moderate to low EGFR expression (P < 0.05). Strong correlations were found between [111In]In-DOTA-cetuximab tumor uptake and EGFR expression level (r = 0.893), and between [64Cu]Cu-DOTA-cetuximab tumor uptake with EGFR expression level (r = 0.915). PET imaging with [64Cu]Cu-DOTA-cetuximab allowed clear visualization of tumors. CONCLUSION: Our findings suggest that this immuno-PET imaging can be clinically translated as a tool to predict cetuximab accumulation in NSCLC cancer patients prior to cetuximab therapy.


Assuntos
Antineoplásicos Imunológicos/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cetuximab/metabolismo , Cetuximab/uso terapêutico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Animais , Antineoplásicos Imunológicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cetuximab/química , Radioisótopos de Cobre/química , Radioisótopos de Cobre/metabolismo , Receptores ErbB/metabolismo , Feminino , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Amino Acids ; 51(10-12): 1569-1575, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31621030

RESUMO

A novel recombinant disintegrin, vicrostatin (VCN), displays high binding affinity to a broad range of human integrins in substantial competitive biological advantage over other integrin-based antagonists. In this study, we synthesized a new 64Cu-labeled VCN probe and evaluated its imaging properties for prostate cancer in PC-3 tumor-bearing mice. Macrocyclic chelating agent 1,8-diamino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]-eicosine (DiAmSar) was conjugated with PEG unit and followed by coupling with VCN. The precursor was then radiolabeled with positron emitter 64Cu (t1/2 = 12.7 h) in ammonium acetate buffer to provide 64Cu-Sar-PEG-VCN, which was subsequently subjected to in vitro studies, small animal PET, and biodistribution studies. The PC-3 tumor-targeting efficacy of 64Cu-Sar-PEG-VCN was compared to a cyclic RGD peptide-based PET probe (64Cu-Sar-RGD). 64Cu labeling was achieved in 75% decay-corrected yield with radiochemical purity of > 98%. The specific activity of 64Cu-Sar-PEG-VCN was estimated to be 37 MBq/nmol. MicroPET imaging results showed that 64Cu-Sar-PEG-VCN has preferential tumor uptake and good tumor retention in PC-3 tumor xenografts. As compared to 64Cu-Sar-RGD, 64Cu-Sar-PEG-VCN produces higher tumor-to-muscle (T/M) imaging contrast ratios at 2 h (4.66 ± 0.34 vs. 2.88 ± 0.46) and 24 h (4.98 ± 0.80 vs. 3.22 ± 0.30) post-injection (pi) and similar tumor-to-liver ratios at 2 h (0.43 ± 0.09 vs. 0.37 ± 0.04) and 24 h (0.57 ± 0.13 vs. 0.52 ± 0.07) pi. The biodistribution results were consistent with the quantitative analysis of microPET imaging, demonstrating good T/M ratio (2.73 ± 0.36) of 64Cu-Sar-PEG-VCN at 48 h pi in PC-3 tumor xenografts. For both microPET and biodistribution studies at 48 h pi, the PC-3 tumor uptake of 64Cu-Sar-PEG-VCN is lower than that of 64Cu-Sar-RGD. 64Cu-Sar-PEG-VCN has the potential for in vivo imaging of prostate cancer with PET, which may provide a unique non-invasive method to quantitatively localize and characterize prostate cancer.


Assuntos
Radioisótopos de Cobre/farmacocinética , Desintegrinas/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Animais , Radioisótopos de Cobre/química , Desintegrinas/química , Avaliação Pré-Clínica de Medicamentos , Compostos Heterocíclicos/química , Humanos , Masculino , Camundongos , Camundongos Nus , Especificidade de Órgãos , Células PC-3 , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Polietilenoglicóis/química , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Sarcosina/análogos & derivados , Sarcosina/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA