Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2310044121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446857

RESUMO

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.


Assuntos
Artérias , Benchmarking , Perfusão , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Neuroimage ; 292: 120607, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614372

RESUMO

INTRODUCTION: In Alzheimer's disease (AD), early diagnosis facilitates treatment options and leads to beneficial outcomes for patients, their carers and the healthcare system. The neuropsychological battery of the Uniform Data Set (UDSNB3.0) assesses cognition in ageing and dementia, by measuring scores across different cognitive domains such as attention, memory, processing speed, executive function and language. However, its neuroanatomical correlates have not been investigated using 7 Tesla MRI (7T MRI). METHODS: We used 7T MRI to investigate the correlations between hippocampal subfield volumes and the UDSNB3.0 in 24 individuals with Amyloidß-status AD and 18 age-matched controls, with respective age ranges of 60 (42-76) and 62 (52-79) years. AD participants with a Medial Temporal Atrophy scale of higher than 2 on 3T MRI were excluded from the study. RESULTS: A significant difference in the entire hippocampal volume was observed in the AD group compared to healthy controls (HC), primarily influenced by CA1, the largest hippocampal subfield. Notably, no significant difference in whole brain volume between the groups implied that hippocampal volume loss was not merely reflective of overall brain atrophy. UDSNB3.0 cognitive scores showed significant differences between AD and HC, particularly in Memory, Language, and Visuospatial domains. The volume of the Dentate Gyrus (DG) showed a significant association with the Memory and Executive domain scores in AD patients as assessed by the UDSNB3.0.. The data also suggested a non-significant trend for CA1 volume associated with UDSNB3.0 Memory, Executive, and Language domain scores in AD. In a reassessment focusing on hippocampal subfields and MoCA memory subdomains in AD, associations were observed between the DG and Cued, Uncued, and Recognition Memory subscores, whereas CA1 and Tail showed associations only with Cued memory. DISCUSSION: This study reveals differences in the hippocampal volumes measured using 7T MRI, between individuals with early symptomatic AD compared with healthy controls. This highlights the potential of 7T MRI as a valuable tool for early AD diagnosis and the real-time monitoring of AD progression and treatment efficacy. CLINICALTRIALS: GOV: ID NCT04992975 (Clinicaltrial.gov 2023).


Assuntos
Doença de Alzheimer , Região CA1 Hipocampal , Giro Denteado , Imageamento por Ressonância Magnética , Transtornos da Memória , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Idoso , Giro Denteado/diagnóstico por imagem , Giro Denteado/patologia , Pessoa de Meia-Idade , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/patologia , Adulto , Peptídeos beta-Amiloides/metabolismo
3.
BMC Med Imaging ; 24(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166655

RESUMO

BACKGROUND: Susac syndrome (SuS) is a rare autoimmune disease that leads to hearing impairment, visual field deficits, and encephalopathy due to an occlusion of precapillary arterioles in the brain, retina, and inner ear. Given the potentially disastrous outcome and difficulties in distinguishing SuS from its differential diagnoses, such as multiple sclerosis (MS), our exploratory study aimed at identifying potential new SuS-specific neuroimaging markers. METHODS: Seven patients with a definite diagnosis of SuS underwent magnetic resonance imaging (MRI) at 7 Tesla (7T), including T2* weighted and quantitative susceptibility mapping (QSM) sequences. T2 weighted hyperintense lesions were analyzed with regard to number, volume, localization, central vein sign, T1 hypointensity, and focal iron deposits in the center of SuS lesions ("iron dots"). Seven T MRI datasets from the same institute, comprising 75 patients with, among others, MS, served as controls. RESULTS: The "iron dot" sign was present in 71.4% (5/7) of the SuS patients, compared to 0% in our control cohort. Thus, sensitivity was 71.4% and specificity 100%. A central vein sign was only incidentally detected. CONCLUSION: We are the first to demonstrate this type of "iron dot" lesions on highly resolving 7T T2*w and QSM images in vivo as a promising neuroimaging marker of SuS, corroborating previous histopathological ex vivo findings.


Assuntos
Esclerose Múltipla , Síndrome de Susac , Humanos , Síndrome de Susac/diagnóstico por imagem , Síndrome de Susac/patologia , Ferro , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem
4.
Hum Brain Mapp ; 43(14): 4397-4421, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35633277

RESUMO

Brainstem nuclei are key participants in the generation and maintenance of arousal, which is a basic function that modulates wakefulness/sleep, autonomic responses, affect, attention, and consciousness. Their mechanism is based on diffuse pathways ascending from the brainstem to the thalamus, hypothalamus, basal forebrain and cortex. Several arousal brainstem nuclei also participate in motor functions that allow humans to respond and interact with the surrounding through a multipathway motor network. Yet, little is known about the structural connectivity of arousal and motor brainstem nuclei in living humans. This is due to the lack of appropriate tools able to accurately visualize brainstem nuclei in conventional imaging. Using a recently developed in vivo probabilistic brainstem nuclei atlas and 7 Tesla diffusion-weighted images (DWI), we built the structural connectome of 18 arousal and motor brainstem nuclei in living humans (n = 19). Furthermore, to investigate the translatability of our findings to standard clinical MRI, we acquired 3 Tesla DWI on the same subjects, and measured the association of the connectome across scanners. For both arousal and motor circuits, our results showed high connectivity within brainstem nuclei, and with expected subcortical and cortical structures based on animal studies. The association between 3 Tesla and 7 Tesla connectivity values was good, especially within the brainstem. The resulting structural connectome might be used as a baseline to better understand arousal and motor functions in health and disease in humans.


Assuntos
Conectoma , Nível de Alerta/fisiologia , Tronco Encefálico , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
5.
Hum Brain Mapp ; 43(10): 3086-3112, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35305272

RESUMO

Autonomic, pain, limbic, and sensory processes are mainly governed by the central nervous system, with brainstem nuclei as relay centers for these crucial functions. Yet, the structural connectivity of brainstem nuclei in living humans remains understudied. These tiny structures are difficult to locate using conventional in vivo MRI, and ex vivo brainstem nuclei atlases lack precise and automatic transformability to in vivo images. To fill this gap, we mapped our recently developed probabilistic brainstem nuclei atlas developed in living humans to high-spatial resolution (1.7 mm isotropic) and diffusion weighted imaging (DWI) at 7 Tesla in 20 healthy participants. To demonstrate clinical translatability, we also acquired 3 Tesla DWI with conventional resolution (2.5 mm isotropic) in the same participants. Results showed the structural connectome of 15 autonomic, pain, limbic, and sensory (including vestibular) brainstem nuclei/nuclei complex (superior/inferior colliculi, ventral tegmental area-parabrachial pigmented, microcellular tegmental-parabigeminal, lateral/medial parabrachial, vestibular, superior olivary, superior/inferior medullary reticular formation, viscerosensory motor, raphe magnus/pallidus/obscurus, parvicellular reticular nucleus-alpha part), derived from probabilistic tractography computation. Through graph measure analysis, we identified network hubs and demonstrated high intercommunity communication in these nuclei. We found good (r = .5) translational capability of the 7 Tesla connectome to clinical (i.e., 3 Tesla) datasets. Furthermore, we validated the structural connectome by building diagrams of autonomic/pain/limbic connectivity, vestibular connectivity, and their interactions, and by inspecting the presence of specific links based on human and animal literature. These findings offer a baseline for studies of these brainstem nuclei and their functions in health and disease, including autonomic dysfunction, chronic pain, psychiatric, and vestibular disorders.


Assuntos
Tronco Encefálico , Conectoma , Animais , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/fisiologia , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Dor
6.
Mov Disord ; 37(4): 847-853, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34964520

RESUMO

BACKGROUND: Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is one of the earliest manifestations of α synucleinopathies. Brainstem pathophysiology underlying REM sleep behavior disorder has been described in animal models, yet it is understudied in living humans because of the lack of an in vivo brainstem nuclei atlas and to the limited magnetic resonance imaging (MRI) sensitivity. OBJECTIVE: To investigate brainstem structural connectivity changes in iRBD patients by using an in vivo probabilistic brainstem nuclei atlas and 7 Tesla MRI. METHODS: Structural connectivity of 12 iRBD patients and 12 controls was evaluated by probabilistic tractography. Two-sided Wilcoxon rank-sum test was used to compare the structural connectivity indices across groups. RESULTS: In iRBD, we found impaired (Z = 2.6, P < 0.01) structural connectivity in 14 brainstem nuclei, including the connectivity between REM-on (eg, subcoeruleus [SubC]) and REM sleep muscle atonia (eg, medullary reticular formation) areas. CONCLUSIONS: The brainstem nuclei diagram of impaired connectivity in human iRBD expands animal models and is a promising tool to study and possibly assess prodromal synucleinopathy stages. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Transtorno do Comportamento do Sono REM , Sinucleinopatias , Tronco Encefálico , Humanos , Imageamento por Ressonância Magnética , Sono REM/fisiologia
7.
Mult Scler ; 28(9): 1351-1363, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35142571

RESUMO

BACKGROUND: Dramatic improvements in visualization of cortical (especially subpial) multiple sclerosis (MS) lesions allow assessment of impact on clinical course. OBJECTIVE: Characterize cortical lesions by 7 tesla (T) T2*-/T1-weighted magnetic resonance imaging (MRI); determine relationship with other MS pathology and contribution to disability. METHODS: Sixty-four adults with MS (45 relapsing-remitting/19 progressive) underwent 3 T brain/spine MRI, 7 T brain MRI, and clinical testing. RESULTS: Cortical lesions were found in 94% (progressive: median 56/range 2-203; relapsing-remitting: 15/0-168; p = 0.004). Lesion distribution across 50 cortical regions was nonuniform (p = 0.006), with highest lesion burden in supplementary motor cortex and highest prevalence in superior frontal gyrus. Leukocortical and white matter lesion volumes were strongly correlated (r = 0.58, p < 0.0001), while subpial and white matter lesion volumes were moderately correlated (r = 0.30, p = 0.002). Leukocortical (p = 0.02) but not subpial lesions (p = 0.40) were correlated with paramagnetic rim lesions; both were correlated with spinal cord lesions (p = 0.01). Cortical lesion volumes (total and subtypes) were correlated with expanded disability status scale, 25-foot timed walk, nine-hole peg test, and symbol digit modality test scores. CONCLUSION: Cortical lesions are highly prevalent and are associated with disability and progressive disease. Subpial lesion burden is not strongly correlated with white matter lesions, suggesting differences in inflammation and repair mechanisms.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Substância Branca , Adulto , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Substância Branca/patologia
8.
Proc Natl Acad Sci U S A ; 116(11): 5096-5101, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30808809

RESUMO

The specific contents of human consciousness rely on the activity of specialized neurons in cerebral cortex. We hypothesized that the conscious experience of a specific visual motion axis is reflected in response amplitudes of direction-selective clusters in the human motion complex. Using submillimeter fMRI at ultrahigh field (7 T) we identified fine-grained clusters that were tuned to either horizontal or vertical motion presented in an unambiguous motion display. We then recorded their responses while human observers reported the perceived axis of motion for an ambiguous apparent motion display. Although retinal stimulation remained constant, subjects reported recurring changes between horizontal and vertical motion percepts every 7 to 13 s. We found that these perceptual states were dissociatively reflected in the response amplitudes of the identified horizontal and vertical clusters. We also found that responses to unambiguous motion were organized in a columnar fashion such that motion preferences were stable in the direction of cortical depth and changed when moving along the cortical surface. We suggest that activity in these specialized clusters is involved in tracking the distinct conscious experience of a particular motion axis.


Assuntos
Percepção de Movimento/fisiologia , Movimento (Física) , Humanos , Lobo Temporal/fisiologia , Vias Visuais/fisiologia
9.
Neuroimage ; 224: 117373, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949709

RESUMO

Most neuroanatomical studies are based on T1-weighted MR images, whose intensity profiles are not solely determined by the tissue's longitudinal relaxation times (T1), but also affected by varying non-T1 contributions, hampering data reproducibility. In contrast, quantitative imaging using the MP2RAGE sequence, for example, allows direct characterization of the brain based on the tissue property of interest. Combined with 7 Tesla (7T) MRI, this offers unique opportunities to obtain robust high-resolution brain data characterized by a high reproducibility, sensitivity and specificity. However, specific MP2RAGE parameter choices - e.g., to emphasize intracortical myelin-dependent contrast variations - can substantially impact image quality and cortical analyses through remnants of B1+-related intensity variations, as illustrated in our previous work. To follow up on this: we (1) validate this protocol effect using a dataset acquired with a particularly B1+ insensitive set of MP2RAGE parameters combined with parallel transmission excitation; and (2) extend our analyses to evaluate the effects on hippocampal morphometry. The latter remained unexplored initially, but can provide important insights related to generalizability and reproducibility of neurodegenerative research using 7T MRI. We confirm that B1+ inhomogeneities have a considerably variable effect on cortical T1 estimates, as well as on hippocampal morphometry depending on the MP2RAGE setup. While T1 differed substantially across datasets initially, we show the inter-site T1 comparability improves after correcting for the spatially varying B1+ field using a separately acquired Sa2RAGE B1+ map. Finally, removal of B1+ residuals affects hippocampal volumetry and boundary definitions, particularly near structures characterized by strong intensity changes (e.g. cerebral spinal fluid). Taken together, we show that the choice of MP2RAGE parameters can impact T1 comparability across sites and present evidence that hippocampal segmentation results are modulated by B1+ inhomogeneities. This calls for careful (1) consideration of sequence parameters when setting acquisition protocols, as well as (2) acquisition of a B1+ map to correct MP2RAGE data for potential B1+ variations to allow comparison across datasets.


Assuntos
Encéfalo/fisiologia , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
J Magn Reson Imaging ; 53(2): 333-346, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32830900

RESUMO

Magnetic resonance imaging and spectroscopy (MRI/MRS) at 7T represents an exciting advance in MR technology, with intriguing possibilities to enhance image spatial, spectral, and contrast resolution. To ensure the safe use of this technology while still harnessing its potential, clinical staff and researchers need to be cognizant of some safety concerns arising from the increased magnetic field strength and higher Larmor frequency. The higher static magnetic fields give rise to enhanced transient bioeffects and an increased risk of adverse incidents related to electrically conductive implants. Many technical challenges remain and the continuing rapid pace of development of 7T MRI/MRS is likely to present further challenges to ensuring safety of this technology in the years ahead. The recent regulatory clearance for clinical diagnostic imaging at 7T will likely increase the installed base of 7T systems, particularly in hospital environments with little prior ultrahigh-field MR experience. Informed risk/benefit analyses will be required, particularly where implant manufacturer-published 7T safety guidelines for implants are unavailable. On behalf of the International Society for Magnetic Resonance in Medicine, the aim of this article is to provide a reference document to assist institutions developing local institutional policies and procedures that are specific to the safe operation of 7T MRI/MRS. Details of current 7T technology and the physics underpinning its functionality are reviewed, with the aim of supporting efforts to expand the use of 7T MRI/MRS in both research and clinical environments. Current gaps in knowledge are also identified, where additional research and development are required. Level of Evidence 5 Technical Efficacy 2 J. MAGN. RESON. IMAGING 2021;53:333-346.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Espectroscopia de Ressonância Magnética , Física
11.
J Magn Reson Imaging ; 53(1): 234-241, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810376

RESUMO

BACKGROUND: Blood flow velocity and pulsatility of small cerebral perforating arteries can be measured using 7T quantitative 2D phase contrast (PC) MRI. However, ghosting artifacts arising from subject movement and pulsating large arteries cause false positives when applying a previously published perforator detection method. PURPOSE: To develop a robust, automated method to exclude perforators located in ghosting artifacts. STUDY TYPE: Retrospective. SUBJECTS: Fifteen patients with vascular cognitive impairment or carotid occlusive disease and 10 healthy controls. FIELD STRENGTH/SEQUENCE: 7T/cardiac-gated 2D PC MRI. ASSESSMENT: Perforators were automatically excluded from ghosting regions, which were defined as bands in the phase-encoding direction of large arteries. As reference, perforators were manually excluded by two raters (T.A., J.J.M.Z.), based on perforator location with respect to visible ghosting artifacts. The performance of both censoring methods was assessed for the number of (Nincluded ), mean velocity (Vmean ), and pulsatility index (PI) of the included perforators. STATISTICAL TESTS: For within-method comparisons, inter- and intrarater reliability were assessed for the manual method, and test-retest reliability was assessed for both methods from repeated 2D PC scans (without repositioning). Intraclass correlation coefficients (ICCs) and their 95% confidence intervals (CIs) were determined for Nincluded , Vmean , and PI for all within-method comparisons. The ICC to compare between the two methods was determined with the use of both (test-retest) scans using a multilevel nonlinear mixed model. RESULTS: The automated censoring method showed a moderate to good ICC (95% CI) vs. manual censoring for Nincluded (0.73 [0.58-0.87]) and Vmean (0.90 [0.84-0.96]), and a moderate ICC for PI (0.57 [0.37-0.76]). The test-retest reliability of the manual censoring method was considerably lower than the interrater and intrarater reliability, indicating that scanner noise dominates the uncertainty of the analysis. DATA CONCLUSION: The proposed automated censoring method can reliably exclude small perforators affected by ghosting artifacts. LEVEL OF EVIDENCE: 3. TECHNICAL EFFICACY STAGE: 1.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Artérias Cerebrais , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos
12.
Brain ; 143(2): 622-634, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31994699

RESUMO

Medial temporal lobe dependent cognitive functions are highly vulnerable to hypoxia in the hippocampal region, yet little is known about the relationship between the richness of hippocampal vascular supply and cognition. Hippocampal vascularization patterns have been categorized into a mixed supply from both the posterior cerebral artery and the anterior choroidal artery or a single supply by the posterior cerebral artery only. Hippocampal arteries are small and affected by pathological changes when cerebral small vessel disease is present. We hypothesized, that hippocampal vascularization patterns may be important trait markers for vascular reserve and modulate (i) cognitive performance; (ii) structural hippocampal integrity; and (iii) the effect of cerebral small vessel disease on cognition. Using high-resolution 7 T time-of-flight angiography we manually classified hippocampal vascularization patterns in older adults with and without cerebral small vessel disease in vivo. The presence of a mixed supplied hippocampus was an advantage in several cognitive domains, including verbal list learning and global cognition. A mixed supplied hippocampus also was an advantage for verbal memory performance in cerebral small vessel disease. Voxel-based morphometry showed higher anterior hippocampal grey matter volume in mixed, compared to single supply. We discuss that a mixed hippocampal supply, as opposed to a single one, may increase the reliability of hippocampal blood supply and thereby provide a hippocampal vascular reserve that protects against cognitive impairment.


Assuntos
Artérias Cerebrais/patologia , Disfunção Cognitiva/fisiopatologia , Hipocampo/irrigação sanguínea , Hipocampo/patologia , Idoso , Doenças de Pequenos Vasos Cerebrais/complicações , Cognição/fisiologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/patologia , Feminino , Substância Cinzenta/irrigação sanguínea , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Lobo Temporal/irrigação sanguínea , Lobo Temporal/patologia
13.
J Headache Pain ; 22(1): 112, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556025

RESUMO

BACKGROUND: Trigeminal Neuralgia (TN) is a chronic neurological disease that is strongly associated with neurovascular compression (NVC) of the trigeminal nerve near its root entry zone. The trigeminal nerve at the site of NVC has been extensively studied but limbic structures that are potentially involved in TN have not been adequately characterized. Specifically, the hippocampus is a stress-sensitive region which may be structurally impacted by chronic TN pain. As the center of the emotion-related network, the amygdala is closely related to stress regulation and may be associated with TN pain as well. The thalamus, which is involved in the trigeminal sensory pathway and nociception, may play a role in pain processing of TN. The objective of this study was to assess structural alterations in the trigeminal nerve and subregions of the hippocampus, amygdala, and thalamus in TN patients using ultra-high field MRI and examine quantitative differences in these structures compared with healthy controls. METHODS: Thirteen TN patients and 13 matched controls were scanned at 7-Tesla MRI with high resolution, T1-weighted imaging. Nerve cross sectional area (CSA) was measured and an automated algorithm was used to segment hippocampal, amygdaloid, and thalamic subregions. Nerve CSA and limbic structure subnuclei volumes were compared between TN patients and controls. RESULTS: CSA of the posterior cisternal nerve on the symptomatic side was smaller in patients (3.75 mm2) compared with side-matched controls (5.77 mm2, p = 0.006). In TN patients, basal subnucleus amygdala volume (0.347 mm3) was reduced on the symptomatic side compared with controls (0.401 mm3, p = 0.025) and the paralaminar subnucleus volume (0.04 mm3) was also reduced on the symptomatic side compared with controls (0.05 mm3, p = 0.009). The central lateral thalamic subnucleus was larger in TN patients on both the symptomatic side (0.033 mm3) and asymptomatic side (0.035 mm3), compared with the corresponding sides in controls (0.025 mm3 on both sides, p = 0.048 and p = 0.003 respectively). The inferior and lateral pulvinar thalamic subnuclei were both reduced in TN patients on the symptomatic side (0.2 mm3 and 0.17 mm3 respectively) compared to controls (0.23 mm3, p = 0.04 and 0.18 mm3, p = 0.04 respectively). No significant findings were found in the hippocampal subfields analyzed. CONCLUSIONS: These findings, generated through a highly sensitive 7 T MRI protocol, provide compelling support for the theory that TN neurobiology is a complex amalgamation of local structural changes within the trigeminal nerve and structural alterations in subnuclei of limbic structures directly and indirectly involved in nociception and pain processing.


Assuntos
Dor Crônica , Neuralgia do Trigêmeo , Benchmarking , Humanos , Imageamento por Ressonância Magnética , Nervo Trigêmeo , Neuralgia do Trigêmeo/diagnóstico por imagem
14.
Mov Disord ; 35(1): 142-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518459

RESUMO

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration is an autosomal-recessive disorder caused by C19orf12 mutations and characterized by iron deposits in the basal ganglia. OBJECTIVES: The aim of this study was to quantify iron concentrations in deep gray matter structures using quantitative susceptibility mapping MRI and to characterize metabolic abnormalities in the pyramidal pathway using 1 H MR spectroscopy in clinically manifesting membrane protein-associated neurodegeneration patients and asymptomatic C19orf12 gene mutation heterozygous carriers. METHODS: We present data of 4 clinically affected membrane protein-associated neurodegeneration patients (mean age: 21.0 ± 2.9 years) and 9 heterozygous gene mutation carriers (mean age: 50.4 ± 9.8 years), compared to age-matched healthy controls. MRI assessments were performed on a 7.0 Tesla whole-body system, consisting of whole-brain gradient-echo scans and short echo time, single-volume MR spectroscopy in the white matter of the precentral/postcentral gyrus. Quantitative susceptibility mapping, a surrogate marker for iron concentration, was performed using a state-of-the-art multiscale dipole inversion approach with focus on the globus pallidus, thalamus, putamen, caudate nucleus, and SN. RESULTS AND CONCLUSION: In membrane protein-associated neurodegeneration patients, magnetic susceptibilities were 2 to 3 times higher in the globus pallidus (P = 0.02) and SN (P = 0.02) compared to controls. In addition, significantly higher magnetic susceptibility was observed in the caudate nucleus (P = 0.02). Non-manifesting heterozygous mutation carriers exhibited significantly increased magnetic susceptibility (relative to controls) in the putamen (P = 0.003) and caudate nucleus (P = 0.001), which may be an endophenotypic marker of genetic heterozygosity. MR spectroscopy revealed significantly increased levels of glutamate, taurine, and the combined concentration of glutamate and glutamine in membrane protein-associated neurodegeneration, which may be a correlate of corticospinal pathway dysfunction frequently observed in membrane protein-associated neurodegeneration patients. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/patologia , Ferro/metabolismo , Proteínas Mitocondriais/genética , Mutação/genética , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
15.
Hum Brain Mapp ; 40(8): 2390-2398, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30666753

RESUMO

Mesial temporal lobe epilepsy (TLE) is a common neurological disorder affecting the hippocampus and surrounding medial temporal lobe (MTL). Although prior studies have analyzed whole-brain network distortions in TLE patients, the functional network architecture of the MTL at the subregion level has not been examined. In this study, we utilized high-resolution 7T T2-weighted magnetic resonance imaging (MRI) and resting-state BOLD-fMRI to characterize volumetric asymmetry and functional network asymmetry of MTL subregions in unilateral medically refractory TLE patients and healthy controls. We subdivided the TLE group into mesial temporal sclerosis patients (TLE-MTS) and MRI-negative nonlesional patients (TLE-NL). Using an automated multi-atlas segmentation pipeline, we delineated 10 MTL subregions per hemisphere for each subject. We found significantly different patterns of volumetric asymmetry between the two groups, with TLE-MTS exhibiting volumetric asymmetry corresponding to decreased volumes ipsilaterally in all hippocampal subfields, and TLE-NL exhibiting no significant volumetric asymmetries other than a mild decrease in whole-hippocampal volume ipsilaterally. We also found significantly different patterns of functional network asymmetry in the CA1 subfield and whole hippocampus, with TLE-NL patients exhibiting asymmetry corresponding to increased connectivity ipsilaterally and TLE-MTS patients exhibiting asymmetry corresponding to decreased connectivity ipsilaterally. Our findings provide initial evidence that functional neuroimaging-based network properties within the MTL can distinguish between TLE subtypes. High-resolution MRI has potential to improve localization of underlying brain network disruptions in TLE patients who are candidates for surgical resection.


Assuntos
Epilepsia do Lobo Temporal , Lateralidade Funcional , Neuroimagem Funcional/métodos , Hipocampo , Processamento de Imagem Assistida por Computador/métodos , Rede Nervosa , Lobo Temporal , Adulto , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Região CA1 Hipocampal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Lateralidade Funcional/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Esclerose/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia
16.
BMC Neurol ; 19(1): 190, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399069

RESUMO

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is a rare complication of patients treated with fingolimod. CASE PRESENTATION: Routine MRI eventually led to diagnosis of asymptomatic early PML that remained stable after discontinuation of fingolimod. As blood lymphocyte counts normalized, signs of immune reconstitution inflammatory syndrome (IRIS) and renewed MS activity developed. Both, advanced laboratory and ultrahigh field MRI findings elucidated differences between PML and MS. CONCLUSIONS: In our case, early discontinuation of fingolimod yielded a good outcome, lymphocyte counts reflected immune system activity, and paraclinical findings helped to differentiate between PML-IRIS and MS.


Assuntos
Cloridrato de Fingolimode/efeitos adversos , Síndrome Inflamatória da Reconstituição Imune/diagnóstico por imagem , Imunossupressores/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico
17.
Rev Neurol (Paris) ; 175(3): 157-162, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30827579

RESUMO

Comparison studies between 7T and 1.5 or 3T magnetic resonance imaging (MRI) have demonstrated the added value of ultra-high field (UHF) MRI to better identify, delineate and characterize malformations of cortical development (MCD), and to disambiguate doubtful findings observed at lower field strengths. High resolution structural sequences such as magnetization prepared two rapid acquisition gradient echoes (MP2RAGE), fluid and white matter suppression MP2RAGE (FLAWS), and susceptibility-weighted imaging (SWI) appear to be key to the improvement of MCD diagnosis in clinical practice. 7T MRI offers not only images of high resolution and contrast but also provides many quantitative approaches capable of acting as more efficient probes of microstructure and ameliorating the categorization of MCDs. Post-processing of multiparametric ultra-high resolution and quantitative data may also be used to improve automated detection of MCD via machine learning. Therefore, 7T MRI can be considered as a useful tool in the presurgical evaluation of drug-resistant partial epilepsies, particularly, but not exclusively, in cases of normal appearing conventional MRI. It also opens many perspectives in the fields of in vivo histology and computational anatomy.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Malformações do Desenvolvimento Cortical/diagnóstico , Encéfalo/anatomia & histologia , Encéfalo/patologia , Neuroimagem Funcional/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Malformações do Desenvolvimento Cortical/patologia
18.
Neuroimage ; 174: 177-190, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548848

RESUMO

INTRODUCTION: The polyphenol resveratrol has been suggested to exert beneficial effects on memory and the aging hippocampus due to calorie-restriction mimicking effects. However, the evidence based on human interventional studies is scarce. We therefore aimed to determine the effects of resveratrol on memory performance, and to identify potential underlying mechanisms using a broad array of blood-based biomarkers as well as hippocampus connectivity and microstructure assessed with ultra-high field magnetic resonance imaging (UHF-MRI). METHODS: In this double-blind, randomized controlled trial, 60 elderly participants (60-79 years) with a wide body-mass index (BMI) range of 21-37 kg/m2 were randomized to receive either resveratrol (200 mg/day) or placebo for 26 weeks (registered at ClinicalTrials.gov: NCT02621554). Baseline and follow-up assessments included the California Verbal Learning Task (CVLT, main outcome), the ModBent task, anthropometry, markers of glucose and lipid metabolism, inflammation and neurotrophins derived from fasting blood, multimodal neuroimaging at 3 and 7 T, and questionnaires to assess confounding factors. RESULTS: Multivariate repeated-measures ANOVA did not detect significant time by group effects for CVLT performance. There was a trend for preserved pattern recognition memory after resveratrol, while performance decreased in the placebo group (n.s., p = 0.07). Further exploratory analyses showed increases in both groups over time in body fat, cholesterol, fasting glucose, interleukin 6, high sensitive C-reactive protein, tumor necrosis factor alpha and in mean diffusivity of the subiculum and presubiculum, as well as decreases in physical activity, brain-derived neurotrophic factor and insulin-like growth factor 1 at follow-up, which were partly more pronounced after resveratrol. DISCUSSION: This interventional study failed to show significant improvements in verbal memory after 6 months of resveratrol in healthy elderly with a wide BMI range. A non-significant trend emerged for positive effects on pattern recognition memory, while possible confounding effects of unfavorable changes in lifestyle behavior, neurotrophins and inflammatory markers occurred. Our findings also indicate the feasibility to detect (un)healthy aging-related changes in measures of hippocampus microstructure after 6 months using 7T diffusion MRI. More studies incorporating a longer duration and larger sample size are needed to determine if resveratrol enhances memory performance in healthy older adults.


Assuntos
Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Resveratrol/administração & dosagem , Idoso , Mapeamento Encefálico , Método Duplo-Cego , Feminino , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Testes Neuropsicológicos , Reconhecimento Fisiológico de Modelo/efeitos dos fármacos , Reconhecimento Fisiológico de Modelo/fisiologia
19.
Eur Radiol ; 27(4): 1556-1567, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27300198

RESUMO

OBJECTIVES: To investigate the value of local image variance (LIV) as a new technique for quantification of hypointense microvascular susceptibility-weighted imaging (SWI) structures at 7 Tesla for preoperative glioma characterization. METHODS: Adult patients with neuroradiologically suspected diffusely infiltrating gliomas were prospectively recruited and 7 Tesla SWI was performed in addition to standard imaging. After tumour segmentation, quantification of intratumoural SWI hypointensities was conducted by the SWI-LIV technique. Following surgery, the histopathological tumour grade and isocitrate dehydrogenase 1 (IDH1)-R132H mutational status was determined and SWI-LIV values were compared between low-grade gliomas (LGG) and high-grade gliomas (HGG), IDH1-R132H negative and positive tumours, as well as gliomas with significant and non-significant contrast-enhancement (CE) on MRI. RESULTS: In 30 patients, 9 LGG and 21 HGG were diagnosed. The calculation of SWI-LIV values was feasible in all tumours. Significantly higher mean SWI-LIV values were found in HGG compared to LGG (92.7 versus 30.8; p < 0.0001), IDH1-R132H negative compared to IDH1-R132H positive gliomas (109.9 versus 38.3; p < 0.0001) and tumours with significant CE compared to non-significant CE (120.1 versus 39.0; p < 0.0001). CONCLUSIONS: Our data indicate that 7 Tesla SWI-LIV might improve preoperative characterization of diffusely infiltrating gliomas and thus optimize patient management by quantification of hypointense microvascular structures. KEY POINTS: • 7 Tesla local image variance helps to quantify hypointense susceptibility-weighted imaging structures. • SWI-LIV is significantly increased in high-grade and IDH1-R132H negative gliomas. • SWI-LIV is a promising technique for improved preoperative glioma characterization. • Preoperative management of diffusely infiltrating gliomas will be optimized.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Mutação , Adulto , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Cuidados Pré-Operatórios/métodos , Estudos Prospectivos , Adulto Jovem
20.
Brain ; 139(Pt 5): 1472-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26956422

RESUMO

The relevance of cortical grey matter pathology in multiple sclerosis has become increasingly recognized over the past decade. Unfortunately, a large part of cortical lesions remain undetected on magnetic resonance imaging using standard field strength. In vivo studies have shown improved detection by using higher magnetic field strengths up to 7 T. So far, a systematic histopathological verification of ultra-high field magnetic resonance imaging pulse sequences has been lacking. The aim of this study was to determine the sensitivity of 7 T versus 3 T magnetic resonance imaging pulse sequences for the detection of cortical multiple sclerosis lesions by directly comparing them to histopathology. We obtained hemispheric coronally cut brain sections of 19 patients with multiple sclerosis and four control subjects after rapid autopsy and formalin fixation, and scanned them using 3 T and 7 T magnetic resonance imaging systems. Pulse sequences included T1-weighted, T2-weighted, fluid attenuated inversion recovery, double inversion recovery and T2*. Cortical lesions (type I-IV) were scored on all sequences by an experienced rater blinded to histopathology and clinical data. Staining was performed with antibodies against proteolipid protein and scored by a second reader blinded to magnetic resonance imaging and clinical data. Subsequently, magnetic resonance imaging images were matched to histopathology and sensitivity of pulse sequences was calculated. Additionally, a second unblinded (retrospective) scoring of magnetic resonance images was performed. Regardless of pulse sequence, 7 T magnetic resonance imaging detected more cortical lesions than 3 T. Fluid attenuated inversion recovery (7 T) detected 225% more cortical lesions than 3 T fluid attenuated inversion recovery (Z = 2.22, P < 0.05) and 7 T T2* detected 200% more cortical lesions than 3 T T2* (Z = 2.05, P < 0.05). Sensitivity of 7 T magnetic resonance imaging was influenced by cortical lesion type: 100% for type I (T2), 11% for type II (FLAIR/T2), 32% for type III (T2*), and 68% for type IV (T2). We conclude that ultra-high field 7 T magnetic resonance imaging more than doubles detection of cortical multiple sclerosis lesions, compared to 3 T magnetic resonance imaging. Unfortunately, (subpial) cortical pathology remains more extensive than 7 T magnetic resonance imaging can reveal.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Córtex Cerebral/patologia , Feminino , Substância Cinzenta/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Neuroimagem/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA