Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(9): e29922, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39295292

RESUMO

This study retrospectively analyzed the genetic characteristics of influenza A H3N2 (A/H3N2) viruses circulating in New South Wales (NSW), the Australian state with the highest number of influenza cases in 2022, and explored the phylodynamics of A/H3N2 transmission within Australia during this period. Sequencing was performed on 217 archived specimens, and A/H3N2 evolution and spread within Australia were analyzed using phylogenetic and phylodynamic methods. Hemagglutinin genes of all analyzed NSW viruses belonged to subclade 3C.2a1b.2a.2 and clustered together with the 2022 vaccine strain. Complete genome analysis of NSW viruses revealed highly frequent interclade reassortments between subclades 3C.2a1b.2a.2 and 3C.2a1b.1a. The estimated earliest introduction time of the dominant subgroup 3C.2a1b.2a.2a.1 in Australia was February 22, 2022 (95% highest posterior density: December 19, 2021-March 13, 2022), following the easing of Australian travel restrictions, suggesting a possible international source. Phylogeographic analysis revealed that Victoria drove the transmission of A/H3N2 viruses across the country during this season, while NSW did not have a dominant role in viral dissemination to other regions. This study highlights the importance of continuous surveillance and genomic characterization of influenza viruses in the postpandemic era, which can inform public health decision-making and enable early detection of novel strains with pandemic potential.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Filogenia , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Influenza Humana/transmissão , Estudos Retrospectivos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , COVID-19/prevenção & controle , Austrália/epidemiologia , New South Wales/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Filogeografia , Estações do Ano , Genoma Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus Reordenados/genética , Vírus Reordenados/classificação
2.
Virol J ; 21(1): 57, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448981

RESUMO

BACKGROUND: Non-pharmaceutical interventions implemented during the COVID-19 pandemic resulted in a marked reduction in influenza infections globally. The absence of influenza has raised concerns of waning immunity, and potentially more severe influenza seasons after the pandemic. METHODS: To evaluate immunity towards influenza post-COVID-19 pandemic we have assessed influenza A epidemics in Norway from October 2016 to June 2023 and measured antibodies against circulating strains of influenza A(H1N1)pdm09 and A(H3N2) in different age groups by hemagglutination inhibition (HAI) assays in a total of 3364 serum samples collected in 2019, 2021, 2022 and 2023. RESULTS: Influenza epidemics in Norway from October 2016 until June 2023 were predominately influenza As, with a mixture of A(H1N1)pdm09 and A(H3N2) subtype predominance. We did not observe higher numbers of infections during the influenza epidemics following the COVID-19 pandemic than in pre-COVID-19 seasons. Frequencies of protective HAI titers against A(H1N1)pdm09 and A(H3N2) viruses were reduced in sera collected in 2021 and 2022, compared to sera collected in 2019. The reduction could, however, largely be explained by antigenic drift of new virus strains, as protective HAI titers remained stable against the same strain from one season to the next. However, we observed the development of an immunity gap in the youngest children during the pandemic which resulted in a prominent reduction in HAI titers against A(H1N1)pdm09 in 2021 and 2022. The immunity gap was partially closed in sera collected in 2023 following the A(H1N1)pdm09-dominated influenza seasons of 2022/2023. During the 2022/2023 epidemic, drift variants of A(H1N1)pdm09 belonging to the 5a.2a.1 clade emerged, and pre-season HAI titers were significantly lower against this clade compared to the ancestral 5a.2 clade. CONCLUSION: The observed reduction in protective antibodies against A(H1N1)pdm09 and A(H3N2) viruses post COVID-19 is best explained by antigenic drift of emerging viruses, and not waning of antibody responses in the general population. However, the absence of influenza during the pandemic resulted in an immunity gap in the youngest children. While this immunity gap was partially closed following the 2022/2023 influenza season, children with elevated risk of severe infection should be prioritized for vaccination.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estudos Transversais , Deriva e Deslocamento Antigênicos , Vírus da Influenza A Subtipo H3N2 , COVID-19/epidemiologia , Pandemias
3.
Public Health ; 230: 157-162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554473

RESUMO

OBJECTIVES: To report epidemiological and virological results of an outbreak investigation of influenza-like illness (ILI) among refugees in Northern Italy. STUDY DESIGN: Outbreak investigation of ILI cases observed among nearly 100 refugees in Northern Italy unvaccinated for influenza. METHODS: An epidemiological investigation matched with a differential diagnosis was carried out for each sample collected from ILI cases to identify 10 viral pathogens (SARS-CoV-2, influenza virus type A and B, respiratory syncytial virus, metapneumovirus, parainfluenza viruses, rhinovirus, enterovirus, parechovirus, and adenovirus) by using specific real-time PCR assays according to the Centers for Disease Control and Prevention (CDC) protocols. In cases where the influenza virus type was identified, complete hemagglutinin (HA) gene sequencing and the related phylogenetic analysis were conducted. RESULTS: The outbreak was caused by influenza A(H3N2): the attack rate was 83.3% in children aged 9-14 years, 84.6% in those aged 15-24 years, and 28.6% in adults ≥25 years. Phylogenetic analyses uncovered that A(H3N2) strains were closely related since they segregated in the same cluster, showing both a high mean nucleotide identity (100%), all belonging to the genetic sub-group 3C.2a1b.2a.2, as those mainly circulating into the general population in the same period. CONCLUSIONS: The fact that influenza outbreak strains as well as the community strains were genetically related to the seasonal vaccine strain suggests that if an influenza prevention by vaccination strategy had been implemented, a lower attack rate of A(H3N2) and ILI cases might have been achieved.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Refugiados , Viroses , Adulto , Criança , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Filogenia , Surtos de Doenças
4.
J Med Virol ; 95(2): e28498, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653733

RESUMO

Community surveillance found the 2019-2020 A(H1N1)pdm09 predominant influenza season in Israel to be a high-intensity season with an early and steep morbidity peak. To further characterize disease severity in the 2019-2020 season, we analyzed a cohort of hospitalized patients with laboratory-confirmed influenza from this season (n = 636). Quantitative polymerase chain reaction was performed on clinical samples to detect the presence of influenza. Demographic, clinical, and laboratory data were retrieved via electronic health records and MDClone. Electronic health records were accessed to obtain data on intensive care unit patients, missing data and for data verification purposes. Univariate analysis was performed to compare demographic, comorbidity, and clinical characteristics across the three influenza strains. The A(H1N1)pdm09 predominant 2019-2020 influenza season in Israel was characterized by an early and steep morbidity peak, vaccine delays and shortages, and with the A(H3N2) and B/Victoria strains disproportionately targeting children and young adults, most probably due to reduced immunity to these strains. A greater proportion of children <5 years infected with A(H3N2) and B/Victoria developed severe influenza compared with those infected with A(H1N1)pdm09. Our study emphasizes the vulnerability of infants and young children in the face of rapidly evolving influenza strains and underscores the importance of influenza prevention measures in this population.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Criança , Lactente , Adulto Jovem , Humanos , Pré-Escolar , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Israel , Morbidade , Vírus da Influenza B
5.
Epidemiol Infect ; 151: e36, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36655522

RESUMO

Despite the COVID-19 pandemic, influenza remains an important issue. Especially in community settings, influenza outbreaks can be difficult to control and can result in high attack rates. In April 2022, a large A(H3N2) influenza outbreak spread in the largest Italian drug-rehabilitation community. One hundred eighty-four individuals presented influenza-like symptoms (attack rate of 26.2%); 56% previously received the influenza vaccine. Sequence analyses highlighted a genetic drift from the vaccine strain, which may have caused the observed lack of protection.


Assuntos
COVID-19 , Usuários de Drogas , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Incidência , Pandemias , COVID-19/epidemiologia , Surtos de Doenças , Itália
6.
Euro Surveill ; 28(5)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729117

RESUMO

The Canadian Sentinel Practitioner Surveillance Network estimated vaccine effectiveness (VE) during the unusually early 2022/23 influenza A(H3N2) epidemic. Like vaccine, circulating viruses were clade 3C.2a1b.2a.2, but with genetic diversity affecting haemagglutinin positions 135 and 156, and reassortment such that H156 viruses acquired neuraminidase from clade 3C.2a1b.1a. Vaccine provided substantial protection with A(H3N2) VE of 54% (95% CI: 38 to 66) overall. VE was similar against H156 and vaccine-like S156 viruses, but with potential variation based on diversity at position 135.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Eficácia de Vacinas , Canadá/epidemiologia , Variação Genética
7.
J Infect Dis ; 225(8): 1387-1398, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32215564

RESUMO

BACKGROUND: The influenza A(H3N2) vaccine was updated from clade 3C.3a in 2015-2016 to 3C.2a for 2016-2017 and 2017-2018. Circulating 3C.2a viruses showed considerable hemagglutinin glycoprotein diversification and the egg-adapted vaccine also bore mutations. METHODS: Vaccine effectiveness (VE) in 2016-2017 and 2017-2018 was assessed by test-negative design, explored by A(H3N2) phylogenetic subcluster and prior season's vaccination history. RESULTS: In 2016-2017, A(H3N2) VE was 36% (95% confidence interval [CI], 18%-50%), comparable with (43%; 95% CI, 24%-58%) or without (33%; 95% CI, -21% to 62%) prior season's vaccination. In 2017-2018, VE was 14% (95% CI, -8% to 31%), lower with (9%; 95% CI, -18% to 30%) versus without (45%; 95% CI, -7% to 71%) prior season's vaccination. In 2016-2017, VE against predominant clade 3C.2a1 viruses was 33% (95% CI, 11%-50%): 18% (95% CI, -40% to 52%) for 3C.2a1a defined by a pivotal T135K loss of glycosylation; 60% (95% CI, 19%-81%) for 3C.2a1b (without T135K); and 31% (95% CI, 2%-51%) for other 3C.2a1 variants (with/without T135K). VE against 3C.2a2 viruses was 45% (95% CI, 2%-70%) in 2016-2017 but 15% (95% CI, -7% to 33%) in 2017-2018 when 3C.2a2 predominated. VE against 3C.2a1b in 2017-2018 was 37% (95% CI, -57% to 75%), lower at 12% (95% CI, -129% to 67%) for a new 3C.2a1b subcluster (n = 28) also bearing T135K. CONCLUSIONS: Exploring VE by phylogenetic subcluster and prior vaccination history reveals informative heterogeneity. Pivotal mutations affecting glycosylation sites, and repeat vaccination using unchanged antigen, may reduce VE.


Assuntos
Epidemias , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Filogenia , Eficácia de Vacinas , Vacinação , Canadá/epidemiologia , Estações do Ano
8.
J Virol ; 95(24): e0126721, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586866

RESUMO

Introduction of non-pharmaceutical interventions to control COVID-19 in early 2020 coincided with a global decrease in active influenza circulation. However, between July and November 2020, an influenza A(H3N2) epidemic occurred in Cambodia and in other neighboring countries in the Greater Mekong Subregion in Southeast Asia. We characterized the genetic and antigenic evolution of A(H3N2) in Cambodia and found that the 2020 epidemic comprised genetically and antigenically similar viruses of Clade3C2a1b/131K/94N, but they were distinct from the WHO recommended influenza A(H3N2) vaccine virus components for 2020-2021 Northern Hemisphere season. Phylogenetic analysis revealed multiple virus migration events between Cambodia and bordering countries, with Laos PDR and Vietnam also reporting similar A(H3N2) epidemics immediately following the Cambodia outbreak: however, there was limited circulation of these viruses elsewhere globally. In February 2021, a virus from the Cambodian outbreak was recommended by WHO as the prototype virus for inclusion in the 2021-2022 Northern Hemisphere influenza vaccine. IMPORTANCE The 2019 coronavirus disease (COVID-19) pandemic has significantly altered the circulation patterns of respiratory diseases worldwide and disrupted continued surveillance in many countries. Introduction of control measures in early 2020 against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has resulted in a remarkable reduction in the circulation of many respiratory diseases. Influenza activity has remained at historically low levels globally since March 2020, even when increased influenza testing was performed in some countries. Maintenance of the influenza surveillance system in Cambodia in 2020 allowed for the detection and response to an influenza A(H3N2) outbreak in late 2020, resulting in the inclusion of this virus in the 2021-2022 Northern Hemisphere influenza vaccine.


Assuntos
COVID-19/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/imunologia , Influenza Humana/complicações , Influenza Humana/imunologia , Camboja/epidemiologia , Surtos de Doenças , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Laos , Funções Verossimilhança , Filogenia , SARS-CoV-2 , Vietnã
9.
Euro Surveill ; 27(15)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35426361

RESUMO

We estimated interim influenza A vaccine effectiveness (VE) following a late sharp rise in cases during an influenza A(H3N2)-dominated 2021/22 season, after lifting COVID-19 restrictions. In children aged 2-6 years offered a live attenuated influenza vaccine, adjusted VE was 62.7% (95% CI: 10.9-84.4) in hospitalised and 64.2% (95% CI: 50.5-74.1) in non-hospitalised children. In non-hospitalised patients aged 7-44 years, VE was 24.8% (95% CI: 12.8-35.2); VE was non-significant in remaining age groups and hospital/non-hospital settings.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Estudos de Casos e Controles , Criança , Dinamarca/epidemiologia , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estações do Ano , Vacinação , Eficácia de Vacinas
10.
Euro Surveill ; 27(38)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36148674

RESUMO

Influenza virus circulation virtually ceased in Canada during the COVID-19 pandemic, re-emerging with the relaxation of restrictions in spring 2022. Using a test-negative design, the Canadian Sentinel Practitioner Surveillance Network reports 2021/22 vaccine effectiveness of 36% (95% CI: -38 to 71) against late-season illness due to influenza A(H3N2) clade 3C.2a1b.2a.2 viruses, considered antigenically distinct from the 3C.2a1b.2a.1 vaccine strain. Findings reinforce the World Health Organization's decision to update the 2022/23 northern hemisphere vaccine to a more representative A(H3N2) clade 3C.2a1b.2a.2 strain.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Canadá/epidemiologia , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Eficácia de Vacinas
11.
Epidemiol Infect ; 149: e223, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34579803

RESUMO

Little is known about respiratory viruses infection in Guinea. Influenza surveillance has not been implemented in Guinea mainly because of the paucity of laboratory infrastructure and capacity. This paper presents the first influenza surveillance data in Guinea.Swabs were obtained from August 2018 through December 2019 at influenza sentinel sites and transported to the Institut National de Santé Publique for testing. Ribonucleic acid was extracted and tested for the presence of influenza A and B by real-time reverse transcription-polymerase chain reaction (RT-PCR). Positive samples were further characterised to determine the subtypes and lineages of influenza viruses.A total of 862 swabs were collected and tested. Twenty-three per cent of samples tested positive for influenza A and B viruses. Characterisation of positive specimens identified influenza A/H1N1pmd09 (2.5%), influenza A/H3N2 (57.3%), influenza B/Victoria lineage (36.7%) and 7 (3.5%) influenza B with undetermined lineage. Influenza B virus activity clustered in August through November while influenza A/H3N2 displayed two clusters of activities that appeared in May through August and November through December.For the first time in Guinea, the epidemiology, diversity and period of circulation of influenza viruses were studied. The results indicate the predominance and the periods of activities of influenza B Victoria lineage and influenza A/H3N2 which are important information for preventive strategies. It is warranted to extend the influenza surveillance to other parts of Guinea to better understand the epidemiology of the viruses and monitor the emergence of influenza strains with pandemic potential.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Monitoramento Epidemiológico , Guiné/epidemiologia , Humanos , Estações do Ano
12.
J Infect Dis ; 221(1): 63-70, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31419295

RESUMO

BACKGROUND: Baloxavir is a cap-dependent inhibitor of the polymerase acid (PA) protein of influenza viruses. While appearing virologically superior to oseltamivir, baloxavir exhibits a low barrier of resistance. We sought to assess the impact of the common baloxavir-resistant I38T PA substitution on in vitro properties and virulence. METHODS: Influenza A/Quebec/144147/2009 (H1N1)pdm09 and A/Switzerland/9715293/2013 (H3N2) recombinant viruses and their I38T PA mutants were compared in single and competitive infection experiments in ST6GalI-MDCK cells and C57/BL6 mice. Virus titers in cell culture supernatants and lung homogenates were determined by virus yield assays. Ratios of wild-type (WT) and I38T mutant were assessed by digital RT-PCR. RESULTS: I38T substitution did not alter the replication kinetics of A(H1N1)pdm09 and A(H3N2) viruses. In competition experiments, a 50%:50% mixture evolved to 70%:30% (WT/mutant) for A(H1N1) and 88%:12% for A(H3N2) viruses after a single cell passage. The I38T substitution remained stable after 4 passages in vitro. In mice, the WT and its I38T mutant induced similar weight loss with comparable lung titers in both viral subtypes. The mutant virus tended to predominate over the WT in mouse competition experiments. CONCLUSION: The fitness of baloxavir-resistant I38T PA mutants appears relatively unaltered in seasonal subtypes warranting surveillance for its dissemination.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/tratamento farmacológico , Oxazinas/farmacologia , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/genética , Tiepinas/farmacologia , Triazinas/farmacologia , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Antivirais/uso terapêutico , Dibenzotiepinas , Cães , Feminino , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Concentração Inibidora 50 , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas , Mutação , Infecções por Orthomyxoviridae/virologia , Oxazinas/uso terapêutico , Fenótipo , Piridinas/uso terapêutico , Piridonas , RNA Polimerase Dependente de RNA/metabolismo , Tiepinas/uso terapêutico , Triazinas/uso terapêutico , Carga Viral/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Clin Infect Dis ; 71(12): 3061-3070, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31858129

RESUMO

BACKGROUND: Swine origin A(H3N2) variant [A(H3N2)v] viruses continue to evolve and remain a public health threat. Recent outbreaks in humans in 2016-2018 were caused by a newly emerged A(H3N2)v cluster 2010.1, which are genetically and antigenically distinct from the previously predominant cluster IV. To address the public health risk, we evaluated the levels of heterologous cross-reactive antibodies to A(H3N2)v cluster 2010.1 viruses induced from an existing cluster IV A(H3N2)v vaccine and several seasonal inactivated influenza vaccines (IIVs) in adults, elderly individuals, and children. METHODS: Human vaccine sera and ferret antisera were analyzed by hemagglutination inhibition (HI) and neutralization assays against representative A(H3N2)v viruses from clusters IV and 2010.1 and seasonal A(H3N2) viruses. RESULTS: Ferret antisera detected no or little cross-reactivity between the 2 A(H3N2)v clusters or between A(H3N2)v and seasonal A(H3N2) viruses. In humans, cluster IV A(H3N2)v vaccine induced antibodies cross-reactive to cluster 2010.1 viruses in approximately one-third of the 89 adult and elderly vaccinees. Seasonal IIVs did not induce seroprotective antibodies (≥40) to A(H3N2)v viruses in young children, but induced higher antibodies to A(H3N2)v viruses in cluster 2010.1 than those in cluster IV in adults. CONCLUSIONS: Cluster IV A(H3N2)v vaccine did not provide sufficient heterologous antibody responses against the new 2010.1 cluster A(H3N2)v viruses. Seasonal IIV could not induce seroprotective antibodies to 2010.1 cluster A(H3N2)v viruses in young children, suggesting that young children are still at high risk to the newly emerged A(H3N2)v viruses. Continued surveillance on A(H3N2)v viruses is critical for risk assessment and pandemic preparedness.


Assuntos
Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Formação de Anticorpos , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/prevenção & controle , Estações do Ano , Vacinação
14.
Emerg Infect Dis ; 26(2): 220-228, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961295

RESUMO

We conducted a retrospective cohort study to assess the effect of influenza virus type and subtype on disease severity among hospitalized influenza patients in Spain. We analyzed the cases of 8,985 laboratory-confirmed case-patients hospitalized for severe influenza by using data from a national surveillance system for the period 2010-2017. Hospitalized patients with influenza A(H1N1)pdm09 virus were significantly younger, more frequently had class III obesity, and had a higher risk for pneumonia or acute respiratory distress syndrome than patients infected with influenza A(H3N2) or B (p<0.05). Hospitalized patients with influenza A(H1N1)pdm09 also had a higher risk for intensive care unit admission, death, or both than patients with influenza A(H3N2) or B, independent of other factors. Determining the patterns of influenza-associated severity and how they might differ by virus type and subtype can help guide planning and implementation of adequate control and preventive measures during influenza epidemics.


Assuntos
Hospitalização , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Influenza Humana/patologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Espanha/epidemiologia , Adulto Jovem
15.
BMC Infect Dis ; 20(1): 478, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631240

RESUMO

BACKGROUND: Extended use of oseltamivir in an immunocompromised host could reportedly induce neuraminidase gene mutation possibly leading to oseltamivir-resistant influenza A/H3N2 virus. To our knowledge, no report is available on the clinical course of a severely immunocompromised patient with a dual E119D/R292K neuraminidase mutated-influenza A/H3N2 during the administration of peramivir. CASE PRESENTATION: A 49-year-old male patient was admitted for second allogeneic hematopoietic cell transplantation for active acute leukemia. The patient received 5 mg prednisolone and 75 mg cyclosporine and had severe lymphopenia (70/µL). At the time of hospitalization, the patient was diagnosed with upper tract influenza A virus infection, and oseltamivir treatment was initiated immediately. However, the patient was intolerant to oseltamivir. The following day, treatment was changed to peramivir. Despite a total period of neuraminidase-inhibitor administration of 16 days, the symptoms and viral shedding continued. Changing to baloxavir marboxil resolved the symptoms, and the influenza diagnostic test became negative. Subsequently, sequence analysis of the nasopharyngeal specimen revealed the dual E119D/R292K neuraminidase mutant influenza A/H3N2. CONCLUSIONS: In a highly immunocompromised host, clinicians should take care when peramivir is used for extended periods to treat influenza virus A/H3N2 infection as this could potentially leading to a dual E119D/R292K substitution in neuraminidase protein. Baloxavir marboxil may be one of the agents that can be used to treat this type of mutated influenza virus infection.


Assuntos
Antivirais/uso terapêutico , Ciclopentanos/uso terapêutico , Farmacorresistência Viral/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Guanidinas/uso terapêutico , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/tratamento farmacológico , Oxazinas/uso terapêutico , Piridinas/uso terapêutico , Tiepinas/uso terapêutico , Triazinas/uso terapêutico , Ácidos Carbocíclicos , Ciclopentanos/efeitos adversos , Ciclopentanos/farmacologia , Dibenzotiepinas , Farmacorresistência Viral/genética , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Guanidinas/efeitos adversos , Guanidinas/farmacologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Hospedeiro Imunocomprometido , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Morfolinas , Mutação , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Oseltamivir/uso terapêutico , Piridonas , Transplante Homólogo/métodos , Resultado do Tratamento , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
16.
Bull Exp Biol Med ; 168(4): 496-499, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32147764
17.
Emerg Infect Dis ; 25(10): 1810-1816, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31538556

RESUMO

Canine influenza virus (CIV) A(H3N2) was identified in 104 dogs in Ontario, Canada, during December 28, 2017-October 30, 2018, in distinct epidemiologic clusters. High morbidity rates occurred within groups of dogs, and kennels and a veterinary clinic were identified as foci of infection. Death attributable to CIV infection occurred in 2 (2%) of 104 diagnosed cases. A combination of testing of suspected cases, contact tracing and testing, and 28-day isolation of infected dogs was used, and CIV transmission was contained in each outbreak. Dogs recently imported from Asia were implicated as the source of infection. CIV H3N2 spread rapidly within groups in this immunologically naive population; however, containment measures were apparently effective, demonstrating the potential value of prompt diagnosis and implementation of CIV control measures.


Assuntos
Doenças do Cão/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae/veterinária , Animais , Busca de Comunicante/veterinária , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Doenças do Cão/prevenção & controle , Doenças do Cão/virologia , Cães , Ontário/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia
18.
J Med Virol ; 91(8): 1400-1407, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30866072

RESUMO

In Cameroon, genome characterization of influenza virus has been performed only in the Southern regions meanwhile genetic diversity of this virus varies with respect to locality. The Northern region characterized by a Sudan tropical climate might have distinct genetic characterization. This study aimed to better understand the genetic diversity of influenza A(H3N2) viruses circulating in Northern Cameroon. Sequences of three gene segments (hemagglutinin (HA), neuraminidase (NA) and matrix (M) genes) were obtained from 16 A(H3N2) virus strains collected during the 2014 to 2016 influenza seasons in Garoua. The HA gene segments were analysed with respect to reference strains while the NA and M gene was analysed for reported genetic markers of resistance to antivirals. Analysis of the HA sequences revealed that majority of the virus strains grouped together with the 2016-2017 vaccine strain (3C.2a-A/Hong Kong/4801/2014) while 3/5 (60%) of the 2015 viral strains grouped together with the 2015-2016 vaccine strain 3C.3a-A/Switzerland/9715293/2013. Within clade 3C.2a, Northern Cameroon sequences mostly grouped in sub-clade A3 (10/16). Analysis of the coding regions of the NA and M genes showed that none had genetic markers of resistance to neuraminidase inhibitors but all strains possessed the S31N substitution of resistance to amantadine. Due to some discrepancies observed in this region with respect to the Southern regions of Cameroon, there is necessity of including all regions within a country in the sentinel surveillance of influenza. These data will enable to track changes in influenza viruses in Cameroon.


Assuntos
Variação Genética , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Camarões/epidemiologia , Análise por Conglomerados , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Neuraminidase/genética , Filogenia , Análise de Sequência de DNA , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
19.
Epidemiol Infect ; 147: e310, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31775940

RESUMO

This study compares the frequency and severity of influenza A/H1N1pdm09 (A/H1), influenza A/H3N2 (A/H3) and other respiratory virus infections in hospitalised patients. Data from 17 332 adult hospitalised patients admitted to Sir Charles Gairdner Hospital, Perth, Western Australia, with a respiratory illness between 2012 and 2015 were linked with data containing reverse transcription polymerase chain reaction results for respiratory viruses including A/H1, A/H3, influenza B, human metapneumovirus, respiratory syncytial virus and parainfluenza. Of these, 1753 (10.1%) had test results. Multivariable regression analyses were conducted to compare the viruses for clinical outcomes including ICU admission, ventilation, pneumonia, length of stay and death. Patients with A/H1 were more likely to experience severe outcomes such as ICU admission (OR 2.5, 95% CI 1.2-5.5, P = 0.016), pneumonia (OR 3.0, 95% CI 1.6-5.7, P < 0.001) and lower risk of discharge from hospital (indicating longer lengths of hospitalisation; HR 0.64 95% CI 0.47-0.88, P = 0.005), than patients with A/H3. Patients with a non-influenza respiratory virus were less likely to experience severe clinical outcomes than patients with A/H1, however, had similar likelihood when compared to patients with A/H3. Patients hospitalised with A/H1 had higher odds of severe outcomes than patients with A/H3 or other respiratory viruses. Knowledge of circulating influenza strains is important for healthcare preparedness.


Assuntos
Hospitalização , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/patogenicidade , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Influenza Humana/terapia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Pandemias , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Índice de Gravidade de Doença , Austrália Ocidental/epidemiologia , Adulto Jovem
20.
Euro Surveill ; 24(46)2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31771709

RESUMO

IntroductionThe Canadian Sentinel Practitioner Surveillance Network reports vaccine effectiveness (VE) for the 2018/19 influenza A(H3N2) epidemic.AimTo explain a paradoxical signal of increased clade 3C.3a risk among 35-54-year-old vaccinees, we hypothesise childhood immunological imprinting and a cohort effect following the 1968 influenza A(H3N2) pandemic.MethodsWe assessed VE by test-negative design for influenza A(H3N2) overall and for co-circulating clades 3C.2a1b and 3C.3a. VE variation by age in 2018/19 was compared with amino acid variation in the haemagglutinin glycoprotein by year since 1968.ResultsInfluenza A(H3N2) VE was 17% (95% CI: -13 to 39) overall: 27% (95% CI: -7 to 50) for 3C.2a1b and -32% (95% CI: -119 to 21) for 3C.3a. Among 20-64-year-olds, VE was -7% (95% CI: -56 to 26): 6% (95% CI: -49 to 41) for 3C.2a1b and -96% (95% CI: -277 to -2) for 3C.3a. Clade 3C.3a VE showed a pronounced negative dip among 35-54-year-olds in whom the odds of medically attended illness were > 4-fold increased for vaccinated vs unvaccinated participants (p < 0.005). This age group was primed in childhood to influenza A(H3N2) viruses that for two decades following the 1968 pandemic bore a serine at haemagglutinin position 159, in common with contemporary 3C.3a viruses but mismatched to 3C.2a vaccine strains instead bearing tyrosine.DiscussionImprinting by the first childhood influenza infection is known to confer long-lasting immunity focused toward priming epitopes. Our findings suggest vaccine mismatch may negatively interact with imprinted immunity. The immunological mechanisms for imprint-regulated effect of vaccine (I-REV) warrant investigation.


Assuntos
Memória Imunológica , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vigilância da População/métodos , Vacinação/estatística & dados numéricos , Potência de Vacina , Adulto , Fatores Etários , Canadá/epidemiologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Vigilância de Evento Sentinela
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA