Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Endocr J ; 69(1): 85-94, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34483150

RESUMO

In the current study, we aimed to study the effect of miR-146a on proliferation and migration in an in vitro diabetic foot ulcer (DFU) model by targeting A-kinase-anchoring protein 12 (AKAP12). An in vitro DFU model was initially established using HaCaT cells derived from human keratinocytes and induced by advanced glycation end products (AGEs). The effects of overexpression of miR-146a on proliferation and migration ability were analysed. The expression levels of miR-146a and AKAP12 were measured by quantitative real-time polymerase chain reaction (qRT-PCR), and AKAP12, hypoxia-inducible factor-1α (HIF-1α), Wnt3a and ß-catenin protein levels were measured by western blotting. The cell proliferation ability was measured by MTT, and the migration ability was analysed by a cell scratch assay. The binding between miR-146a and AKAP12 was identified using a luciferase reporter assay. The results demonstrated that AGEs significantly suppressed cell proliferation and migration, while the expression of miR-146a decreased and the expression of AKAP12 increased. A luciferase reporter assay revealed that miR-146a could directly target AKAP12. Overexpression of miR-146a promoted cell proliferation and migration in an in vitro DFU model and also promoted the expression of HIF-1α, Wnt3a and ß-catenin but suppressed the expression of AKAP12. Co-overexpression of miR-146a and AKAP12 reversed the effect of miR-146a on cell proliferation and migration. Our findings revealed that miR-146a directly targeted AKAP12 and promoted cell proliferation and migration in an in vitro DFU model. This study provides a new perspective for the study of miR-146a in the treatment of DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , MicroRNAs , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ancoragem à Quinase A/farmacologia , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proliferação de Células/genética , Pé Diabético/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Traffic ; 20(5): 357-368, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30941853

RESUMO

The classic mode of G protein-coupled receptor (GPCR)-mediated transactivation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) transactivation occurs via matrix metalloprotease (MMP)-mediated cleavage of plasma membrane-anchored EGFR ligands. Herein, we show that the Gαs-activating GPCR ligands vasoactive intestinal peptide (VIP) and prostaglandin E2 (PGE2 ) transactivate EGFR through increased cell-surface delivery of the EGFR ligand transforming growth factor-α (TGFα) in polarizing madin-darby canine kidney (MDCK) and Caco-2 cells. This is achieved by PKA-mediated phosphorylation of naked cuticle homolog 2 (NKD2), previously shown to bind TGFα and direct delivery of TGFα-containing vesicles to the basolateral surface of polarized epithelial cells. VIP and PGE2 rapidly activate protein kinase A (PKA) that then phosphorylates NKD2 at Ser-223, a process that is facilitated by the molecular scaffold A-kinase anchoring protein 12 (AKAP12). This phosphorylation stabilized NKD2, ensuring efficient cell-surface delivery of TGFα and increased EGFR activation. Thus, GPCR-triggered, PKA/AKAP12/NKD2-regulated targeting of TGFα to the cell surface represents a new mode of EGFR transactivation that occurs proximal to ligand cleavage by MMPs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Células CACO-2 , Proteínas de Ciclo Celular/metabolismo , Dinoprostona/metabolismo , Cães , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Transporte Proteico , Transdução de Sinais , Peptídeo Intestinal Vasoativo/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 317(4): H793-H810, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441691

RESUMO

Gravin, an A-kinase anchoring protein, is known to play a role in regulating key processes that lead to inflammation and atherosclerosis development, namely, cell migration, proliferation, and apoptosis. We investigated the role of gravin in the development of high-fat diet (HFD)-induced atherosclerosis and hyperlipidemia. Five-week-old male wild-type (WT) and gravin-t/t mice were fed a normal diet or an HFD for 16 wk. Gravin-t/t mice showed significantly lower liver-to-body-weight ratio, cholesterol, triglyceride, and very low-density lipoprotein levels in serum as compared with WT mice on HFD. Furthermore, there was less aortic plaque formation coupled with decreased lipid accumulation and liver damage, as the gravin-t/t mice had lower levels of serum alanine aminotransferase and aspartate aminotransferase. Additionally, gravin-t/t HFD-fed mice had decreased expression of liver 3-hydroxy-3-methyl-glutaryl-CoA reductase, an essential enzyme for cholesterol synthesis and lower fatty acid synthase expression. Gravin-t/t HFD-fed mice also exhibited inhibition of sterol regulatory element binding protein-2 (SREBP-2) expression, a liver transcription factor associated with the regulation of lipid transportation. In response to platelet-derived growth factor receptor treatment, gravin-t/t vascular smooth muscle cells exhibited lower intracellular calcium transients and decreased protein kinase A- and protein kinase C-dependent substrate phosphorylation, notably involving the Erk1/2 signaling pathway. Collectively, these results suggest the involvement of gravin-dependent regulation of lipid metabolism via the reduction of SREBP-2 expression. The absence of gravin-mediated signaling lowers blood pressure, reduces plaque formation in the aorta, and decreases lipid accumulation and damage in the liver of HFD mice. Through these processes, the absence of gravin-mediated signaling complex delays the HFD-induced hyperlipidemia and atherosclerosis.NEW & NOTEWORTHY The gravin scaffolding protein plays a key role in the multiple enzymatic pathways of lipid metabolism. We have shown for the first time the novel role of gravin in regulating the pathways related to the initiation and progression of atherosclerosis. Specifically, an absence of gravin-mediated signaling decreases the lipid levels (cholesterol, triglyceride, and VLDL) that are associated with sterol regulatory element binding protein-2 downregulation.


Assuntos
Proteínas de Ancoragem à Quinase A/deficiência , Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Proteínas de Ciclo Celular/deficiência , Dieta Hiperlipídica , Hiperlipidemias/prevenção & controle , Lipídeos/sangue , Placa Aterosclerótica , Proteínas de Ancoragem à Quinase A/genética , Animais , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/etiologia , Doenças da Aorta/genética , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/genética , Proteínas de Ciclo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Hiperlipidemias/sangue , Hiperlipidemias/etiologia , Hiperlipidemias/genética , Fígado/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
4.
Exp Anim ; 72(2): 242-252, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36464273

RESUMO

A-kinase anchoring protein 12 (AKAP12) has been identified as an anti-inflammatory and anti-fibrotic regulator in chronic inflammation and cardiovascular disease. However, the potential of AKAP12 in autoimmune disorders, rheumatoid arthritis (RA) and associated cardiac complications remains elusive. Here, a murine model of collagen-induced arthritis (CIA) was successfully induced, followed by adenovirus-mediated AKAP12 short hairpin RNA (shRNA) treatment. AKAP12 silenced mice displayed elevated clinical arthritis scores and significant ankle joint swelling. AKAP12 loss in CIA mice increased inflammatory cell infiltration and cartilage erosion, increased the levels of anti-IIC IgG and inflammatory cytokines IL-1ß, IL-6, tumor necrosis factor (TNF)-α in serum, and upregulated the expression of cartilage-degrading enzymes MMP-1, MMP-3, MMP-13 in synovium, but reduced IL-10. The number of M1 macrophages and the expression of the markers (CCR7, IL-6, TNF-α and iNOS) was enhanced in synovial tissues, while M2 polarized macrophages and the makers (IL-10 and arginase-1) were reduced in response to AKAP12 loss. Moreover, low expression of AKAP12 was detected in the hearts of CIA mice. Loss of AKAP12 results in increased cardiac inflammation and fibrosis. This work suggests that AKAP12 loss aggravates joint inflammation likely through the promotion of M1 macrophage polarization and exacerbates inflammation-caused cardiac fibrosis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Interleucina-10 , Interleucina-6 , Proteínas de Ancoragem à Quinase A , Artrite Reumatoide/patologia , Citocinas , Fator de Necrose Tumoral alfa , Inflamação , Proteínas de Ciclo Celular
5.
Cancer Lett ; 549: 215911, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36122629

RESUMO

Aberrant expression of histone deacetylase 6 (HDAC6) is greatly involved in neoplasm metastasis, which is a leading cause of colon cancer related death. Thus, deep understanding of the regulatory mechanisms of HDAC6 in the metastasis of colon cancer is warranted. In this study, we firstly found that HDAC6 expression was highly expressed in metastatic colon cancer tissues and inhibition or knockdown of HDAC6 suppressed colon cancer metastasis. Next, based on proteomic analysis we uncovered A-kinase anchoring protein 12 (AKAP12) was a novel substrate of HDAC6. HDAC6 interacted with AKAP12 and deacetylated the K526/K531 residues of AKAP12. Moreover, deacetylation of AKAP12 at K531 by HDAC6 increased its ubiquitination level, which facilitated AKAP12 proteasome-dependent degradation. Importantly, we observed an inverse correlation between AKAP12 and HDAC6 protein levels with human colon cancer specimens. Further deletion of AKAP12 in HDAC6 knockdown cells restored the cell motility defects and reactivated the protein kinase C isoforms, repression of which were responsible for the inhibition of cancer metastasis of AKAP12. Our study identified AKAP12 was a new interactor and substrate of HDAC6 and uncovered a novel mechanism through which HDAC6-dependent AKAP12 deacetylation led to its ubiquitination mediated degradation and promoted colon cancer metastasis.


Assuntos
Proteínas de Ancoragem à Quinase A , Neoplasias do Colo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/genética , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Quinase C/metabolismo , Proteômica , Ubiquitinação
6.
Animals (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34359218

RESUMO

The A-kinase anchoring protein 12 gene (AKAP12) is a scaffold protein, which can target multiple signal transduction effectors, can promote mitosis and cytokinesis and plays an important role in the regulation of growth and development. In our previous study, P1-7 bp (intron 3) and P2-13 bp (3'UTR) indels within the AKAP12 gene significantly influenced AKAP12 gene expression. Therefore, this study aimed to identify the association between these two genetic variations and growth-related traits in Shaanbei white cashmere goats (SBWC) (n = 1405). Herein, we identified two non-linkage insertions/deletions (indels). Notably, we found that the P1-7 bp indel mutation was related to the height at hip cross (HHC; p < 0.05) and the P2-13 bp indel was associated with body weight, body length, chest depth, chest width, hip width, chest circumference and cannon (bone) circumference in SBWC goats (p < 0.05). Overall, the two indels' mutations of AKAP12 affected growth traits in goats. Compared to the P1-7 bp indel, the P2-13 bp indel is more suitable for the breeding of goat growth traits.

7.
Oncol Lett ; 16(5): 5907-5915, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30344741

RESUMO

AKAP12 belongs to A-kinase anchoring protein (AKAP) family of scaffold proteins and is known as a tumor suppressor in several human cancer types. Its role as a tumor suppressor in hepatocellular carcinoma (HCC) was proposed due to its downregulation and epigenetic modification in human HCC; however, the effect of its deficiency on liver injuries, such as liver fibrosis and cancer has been poorly studied. By analyzing tumor and non-tumor tissues of 15 patients with HCC, it was confirmed that AKAP12 expression was downregulated in human HCC as compared with adjacent non-tumor tissues. Immunohistochemical staining of mouse liver tissue for AKAP12 revealed that its sinusoidal expression was diminished in capillarized endothelium after 8 weeks of thioacetamide (TAA) administration. AKAP12 deficiency resulted in the promotion of ductular response of biliary epithelial cells, whereas overall fibrosis and myofibroblast activation were comparable between genotypes after short-term TAA treatment. The mRNA expressions of some fibrosis-related genes such as those encoding epithelial cell adhesion molecule, collagen type 1 α1 and elastin were upregulated in liver tissues of AKAP12-knockout mice. Long-term administration of TAA for 26 weeks led to the development of liver tumors; the incidence of tumor development was higher in AKAP12-deficient mice than in wild-type littermates. Together, these results suggest that AKAP12 functions as a tumor suppressor in liver cancer and is associated with the regulation of hepatic non-parenchymal cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA