Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Hum Mol Genet ; 32(23): 3249-3262, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37656183

RESUMO

X-linked adrenoleukodystrophy is a severe demyelinating neurodegenerative disease mainly affecting males. The severe cerebral adrenoleukodystrophy (cALD) phenotype has a poor prognosis and underlying mechanism of onset and progression of neuropathology remains poorly understood. In this study we aim to integrate metabolomic and microRNA (miRNA) datasets to identify variances associated with cALD. Postmortem brain tissue samples from five healthy controls (CTL) and five cALD patients were utilized in this study. White matter from ALD patients was obtained from normal-appearing areas, away from lesions (NLA) and from the periphery of lesions- plaque shadow (PLS). Metabolomics was performed by gas chromatography coupled with time-of-flight mass spectrometry and miRNA expression analysis was performed by next generation sequencing (RNAseq). Principal component analysis revealed that among the three sample groups (CTL, NLA and PLS) there were 19 miRNA, including several novel miRNA, of which 17 were increased with disease severity and 2 were decreased. Untargeted metabolomics revealed 13 metabolites with disease severity-related patterns with 7 increased and 6 decreased with disease severity. Ingenuity pathway analysis of differentially altered metabolites and miRNA comparing CTL with NLA and NLA with PLS, identified several hubs of metabolite and signaling molecules and their upstream regulation by miRNA. The transomic approach to map the crosstalk between miRNA and metabolomics suggests involvement of specific molecular and metabolic pathways in cALD and offers opportunity to understand the complex underlying mechanism of disease severity in cALD.


Assuntos
Adrenoleucodistrofia , MicroRNAs , Doenças Neurodegenerativas , Masculino , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Fenótipo , Metabolômica
2.
Mol Ther ; 32(7): 2190-2206, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796705

RESUMO

X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent ß-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dependovirus , Modelos Animais de Doenças , Edição de Genes , Terapia Genética , Animais , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/genética , Camundongos , Humanos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Adenina , Mutação , Fibroblastos/metabolismo , Ácidos Graxos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
3.
Mol Genet Metab ; 140(4): 107734, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979237

RESUMO

X-linked adrenoleukodystrophy (XALD) is the most common leukodystrophy. It has an estimated incidence of around 1/17.000, and a variable phenotype. Following the passage of Aidens Law, New York became the first state to implement a newborn screening for XALD in 2013. Since then, 38 American states, Taiwan, and the Netherlands have included XALD in their NBS program, and Japan and Italy have ongoing pilot studies. Screening for XALD allows for early, potentially lifesaving treatment of adrenal insufficiency and cerebral demyelination but is also a complex subject, due to our limited understanding of the natural history and lack of prognostic biomarkers. Screening protocols and algorithms vary between countries and states, and results and experiences gained so far are important for the future implementation of XALD NBS in other countries. In this review, we have examined the algorithms, methodologies, and outcomes used, as well as how common challenges are addressed in countries/states that have experience using NBS for XALD. We identified 14 peer-reviewed reports on NBS for XALD. All studies presented methods for detecting XALD at birth by NBS using a combination of mass spectrometry and ABCD1 gene sequencing. This has allowed for early surveillance of presymptomatic XALD patients, and the possibility for early detection and timely treatment of XALD manifestations. Obstacles to NBS for XALD include how to deal with variants of unknown significance, whether to screen females, and the ethical concerns of an NBS for a disease where we have limited understanding of natural history and phenotype/genotype correlation.


Assuntos
Insuficiência Adrenal , Adrenoleucodistrofia , Recém-Nascido , Feminino , Humanos , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Triagem Neonatal/métodos , Insuficiência Adrenal/diagnóstico , New York , Estudos de Associação Genética
4.
J Inherit Metab Dis ; 46(1): 116-128, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256460

RESUMO

Males with X-linked adrenoleukodystrophy (ALD) are at high risk for developing adrenal insufficiency and/or progressive leukodystrophy (cerebral ALD) at an early age. Pathogenic variants in ABCD1 result in elevated levels of very long-chain fatty acids (VLCFA), including C26:0-lysophosphatidylcholine (C26:0-LPC). Newborn screening for ALD enables prospective monitoring and timely therapeutic intervention, thereby preventing irreversible damage and saving lives. The Dutch Health Council recommended to screen only male newborns for ALD without identifying untreatable conditions associated with elevated C26:0-LPC, like Zellweger spectrum disorders and single peroxisomal enzyme defects. Here, we present the results of the SCAN (Screening for ALD in the Netherlands) study which is the first sex-specific newborn screening program worldwide. Males with ALD are identified based on elevated C26:0-LPC levels, the presence of one X-chromosome and a variant in ABCD1, in heel prick dried bloodspots. Screening of 71 208 newborns resulted in the identification of four boys with ALD who, following referral to the pediatric neurologist and confirmation of the diagnosis, enrolled in a long-term follow-up program. The results of this pilot show the feasibility of employing a boys-only screening algorithm that identifies males with ALD without identifying untreatable conditions. This approach will be of interest to countries that are considering ALD newborn screening but are reluctant to identify girls with ALD because for girls there is no direct health benefit. We also analyzed whether gestational age, sex, birth weight and age at heel prick blood sampling affect C26:0-LPC concentrations and demonstrate that these covariates have a minimal effect.


Assuntos
Insuficiência Adrenal , Adrenoleucodistrofia , Criança , Feminino , Humanos , Masculino , Recém-Nascido , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Triagem Neonatal/métodos , Estudos Prospectivos , Lisofosfatidilcolinas , Ácidos Graxos
5.
Mol Ther ; 30(1): 119-129, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34058389

RESUMO

Adrenoleukodystrophy (ALD) is caused by various pathogenic mutations in the X-linked ABCD1 gene, which lead to metabolically abnormal accumulations of very long-chain fatty acids in many organs. However, curative treatment of ALD has not yet been achieved. To treat ALD, we applied two different gene-editing strategies, base editing and homology-independent targeted integration (HITI), in ALD patient-derived fibroblasts. Next, we performed in vivo HITI-mediated gene editing using AAV9 vectors delivered via intravenous administration in the ALD model mice. We found that the ABCD1 mRNA level was significantly increased in HITI-treated mice, and the plasma levels of C24:0-LysoPC (lysophosphatidylcholine) and C26:0-LysoPC, sensitive diagnostic markers for ALD, were significantly reduced. These results suggest that HITI-mediated mutant gene rescue could be a promising therapeutic strategy for human ALD treatment.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Animais , Ácidos Graxos , Edição de Genes , Terapia Genética , Humanos , Camundongos
6.
Yi Chuan ; 44(10): 983-989, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384734

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited disease caused by a mutation in the adenosine 5'-triphosphate binding cassette subfamily D member 1 (ABCD1) gene encoding a peroxisomal transmembrane protein, which has various clinical manifestations and a rapid progression from initial symptoms to fatal inflammatory demyelination. Therefore, identification of early clinical symptoms and further early diagnosis as well as treatment can effectively prevent disease development. In this study, we reported the laboratory and radiographic features in a rare case of X-ALD with 3-year skin hyperpigmentation as the only manifestation. And the ABCD1 gene was sequenced for the patient and his parents by a high-throughput sequencing method. The results of laboratory examination showed adrenocortical hypofunction and increased serum concentrations of very long-chain fatty acids. Brain MRI showed no obvious abnormal signal shadow. A hemizygous mutation of c.521A>C was detected in the ABCD1 gene of the patient, and his mother has the same site heterozygous mutation. Therefore, this patient was diagnosed as "X-linked adrenoleukodystrophy". During the follow-up, adrenocortical hypothyroidism did not improve, and brain MRI showed few high-FLAIR signals in the white matter of the right radial corona and left parietal lobe, suggesting possible brain injury. X-ALD patients with only skin manifestations but no neurological abnormalities are easily neglected, but early diagnosis and early intervention are important ways to delay the progression of this disease. Therefore, genetic testing for early X-ALD is recommended in all male children patients with skin pigmentation as the sole clinical presentation and subsequent diagnosis of adrenal hypofunction.


Assuntos
Adrenoleucodistrofia , Hiperpigmentação , Criança , Humanos , Masculino , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/complicações , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Testes Genéticos , Hiperpigmentação/etiologia , Hiperpigmentação/genética , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos
7.
J Proteome Res ; 20(9): 4366-4380, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34383492

RESUMO

Mapping the network of proteins provides a powerful means to investigate the function of disease genes and to unravel the molecular basis of phenotypes. We present an automated informatics-aided and bioluminescence resonance energy transfer-based approach (iBRET) enabling high-confidence detection of protein-protein interactions in living mammalian cells. A screen of the ABCD1 protein, which is affected in X-linked adrenoleukodystrophy (X-ALD), against an organelle library of peroxisomal proteins demonstrated applicability of iBRET for large-scale experiments. We identified novel protein-protein interactions for ABCD1 (with ALDH3A2, DAO, ECI2, FAR1, PEX10, PEX13, PEX5, PXMP2, and PIPOX), mapped its position within the peroxisomal protein-protein interaction network, and determined that pathogenic missense variants in ABCD1 alter the interaction with selected binding partners. These findings provide mechanistic insights into pathophysiology of X-ALD and may foster the identification of new disease modifiers.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Informática , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transferência de Energia , Ácidos Graxos , Mutação
8.
J Neurosci Res ; 99(12): 3170-3181, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716609

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a phenotypically heterogeneous disorder involving defective peroxisomal ß-oxidation of very long-chain fatty acids (VLCFAs), due to mutation in the ABCD1 gene. X-ALD is the most common peroxisomal inborn error of metabolism and confers a high degree of morbidity and mortality. Remarkably, a subset of patients exhibit a cerebral form with inflammatory invasion of the central nervous system and extensive demyelination, while in others only dying-back axonopathy or even isolated adrenal insufficiency is seen, without genotype-phenotype correlation. X-ALD's biochemical signature is marked elevation of VLCFAs in blood, a finding that has been utilized for massive newborn screening for early diagnosis. Investigational gene therapy approaches hold promises for improved outcomes. However, the pathophysiological mechanisms of the disease remain poorly understood, limiting investigation of targeted therapeutic options. Animal models for the disease recapitulate the biochemical signature of VLCFA accumulation and demonstrate mitochondrially generated reactive oxygen species, oxidative damage, increased glial death, and axonal damage. Most strikingly, however, cerebral invasion of leukocytes and demyelination were not observed in any animal model for X-ALD, reflecting upon pathological processes that are yet to be discovered. This review summarizes the current disease models in animals, the lessons learned from these models, and the gaps that remained to be filled in order to assist in therapeutic investigations for ALD.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Humanos , Neurobiologia , Fenótipo
9.
J Inherit Metab Dis ; 44(5): 1174-1185, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33855724

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is the most common leukodystrophy. Despite intensive research in recent years, it remains unclear, what drives the different clinical disease courses. Due to this missing pathophysiological link, therapy for the childhood cerebral disease course of X-ALD (CCALD) remains symptomatic; the allogenic hematopoietic stem cell transplantation or hematopoietic stem-cell gene therapy is an option for early disease stages. The inclusion of dried blood spot (DBS) C26:0-lysophosphatidylcholine to newborn screening in an increasing number of countries is leading to an increasing number of X-ALD patients diagnosed at risk for CCALD. Current follow-up in asymptomatic boys with X-ALD requires repetitive cerebral MRIs under sedation. A reliable and easily accessible biomarker that predicts CCALD would therefore be of great value. Here we report the application of targeted metabolomics by AbsoluteIDQ p180-Kit from Biocrates to search for suitable biomarkers in X-ALD. LysoPC a C20:3 and lysoPC a C20:4 were identified as metabolites that indicate neuroinflammation after induction of experimental autoimmune encephalitis in the serum of Abcd1tm1Kds mice. Analysis of serum from X-ALD patients also revealed different concentrations of these lipids at different disease stages. Further studies in a larger cohort of X-ALD patient sera are needed to prove the diagnostic value of these lipids for use as early biomarkers for neuroinflammation in CCALD patients.


Assuntos
Adrenoleucodistrofia/diagnóstico , Lisofosfatidilcolinas/análise , Metabolômica/métodos , Triagem Neonatal/métodos , Doenças Neuroinflamatórias/etiologia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/fisiopatologia , Animais , Biomarcadores/sangue , Teste em Amostras de Sangue Seco , Encefalomielite Autoimune Experimental/sangue , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/sangue , Fosfolipídeos
10.
J Inherit Metab Dis ; 44(3): 718-727, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33332637

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a severe inherited metabolic disease with cerebral inflammatory demyelination and abnormal accumulation of very long chain fatty acid (VLCFA) in tissues, especially the brain. At present, bone marrow transplantation (BMT) at an early stage of the disease is the only effective treatment for halting disease progression, but the underlying mechanism of the treatment has remained unclear. Here, we transplanted GFP-expressing wild-type (WT) or Abcd1-deficient (KO) bone marrow cells into recipient KO mice, which enabled tracking of the donor GFP+ cells in the recipient mice. Both the WT and KO donor cells were equally distributed throughout the brain parenchyma, and displayed an Iba1-positive, GFAP- and Olig2-negative phenotype, indicating that most of the donor cells were engrafted as microglia-like cells. They constituted approximately 40% of the Iba1-positive cells. Unexpectedly, no decrease of VLCFA in the cerebrum was observed when WT bone marrow cells were transplanted into KO mice. Taken together, murine study suggests that bone marrow-derived microglia-like cells engrafted in the cerebrum of X-ALD patients suppress disease progression without evidently reducing the amount of VLCFA in the cerebrum.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/deficiência , Adrenoleucodistrofia/terapia , Transplante de Medula Óssea , Encéfalo/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo
11.
Adv Exp Med Biol ; 1299: 145-159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33417213

RESUMO

Drosophila melanogaster is the most successful genetic model organism to study different human disease with a recent increased popularity to study neurological disorders. Drosophila melanogaster has a complex yet well-defined brain with defined anatomical regions with specific functions. The neuronal network in the adult brain has a structural organization highly similar to human neurons, but in a brain that is much more amenable for complex analyses. The availability of sophisticated genetic tools to study neurons permits to examine neuronal functions at the single cell level in the whole brain by confocal imaging, which does not require sections. Thus, Drosophila has been used to successfully study many neurological disorders such as Parkinson's disease and has been recently adopted to understand the complex networks leading to neurological disorders with metabolic origins such as Leigh disease and X-linked adrenoleukodystrophy (X-ALD).In this review, we will describe the genetic tools available to study neuronal structures and functions and also illustrate some limitations of the system. Finally, we will report the experimental efforts that in the past 10 years have established Drosophila melanogaster as an excellent model organism to study neurodegenerative disorders focusing on X-ALD.


Assuntos
Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Modelos Genéticos , Animais , Humanos
12.
Am J Med Genet A ; 179(7): 1205-1213, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31074578

RESUMO

Minnesota became the fourth state to begin newborn screening (NBS) for X-linked adrenoleukodystrophy (X-ALD) in 2017. As there is limited retrospective data available on NBS for X-ALD, we analyzed Minnesota's NBS results from the first year of screening. C26:0 lysophosphatidylcholine (C26:0-LPC) screening results of 67,836 infants and confirmatory testing (ABCD1 gene and serum VLCFA analysis) for screen positives were obtained. Fourteen infants (nine males, five females) screened positive for X-ALD and all were subsequently confirmed to have X-ALD, with zero false positives. The birth prevalence of X-ALD in screened infants was 1 in 4,845 and 1 in 3,878 males, more than five times previous reported incidences. Pedigrees of affected infants were analyzed, and 17 male (mean age of 17) and 24 female relatives were subsequently diagnosed with X-ALD. Phenotypes of these family members included self-reported mild neuropathy symptoms in two males and seven females, and childhood cerebral disease (ccALD) and adrenal insufficiency in one male. We observed fewer cases of ccALD and adrenal insufficiency than expected in male family members (5.9% of males for both) compared to previous observations. Together, these findings suggest that the spectrum of X-ALD may be broader than previously described and that milder cases may previously have been underrepresented. Other challenges included a high frequency of variants of uncertain significance in ABCD1 and an inability to predict phenotypic severity. We posit that thoughtful planning to address these novel challenges and coordination by dedicated specialists will be imperative for successful implementation of population-based screening for X-ALD.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Insuficiência Adrenal/diagnóstico , Adrenoleucodistrofia/diagnóstico , Mutação , Triagem Neonatal , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Insuficiência Adrenal/complicações , Insuficiência Adrenal/epidemiologia , Insuficiência Adrenal/genética , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/epidemiologia , Adrenoleucodistrofia/genética , Adulto , Idoso , Criança , Pré-Escolar , Família , Ácidos Graxos/sangue , Feminino , Expressão Gênica , Humanos , Incidência , Lactente , Recém-Nascido , Lisofosfatidilcolinas/sangue , Masculino , Pessoa de Meia-Idade , Minnesota/epidemiologia , Linhagem , Fenótipo , Índice de Gravidade de Doença
13.
Eur J Neurol ; 26(2): 326-332, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30295399

RESUMO

BACKGROUND AND PURPOSE: The therapeutic scenario of X-linked adrenoleukodystrophy (X-ALD) is rapidly changing. Whereas the disease is well characterized in men, the condition remains to be fully clarified in women carrying ATP binding cassette subfamily D member 1 (ABCD1) variants. Specifically, data on clinical progression are needed, in order to recommend any appropriate management. The objective of this study was to outline the natural history of a cohort of untreated ABCD1 heterozygous female carriers. METHODS: Longitudinal data from a single-center population of 60 carriers were retrospectively reviewed. Demographics, anthropometrics, serum very long chain fatty acid (VLCFA) levels, clinical parameters and the Adult ALD Clinical Score (AACS) were collected from every recorded visit in a 7-year period and analyzed to define the phenotype modifications, to determine factors associated with clinical features, and to estimate the annual progression rate and the subsequent sample size for interventional trials. RESULTS: Thirty-two patients were eligible for the study, and 59.4% were symptomatic at baseline. Clinical severity worsens with age which increases risk of symptom onset, the cut-off of 41 years being crucial for phenoconversion. VLCFA levels were not predictive and did not change over time. Symptomatic carriers were followed up for 3.45 ± 2.1 years. The AACS increased at an annual rate of 0.24 points. The estimated sample size for 30% reduction in annual progression at 80% power was 272. CONCLUSIONS: This study provides data on the natural disease progression of untreated ABCD1 heterozygous female carriers, demonstrating the relevance of aging. The estimated annual increase of the AACS will be useful for future interventional studies.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/diagnóstico , Heterozigoto , Adrenoleucodistrofia/sangue , Adrenoleucodistrofia/genética , Adulto , Estudos de Coortes , Progressão da Doença , Ácidos Graxos/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos
14.
BMC Neurol ; 19(1): 227, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31526374

RESUMO

BACKGROUND: Adrenoleukodystrophy is a rare neurogenetic disease, AMN is the most common adult phenotype, such patients in China have not gotten enough attention. This article aims to study the features of AMN in Chinese patients and expand the gene spectrum of Chinese X-linked adrenoleukodystrophy (X-ALD) patients. METHODS: We applied clinical analysis, radiology, plasma levels of very long chain fatty acids (VLCFA) and genetic analysis to test the 6 Chinese AMN patients. RESULTS: All 6 patients are men. Ages of neurological symptom onset are distributed between 21 and 38. Sexual dysfunction occurred in 5 of 6 patients. Three patients had positive family history. Five patients had Addison's disease. Four patients were diagnosed as pure AMN, while the other two patients were with cerebral involvement. Four patients had abnormalities of nerve conduction studies. There were four patients with central conduction defects in somatosensory evoked potential tests. All 6 patients were found diffuse cord atrophy in spinal MRI. Brain MRI showed abnormal signals in 2 of the 6 tested patients, which indicated the clinical phenotypes. Plasma levels of VLCFA, as well as C24:0/C22:0 and C26:0/C22:0 ratios were elevated in 5 tested patients. Five different ABCD1 mutations were identified in 5 tested patients, one of which was a de novo mutation, and the other four have been reported previously. CONCLUSION: This research described the clinical, neuroimaging, biochemical, and genetic sides of Chinese AMN patients. A de novo mutation in the ABCD1 gene sequence was identified. Emotional trauma may trigger or aggravate the development of cerebral demyelination in AMN patients. Regular evaluation of brain MRI is important for AMN patients, especially for 'pure AMN' patients. When encountering patients with 'myeloneuropathy-only', neurologists should not ignore the tests of VLCFA or/and the ABCD1 gene.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Adrenoleucodistrofia/fisiopatologia , Adulto , China , Humanos , Masculino , Adulto Jovem
15.
Brain ; 140(12): 3139-3152, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136088

RESUMO

Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability of the blood-brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic resonance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased capillary flow heterogeneity in asymptomatic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow heterogeneity followed by blood-brain barrier permeability changes in the perilesional white matter, which predicts lesion progression. These white matter microvascular alterations normalize within 1 year after treatment with haematopoietic stem cell transplantation. For the first time in vivo, our studies unveil a model to assess how ABCD1 alters white matter microvascular function and explores its potential as an earlier biomarker for monitoring disease progression and response to treatment.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/diagnóstico por imagem , Microcirculação , Substância Branca/irrigação sanguínea , Adolescente , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Doenças Assintomáticas , Barreira Hematoencefálica/metabolismo , Estudos de Casos e Controles , Circulação Cerebrovascular , Criança , Pré-Escolar , Transplante de Células-Tronco Hematopoéticas , Hemizigoto , Humanos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Mutação , Permeabilidade , Substância Branca/diagnóstico por imagem , Adulto Jovem
16.
J Neurochem ; 138(1): 86-100, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26849413

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a progressive neurometabolic disease caused by mutations/deletions in the Abcd1 gene. Similar mutations/deletions in the Abcd1 gene often result in diagonally opposing phenotypes of mild adrenomyeloneuropathy and severe neuroinflammatory cerebral adrenoleukodystrophy (ALD), which suggests involvement of downstream modifier genes. We recently documented the first evidence of loss of AMP-activated protein kinase α1 (AMPKα1) in ALD patient-derived cells. Here, we report the novel loss of AMPKα1 in postmortem brain white matter of patients with ALD phenotype. Pharmacological activation of AMPK can rescue the mitochondrial dysfunction and inhibit the pro-inflammatory response. The FDA approved anti-diabetic drug Metformin, a well-known AMPK activator, induces mitochondrial biogenesis and is documented for its anti-inflammatory role. We observed a dose-dependent activation of AMPKα1 in metformin-treated X-ALD patient-derived fibroblasts. Metformin also induced mitochondrial oxidative phosphorylation and ATP levels in X-ALD patient-derived fibroblasts. Metformin treatment decreased very long chain fatty acid levels and pro-inflammatory cytokine gene expressions in X-ALD patient-derived cells. Abcd2 [adrenoleukodystrophy protein-related protein] levels were increased in metformin-treated X-ALD patient-derived fibroblasts and Abcd1-KO mice primary mixed glial cells. Abcd2 induction was AMPKα1-dependent since metformin failed to induce Abcd2 levels in AMPKα1-KO mice-derived primary mixed glial cells. In vivo metformin (100 mg/Kg) in drinking water for 60 days induced Abcd2 levels and mitochondrial oxidative phosphorylation protein levels in the brain and spinal cord of Abcd1-KO mice. Taken together, these results provide proof-of-principle for therapeutic potential of metformin as a useful strategy for correcting the metabolic and inflammatory derangements in X-ALD by targeting AMPK. There is no effective therapy for inherited peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD). We document the therapeutic potential of FDA approved drug, Metformin, for X-ALD by targeting AMPK. Metformin induced peroxisomal Abcd2 levels in vitro and in vivo. Metformin lowered VLCFA levels, improved mitochondrial function and ameliorated inflammatory gene expression in X-ALD patient-derived cells. Metformin-induced Abcd2 levels were dependent on AMPKα1, a metabolic and anti-inflammatory gene, recently documented by our laboratory to play a putative role in X-ALD pathology. Read the Editorial Highlight for this article on page 10.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/enzimologia , Adrenoleucodistrofia/patologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Subfamília D de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fatores de Tempo , Regulação para Cima/genética
17.
Biochem Cell Biol ; 94(3): 265-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27248780

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder caused by mutations in the ABCD1 gene, which encodes an ATP-binding cassette transporter protein, ALDP. The disease is characterized by increased concentrations of very long chain fatty acids (VLCFAs) in plasma, adrenal, testicular, and nerve tissues. For this study, our objective was to conduct clinical, molecular, and genetic studies of a Tunisian patient with X-ALD. The diagnosis was based on clinical indications, biochemical analyses, typical brain-scan patterns, and molecular biology; the molecular analyses were based on PCR, long-range PCR, and sequencing. The molecular analysis by long-range PCR and direct sequencing of the ABCD1 gene showed the presence of a de-novo 2794 bp deletion covering the whole of exon 2. Using bioinformatics tools, we demonstrate that the large deletion is located in a region rich with Alu sequences. Furthermore, we suggest that the AluJb sequence could be the cause of the large deletion of intron 1, exon 2, and intron 2, and the creation of a premature stop codon within exon 3. This report is the first report in which we demonstrate the breakpoints and the size of a large deletion in a Tunisian with X-ALD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adolescente , Adrenoleucodistrofia/etiologia , Códon de Terminação , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Linhagem , Deleção de Sequência
18.
Neuropathology ; 36(1): 64-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26227820

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder and is caused by ABCD1 mutations. A cerebello-brainstem dominant form that mainly involves the cerebellum and brainstem is summarized in a review of the literature, with autopsy-confirmed cases exceedingly rare. We report a 69-year-old White man who was diagnosed with this rare disorder and describe neuropathologic, ultrastructural and genetic analyses. He did not have adrenal insufficiency or a family history of X-ALD or Addison's disease. His initial symptom was temporary loss of eyesight at age 34 years. His major symptoms were chronic and progressive gait disorder, weakness in his lower extremities and spasticity, as well as autonomic failure and cerebellar ataxia suggesting possible multiple system atrophy (MSA). He also had seizures, hearing loss and sensory disturbances. His brain MRI showed no obvious atrophy or significant white matter pathology in cerebrum, brainstem or cerebellum. He died at age 69 years with a diagnosis of MSA. Microscopic analysis showed mild, patchy myelin rarefaction with perivascular clusters of PAS-positive, CD68-positive macrophages in the white matter most prominent in the cerebellum and occipital lobe, but also affecting the optic tract and internal capsule. Electron microscopy of cerebellar white matter showed cleft-like trilamellar cytoplasmic inclusions in macrophages typical of X-ALD, which prompted genetic analysis that revealed a novel ABCD1 mutation, p.R163G. Given the relatively mild pathological findings and long disease duration, it is likely that the observed pathology was the result of a slow and indolent disease process. We described a patient who had sporadic cerebello-brainstem dominant form of X-ALD with long clinical course, mild pathological findings, and an ABCD1 p.R163G substitution. We also review a total of 34 cases of adult-onset cerebello-brainstem dominant form of X-ALD. Although rare, X-ALD should be considered in the differential diagnosis of MSA.


Assuntos
Adrenoleucodistrofia/patologia , Tronco Encefálico/patologia , Cerebelo/patologia , Atrofia de Múltiplos Sistemas/patologia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Idoso , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Encéfalo/patologia , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação/genética
20.
Metab Brain Dis ; 30(6): 1439-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26260157

RESUMO

X-linked adrenoleukodystrophy is a common X-linked recessive peroxisomal disorder caused by the mutations in the ABCD1 gene. In this study, we analyzed 19 male patients and 9 female carriers with X-linked adrenoleukodystrophy in South China. By sequencing the ABCD1 gene, 13 different mutations were identified, including 7 novel mutations, and 6 known mutations, and 1 reported polymorphism. Mutation c.1180delG was demonstrated to be de novo mutation. 26.3 % (5/19) patients carried the deletion c.1415_16delAG, which may be the mutational hot spot in South China population. In addition, 73.7 % (14/19) patients were type of childhood cerebral adrenoleukodystrophy, 26.3 %(5/19) were in Addison only. Half of the childhood cerebral adrenoleukodystrophy patients had the adrenocortical insufficiency preceded the onset of neurological symptoms. Furthermore, 5 of 19 cases underwent hematopoietic stem cell transplantation. Our data showed that hematopoietic stem cell transplantation performed at an advanced stage of the cerebral X- linked adrenoleukodystrophy would accelerate the progression of the disease. Good clinical outcome achieved when hematopoietic stem cell transplantation performed at the very early stage of the disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia , Povo Asiático/genética , Encéfalo/patologia , Transplante de Células-Tronco Hematopoéticas , Mutação , Neuroimagem , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Insuficiência Adrenal/etiologia , Insuficiência Adrenal/genética , Hormônio Adrenocorticotrópico/sangue , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Adrenoleucodistrofia/terapia , Adulto , Pré-Escolar , China , Progressão da Doença , Ácidos Graxos/metabolismo , Feminino , Deleção de Genes , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/genética , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA