Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(4): e105202, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33410511

RESUMO

Cytotoxic necrotizing factors (CNFs) are bacterial single-chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three-dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full-length Yersinia pseudotuberculosis CNFY . CNFY consists of five domains (D1-D5), and by integrating structural and functional data, we demonstrate that D1-3 act as export and translocation module for the catalytic unit (D4-5) and for a fused ß-lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP-ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4-5 fragment. This liberates D5 from a semi-blocked conformation in full-length CNFY , leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad-specificity protein delivery tool.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Carcinoma de Células Escamosas/patologia , Citosol/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Neoplasias Laríngeas/patologia , Yersinia pseudotuberculosis/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Transporte Biológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiologia , Cristalização , Cristalografia por Raios X , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/microbiologia , Conformação Proteica , Células Tumorais Cultivadas
2.
Int J Mol Sci ; 22(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34639169

RESUMO

Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.


Assuntos
ADP-Ribosilação , Neoplasias/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Processamento de Proteína Pós-Traducional , Animais , Humanos , Neoplasias/metabolismo
3.
Crit Rev Biochem Mol Biol ; 53(1): 64-82, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098880

RESUMO

Proper and timely regulation of cellular processes is fundamental to the overall health and viability of organisms across all kingdoms of life. Thus, organisms have evolved multiple highly dynamic and complex biochemical signaling cascades in order to adapt and survive diverse challenges. One such method of conferring rapid adaptation is the addition or removal of reversible modifications of different chemical groups onto macromolecules which in turn induce the appropriate downstream outcome. ADP-ribosylation, the addition of ADP-ribose (ADPr) groups, represents one of these highly conserved signaling chemicals. Herein we outline the writers, erasers and readers of ADP-ribosylation and dip into the multitude of cellular processes they have been implicated in. We also review what we currently know on how specificity of activity is ensured for this important modification.


Assuntos
ADP-Ribosilação , ADP Ribose Transferases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Dano ao DNA , Humanos , Transdução de Sinais
4.
Microbiology (Reading) ; 166(8): 785-793, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579098

RESUMO

Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104), S. enterica subspecies enterica serovar Worthington (S. Worthington) and S. bongori produce ArtA and ArtB (ArtAB) toxin homologues, which catalyse ADP-ribosylation of pertussis toxin-sensitive G protein. ArtAB gene (artAB) is encoded on prophage in DT104 and its expression is induced by mitomycin C (MTC) and hydrogen peroxide (H2O2) that trigger the bacterial SOS response. Although the genetic regulatory mechanism associated with artAB expression is not characterized, it is thought to be associated with prophage induction, which occurs when the RecA-mediated SOS response is triggered. Here we show that subinhibitory concentration of quinolone antibiotics that are SOS-inducing agents, also induce ArtAB production in these Salmonella strains. Both MTC and fluoroquinolone antibiotics such as enrofloxacin-induced artA and recA transcription and artAB-encoding prophage (ArtAB-prophage) in DT104 and S. Worthington. However, in S. bongori, which harbours artAB genes on incomplete prophage, artA transcription was induced by MTC and enrofloxacin, but prophage induction was not observed. Taken together, these results suggest that SOS response followed by induction of artAB transcription is essential for ArtAB production. H2O2-mediated induction of ArtAB prophage and efficient production of ArtAB was observed in DT104 but not in S. Worthington and S. bongori. Therefore, induction of artAB expression with H2O2 is strain-specific, and the mode of action of H2O2 as an SOS-inducing agent might be different from those of MTC and quinolone antibiotics.


Assuntos
ADP Ribose Transferases/genética , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Resposta SOS em Genética/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Salmonella/efeitos dos fármacos , ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitomicina/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/genética , Quinolonas/farmacologia , Recombinases Rec A/genética , Resposta SOS em Genética/genética , Salmonella/genética , Fagos de Salmonella/efeitos dos fármacos , Fagos de Salmonella/genética , Salmonella enterica/genética , Especificidade da Espécie , Transcrição Gênica/efeitos dos fármacos
5.
Arch Biochem Biophys ; 680: 108226, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31843644

RESUMO

SIRT7, an epigenetic modulator is related to several important cellular processes like aging, genome stability, and metabolism. The mechanistic and regulatory aspect of this enzyme needs to be explored. SIRT7 contains a conserved catalytic core with long flanking N- and C-terminal extensions. We find that the N terminus is involved in substrate binding, thus also in its dual enzyme activity i.e. deacetylation and ADP ribosylation. The C-terminus is not essential for its catalysis. Mutation of certain residues at the active site suggests that mono ADP-ribosylation and deacetylation are two distinct activities of SIRT7. In this study, we also find that the SIRT7 enzyme can specifically transfer a single moiety of ADP ribose on other nuclear proteins, with a preference for NAD+. For this, the ADPr transfer follows the enzymatic reaction mechanism. Nicotinamide and certain metal ions have a significant negative effect on this mono ADP ribosylation process. A comparison of these dual activities suggests SIRT7's preference for the mono ADPr transfer over its deacetylation of H3K18Ac. Mono ADP ribosylation in cells is often linked to different metabolic disease conditions. This kind of modification of transcription factors, p53 and ELK4 by SIRT7 may play a key role in maintaining the tumor phenotype. Thus, SIRT7 becomes an important therapeutic hotspot for drug designing against several diseases. Finally, we can also relate SIRT7 to the DNA repair process through ADP ribosylation of one of its key players, PARP1. Here, SIRT7 positively regulates the PARP1 activity.


Assuntos
ADP-Ribosilação , Sirtuínas/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Difosfato de Adenosina/metabolismo , Domínio Catalítico , Histonas/metabolismo , Humanos , NAD/metabolismo , Mapas de Interação de Proteínas , Sirtuínas/química
6.
Bioorg Med Chem Lett ; 28(11): 2050-2054, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29748053

RESUMO

A series of diaryl ethers were designed and synthesized to discern the structure activity relationships against the two closely related mono-(ADP-ribosyl)transferases PARP10 and PARP14. Structure activity studies identified 8b as a sub-micromolar inhibitor of PARP10 with ∼15-fold selectivity over PARP14. In addition, 8k and 8m were discovered to have sub-micromolar potency against PARP14 and demonstrated moderate selectivity over PARP10. A crystal structure of the complex of PARP14 and 8b shows binding of the compound in a novel hydrophobic pocket and explains both potency and selectivity over other PARP family members. In addition, 8b, 8k and 8m also demonstrate selectivity over PARP1. Together, this study identified novel, potent and metabolically stable derivatives to use as chemical probes for these biologically interesting therapeutic targets.


Assuntos
Amidas/farmacologia , Desenho de Fármacos , Éteres/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Relação Dose-Resposta a Droga , Éteres/síntese química , Éteres/química , Humanos , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 27(13): 2907-2911, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495083

RESUMO

A series of (Z)-4-(3-carbamoylphenylamino)-4-oxobut-2-enyl amides were synthesized and tested for their ability to inhibit the mono-(ADP-ribosyl)transferase, PARP14 (a.k.a. BAL-2; ARTD-8). Two synthetic routes were established for this series and several compounds were identified as sub-micromolar inhibitors of PARP14, the most potent of which was compound 4t, IC50=160nM. Furthermore, profiling other members of this series identified compounds with >20-fold selectivity over PARP5a/TNKS1, and modest selectivity over PARP10, a closely related mono-(ADP-ribosyl)transferase.


Assuntos
Desenho de Fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade
8.
Methods Mol Biol ; 2609: 75-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515830

RESUMO

ADP-ribosylation (ADPRylation) is a reversible posttranslational modification resulting in the covalent attachment of ADP-ribose (ADPR) moieties on substrate proteins. Naturally occurring protein motifs and domains, including WWEs, PBZs (PAR binding zinc fingers), and macrodomains, act as "readers" for protein-linked ADPR. Although recombinant, antibody-like ADPR detection reagents containing these readers have facilitated the detection of ADPR, they are limited in their ability to capture the dynamic nature of ADPRylation. Herein, we describe the preparation and use of poly(ADP-ribose) (PAR) Trackers (PAR-Ts)-optimized dimerization-dependent or split-protein reassembly PAR sensors containing a naturally occurring PAR binding domain fused to both halves of dimerization-dependent GFP (ddGFP) or split nano luciferase (NanoLuc), respectively. We also describe how these tools can be used for the detection and quantification of PAR levels in biochemical assays with extracts and in living cells. These protocols will allow users to explore the broad utility of PAR-Ts for detecting PAR in various experimental and biological systems.


Assuntos
Poli Adenosina Difosfato Ribose , Ribose , Poli Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/química , ADP-Ribosilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo
9.
Plant Sci ; 323: 111398, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35917976

RESUMO

The roles of sirtuins in plants are slowly unraveling. Regarding OsSRT1, there are only reports of its H3K9Ac deacetylation. Here we detect the other lysine deacetylation sites in histones, H3 and H4. Further, our studies shed light on its dual enzyme capability with preference for mono ADP ribosylation over deacetylation. OsSRT1 can specifically transfer the single ADP ribose group on its substrates in an enzymatic manner. This mono ADPr effect is not well known in plants, more so for deacetylases. The products of this reaction (NAM and ADP ribose) have a negative effect on this enzyme's action suggesting a tighter regulation. Resveratrol, a natural plant polyphenol proves to be a good activator of this enzyme at 150 ±â€¯40 µM concentration. Under different abiotic stress conditions, we could link this ADP ribosylase activity to the DNA damage repair (DDR) pathway by activating the enzyme PARP1. There is also evidence of OsSRT1's interaction with the components of DDR machinery. Changes in the extent of different histone deacetylation by OsSRT1 is also related with these stress conditions. Metal stress in plants also influences these enzyme activities. Structurally there is a long C-terminal domain in OsSRT1 in comparison to other classes of plant sirtuins, which is required for its catalysis.


Assuntos
Sirtuínas , Adenosina Difosfato Ribose/metabolismo , Catálise , Reparo do DNA , Histonas/metabolismo , Sirtuínas/metabolismo
10.
Curr Res Microb Sci ; 3: 100142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909599

RESUMO

The physiological role of mono-ADP-ribosyl transferase (Arr) of Mycobacterium smegmatis, which inactivates rifampicin, remains unclear. An earlier study reported increased expression of arr during oxidative stress and DNA damage. This suggested a role for Arr in the oxidative status of the cell and its associated effect on DNA damage. Since reactive oxygen species (ROS) influence oxidative status, we investigated whether Arr affected ROS levels in M. smegmatis. Significantly elevated levels of superoxide and hydroxyl radical were found in the mid-log phase (MLP) cultures of the arr knockout strain (arr-KO) as compared those in the wild-type strain (WT). Complementation of arr-KO with expression from genomically integrated arr under its native promoter restored the levels of ROS equivalent to that in WT. Due to the inherently high ROS levels in the actively growing arr-KO, rifampicin resisters with rpoB mutations could be selected at 0 hr of exposure itself against rifampicin, unlike in the WT where the resisters emerged at 12th hr of rifampicin exposure. Microarray analysis of the actively growing cultures of arr-KO revealed significantly high levels of expression of genes from succinate dehydrogenase I and NADH dehydrogenase I operons, which would have contributed to the increased superoxide levels. In parallel, expression of specific DNA repair genes was significantly decreased, favouring retention of the mutations inflicted by the ROS. Expression of several metabolic pathway genes also was significantly altered. These observations revealed that Arr was required for maintaining a gene expression profile that would provide optimum levels of ROS and DNA repair system in the actively growing M. smegmatis.

11.
Comput Struct Biotechnol J ; 19: 2366-2383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025930

RESUMO

ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.

12.
AMB Express ; 11(1): 173, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936047

RESUMO

This work explores the ADP-ribosyltransferase activity of Pseudomonas (P.) aeruginosa exotoxin A using the guanyl hydrazone derivative, nitrobenzylidine aminoguanidine (NBAG) and the impact of gamma radiation on its efficacy. Unlike the conventional detection methods, NBAG was used as the acceptor of ADP ribose moiety instead of wheat germ extract elongation factor 2. Exotoxin A was extracted from P. aeruginosa clinical isolates and screened for toxA gene using standard PCR. NBAG was synthesized using aminoguanidine bicarbonate and 4-nitrobenzaldehyde and its identity has been confirmed by UV, FTIR, Mass and 13C-NMR spectroscopy. The ADP-ribosyl transferase activity of exotoxin A on NBAG in the presence of Nicotinamide adenine dinucleotide (NAD+) was recorded using UV spectroscopy and HPLC. In vitro ADP-ribosyl transferase activity of exotoxin A protein extract was also explored by monitoring its cytotoxicity on Hep-2 cells using sulforhodamine B cytotoxicity assay. Bacterial broths were irradiated at 5, 10, 15, 24 Gy and exotoxin A protein extract activity were assessed post exposure. Exotoxin A extract exerted an ADP-ribosyltransferase ability which was depicted by the appearance of a new ʎmax after the addition of exotoxin A to NBAG/NAD+ mixture, fragmentation of NAD+ and development of new peaks in HPLC chromatograms. Intracellular enzyme activity was confirmed by the prominent cytotoxic effects of exotoxin A extract on cultured cells. In conclusion, the activity of Exotoxin A can be monitored via its ADP-ribosyltransferase activity and low doses of gamma radiation reduced its activity. Therefore, coupling radiotherapy with exotoxin A in cancer therapy should be carefully monitored.

13.
Cells ; 10(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440786

RESUMO

Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.


Assuntos
ADP-Ribosilação , Doença , Enzimas/metabolismo , NAD/metabolismo , Animais , Vias Biossintéticas , Humanos , Sirtuínas/metabolismo
14.
Cells ; 10(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546365

RESUMO

Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation (PARylation) in cellular pathways, such as DNA repair and transcription, is well studied, the role of MARylation and MARTs (i.e., the PARP 'monoenzymes') are not well understood. Moreover, compared to PARPs, the development of MART-targeted therapeutics is in its infancy. Recent studies are beginning to shed light on the structural features, catalytic targets, and biological functions of MARTs. The development of new technologies to study MARTs have uncovered essential roles for these enzymes in the regulation of cellular processes, such as RNA metabolism, cellular transport, focal adhesion, and stress responses. These insights have increased our understanding of the biological functions of MARTs in cancers, neuronal development, and immune responses. Furthermore, several novel inhibitors of MARTs have been developed and are nearing clinical utility. In this review, we summarize the biological functions and molecular mechanisms of MARTs and MARylation, as well as recent advances in technology that have enabled detection and inhibition of their activity. We emphasize PARP-7, which is at the forefront of the MART subfamily with respect to understanding its biological roles and the development of therapeutically useful inhibitors. Collectively, the available studies reveal a growing understanding of the biochemistry, chemical biology, physiology, and pathology of MARTs.


Assuntos
ADP-Ribosilação/genética , Citosol/metabolismo , Poli ADP Ribosilação/genética , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional/genética , Humanos
15.
Biochem Pharmacol ; 167: 13-26, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31176616

RESUMO

ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules controlling major biological processes as diverse as DNA damage repair, transcriptional regulation, intracellular transport, immune and stress responses, cell survival and proliferation. Furthermore, enzymatic reactions of ADPr are central in the pathogenesis of many human diseases, including infectious conditions. By providing a review of ADPr signalling in bacterial systems, we highlight the relevance of this chemical modification in the pathogenesis of human diseases depending on host-pathogen interactions. The post-antibiotic era has raised the need to find alternative approaches to antibiotic administration, as major pathogens becoming resistant to antibiotics. An in-depth understanding of ADPr reactions provides the rationale for designing novel antimicrobial strategies for treatment of infectious diseases. In addition, the understanding of mechanisms of ADPr by bacterial virulence factors offers important hints to improve our knowledge on cellular processes regulated by eukaryotic homologous enzymes, which are often involved in the pathogenesis of human diseases.


Assuntos
ADP-Ribosilação/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Endotoxinas/antagonistas & inibidores , ADP-Ribosilação/fisiologia , Animais , Anti-Infecciosos/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Endotoxinas/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA