Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Transl Immunology ; 11(1): e1360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035955

RESUMO

OBJECTIVES: We previously described the Phase I-II evaluation of SARS-CoV-2 recombinant protein candidate vaccine, CoV2-PreS-dTM, with AF03- or AS03-adjuvant systems (ClinicalTrials.gov, NCT04537208). Here, we further characterise the cellular immunogenicity profile of this vaccine candidate using a whole-blood secretion assay in parallel to intracellular cytokine staining (ICS) of cryopreserved peripheral blood mononuclear cells (PBMCs). METHODS: A randomly allocated subset of 90 healthy, SARS-CoV-2-seronegative adults aged ≥ 18 years who had received (random allocation) one or two separate injections (on study day [D]1 and D22) of saline placebo or CoV2-PreS-dTM formulated with AS03 or AF03 were included. Cytokine secretion was assessed using a TruCulture® whole-blood stimulation system in combination with multiplex bead array, and intracellular cytokine profiles were evaluated on thawed PBMCs following ex vivo stimulation with recombinant S protein at pre-vaccination (D1), post-dose 1 (D22) and post-dose 2 (D36). RESULTS: Both methods detected similar vaccine-induced responses after the first and second doses. We observed a Th1 bias (Th1/Th2 ratio > 1.0) for most treatment groups when analysed in whole blood, mainly characterised by increased IFN-γ, IL-2 and TNF-α secretion. Among participants aged ≥ 50 years, the Th1/Th2 ratio was higher for those who received vaccine candidate with AS03 versus AF03 adjuvant. ICS revealed that this higher Th1/Th2 ratio resulted from higher levels of IFN-γ expression and that the vaccine induced polyfunctional CD4+ T cells. CONCLUSIONS: The whole-blood cytokine secretion assay is a high-throughput alternative for assessing the quantity and character of vaccine-induced cellular responses.

2.
Vaccine ; 37(42): 6208-6220, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31493950

RESUMO

Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need. We previously developed a next-generation influenza vaccine that displays the trimeric influenza hemagglutinin (HA) on a ferritin nanoparticle (NP) to optimize its presentation. Similar to other vaccines, HA-nanoparticle vaccine efficacy is increased by the inclusion of adjuvants during immunization. To identify the optimal adjuvants to enhance influenza immunity, we systematically analyzed TLR agonists for their ability to elicit immune responses. HA-NPs were compatible with nearly all adjuvants tested, including TLR2, TLR4, TLR7/8, and TLR9 agonists, squalene oil-in-water mixtures, and STING agonists. In addition, we chemically conjugated TLR7/8 and TLR9 ligands directly to the HA-ferritin nanoparticle. These TLR agonist-conjugated nanoparticles induced stronger antibody responses than nanoparticles alone, which allowed the use of a 5000-fold-lower dose of adjuvant than traditional admixtures. One candidate, the oil-in-water adjuvant AF03, was also tested in non-human primates and showed strong induction of neutralizing responses against both matched and heterologous H1N1 viruses. These data suggest that AF03, along with certain TLR agonists, enhance strong neutralizing antibody responses following influenza vaccination and may improve the breadth, potency, and ultimately vaccine protection in humans.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Neutralizantes/imunologia , Vacinas contra Influenza/imunologia , Adjuvantes Imunológicos/química , Animais , Feminino , Células HEK293 , Testes de Inibição da Hemaglutinação , Hemaglutininas , Humanos , Macaca mulatta , Camundongos Endogâmicos BALB C , Nanopartículas , Receptores Toll-Like/agonistas
3.
Methods Mol Biol ; 1494: 165-180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27718193

RESUMO

Emulsion adjuvants for human vaccines have evolved gradually over the last century. Current formulations are the result of many refinements to their composition and manufacturing, as well as optimization for safety and efficacy. Squalene has emerged as being particularly suitable for the manufacturing of safe oil-in-water (O/W) adjuvants for parenteral applications due to its biocompatibility and ability to be metabolized. Emulsion particle size has been identified as an important parameter affecting the pharmaceutical performance of O/W emulsion adjuvants. Submicronic emulsions with sizes in the 80-200 nm range are preferred for potency, manufacturing consistency, and stability reasons. Two manufacturing processes, high pressure homogenization (HPH or microfluidization) and a phase inversion temperature method (PIT), are described to yield such fine and long-term stable emulsion adjuvants.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/síntese química , Emulsões , Óleos/química , Tamanho da Partícula , Água/química
4.
Int J Pharm ; 486(1-2): 99-111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25794609

RESUMO

We describe the development, analytical characterization, stability and preclinical efficacy of AF04, a combination adjuvant comprising the synthetic toll-like receptor 4 (TLR4) agonist, E6020, formulated in AF03, a thermoreversible squalene emulsion. By using AF04 with the recombinant major outer membrane protein of Chlamydia trachomatis (Ct-MOMP) and with the recombinant surface glycoprotein gB from human cytomegalovirus (CMV-gB) as model antigens, we show that AF03 and E6020 can synergize to augment specific antibody and Th-1 cellular immune responses in mice. In terms of formulation, we observe that the method used to incorporate E6020 into AF03 affects its partition between the oil and water phases of the emulsion which in turn has a significant impact on the tolerability (IV pyrogenicity test in rabbits) of this novel adjuvant combination.


Assuntos
Adjuvantes Imunológicos , Proteínas da Membrana Bacteriana Externa/imunologia , Esqualeno , Receptor 4 Toll-Like/agonistas , Vacinas , Proteínas Virais/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Antígenos de Bactérias/imunologia , Antígenos Virais/imunologia , Linhagem Celular , Chlamydia trachomatis , Citocinas/imunologia , Citomegalovirus , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Desenho de Fármacos , Emulsões , Feminino , Glicoproteínas/imunologia , Humanos , Imunoglobulina G/sangue , Leucócitos Mononucleares , Camundongos Endogâmicos C57BL , Coelhos , Esqualeno/química , Esqualeno/farmacologia , Vacinas/química , Vacinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA