Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
FASEB J ; 38(7): e23574, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551804

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) is a key enzyme in the activation of both classic and 11-oxygenated androgens. In adipose tissue, AKR1C3 is co-expressed with 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1), which catalyzes not only the local activation of glucocorticoids but also the inactivation of 11-oxygenated androgens, and thus has the potential to counteract AKR1C3. Using a combination of in vitro assays and in silico modeling we show that HSD11B1 attenuates the biosynthesis of the potent 11-oxygenated androgen, 11-ketotestosterone (11KT), by AKR1C3. Employing ex vivo incubations of human female adipose tissue samples we show that inhibition of HSD11B1 results in the increased peripheral biosynthesis of 11KT. Moreover, circulating 11KT increased 2-3 fold in individuals with type 2 diabetes after receiving the selective oral HSD11B1 inhibitor AZD4017 for 35 days, thus confirming that HSD11B1 inhibition results in systemic increases in 11KT concentrations. Our findings show that HSD11B1 protects against excess 11KT production by adipose tissue, a finding of particular significance when considering the evidence for adverse metabolic effects of androgens in women. Therefore, when targeting glucocorticoid activation by HSD11B1 inhibitor treatment in women, the consequently increased generation of 11KT may offset beneficial effects of decreased glucocorticoid activation.


Assuntos
Androgênios , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Androgênios/metabolismo , Glucocorticoides , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Tecido Adiposo/metabolismo
2.
Int J Cancer ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243400

RESUMO

AST-3424 is a novel and highly tumor-selective prodrug. AST-3424 is activated by AKR1C3 to release a toxic bis-alkylating moiety, AST 2660. In this study, we have investigated the essential role of DNA repair in AST-3424 mediated pharmacological activities in vitro and in vivo. We show here that AST-3424 is effective as a single therapeutic agent against cancer cells to induce cytotoxicity, DNA damage, apoptosis and cell cycle arrest at G2 phase in a dose- and AKR1C3-dependent manner in both p53-proficient H460 (RRID:CVCL_0459) and p53-deficient HT-29 cells (RRID:CVCL_0320). The combination of abrogators of G2 checkpoint with AST-3424 was only synergistic in HT-29 but not in H460 cells. The enhanced activity of AST-3424 in HT-29 cells was due to impaired DNA repair ability via the attenuation of cell cycle G2 arrest and reduced RAD51 expression. Furthermore, we utilized a BRCA2 deficient cell line and two PDX models with BRCA deleterious mutations to study the increased activity of AST-3424. The results showed that AST-3424 exhibited enhanced in vitro cytotoxicity and superior and durable in vivo anti-tumor effects in cells deficient of DNA repair protein BRCA2. In summary, we report here that when DNA repair capacity is reduced, the in vitro and in vivo activity of AST-3424 can be further enhanced, thus providing supporting evidence for the further evaluation of AST-3424 in the clinic.

3.
Apoptosis ; 29(9-10): 1429-1453, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39023830

RESUMO

The enzyme AKR1C3 plays a crucial role in hormone and drug metabolism and is associated with abnormal expression in liver cancer, leading to tumor progression and poor prognosis. Nanoparticles modified with HSA can modulate the tumor microenvironment by enhancing photodynamic therapy to induce apoptosis in tumor cells and alleviate hypoxia. Therefore, exploring the potential regulatory mechanisms of resveratrol on AKR1C3 through the construction of HSA-RSV NPs carriers holds significant theoretical and clinical implications for the treatment of liver cancer. The aim of this study is to investigate the targeted regulation of AKR1C3 expression through the loading of resveratrol (RSV) on nanomaterials HSA-RSV NPs (Nanoparticles) in order to alleviate tumor hypoxia and inhibit the progression of hepatocellular carcinoma (HCC), and to explore its molecular mechanism. PubChem database and PharmMapper server were used to screen the target genes of RSV. HCC-related differentially expressed genes (DEGs) were analyzed through the GEO dataset, and relevant genes were retrieved from the GeneCards database, resulting in the intersection of the three to obtain candidate DEGs. GO and KEGG enrichment analyses were performed on the candidate DEGs to analyze the potential cellular functions and molecular signaling pathways affected by the main target genes. The cytohubba plugin was used to screen the top 10 target genes ranked by Degree and further intersected the results of LASSO and Random Forest (RF) to obtain hub genes. The expression analysis of hub genes and the prediction of malignant tumor prognosis were conducted. Furthermore, a pharmacophore model was constructed using PharmMapper. Molecular docking simulations were performed using AutoDockTools 1.5.6 software, and ROC curve analysis was performed to determine the core target. In vitro cell experiments were carried out by selecting appropriate HCC cell lines, treating HCC cells with different concentrations of RSV, or silencing or overexpressing AKR1C3 using lentivirus. CCK-8, clone formation, flow cytometry, scratch experiment, and Transwell were used to measure cancer cell viability, proliferation, migration, invasion, and apoptosis, respectively. Cellular oxygen consumption rate was analyzed using the Seahorse XF24 analyzer. HSA-RSV NPs were prepared, and their characterization and cytotoxicity were evaluated. The biological functional changes of HCC cells after treatment were detected. An HCC subcutaneous xenograft model was established in mice using HepG2 cell lines. HSA-RSV NPs were injected via the tail vein, with a control group set, to observe changes in tumor growth, tumor targeting of NPs, and biological safety. TUNEL, Ki67, and APC-hypoxia probe staining were performed on excised tumor tissue to detect tumor cell proliferation, apoptosis, and hypoxia. Lentivirus was used to silence or overexpress AKR1C3 simultaneously with the injection of HSA-RSV NPs via the tail vein to assess the impact of AKR1C3 on the regulation of HSA-RSV NPs in HCC progression. Bioinformatics analysis revealed that AKR1C3 is an important target gene involved in the regulation of HCC by RSV, which is associated with the prognosis of HCC patients and upregulated in expression. In vitro cell experiments showed that RSV significantly inhibits the respiratory metabolism of HCC cells, suppressing their proliferation, migration, and invasion and promoting apoptosis. Silencing AKR1C3 further enhances the toxicity of RSV towards HCC cells. The characterization and cytotoxicity experiments of nanomaterials demonstrated the successful construction of HSA-RSV NPs, which exhibited stronger inhibitory effects on HCC cells. In vivo, animal experiments further confirmed that targeted downregulation of AKR1C3 by HSA-RSV NPs suppresses the progression of HCC and tumor hypoxia while exhibiting tumor targeting and biological safety. Targeted downregulation of AKR1C3 by HSA-RSV NPs can alleviate HCC tumor hypoxia and inhibit the progression of HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular , Neoplasias Hepáticas , Resveratrol , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Resveratrol/farmacologia , Resveratrol/química , Resveratrol/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Nanopartículas/química , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação para Baixo/efeitos dos fármacos , Progressão da Doença , Células Hep G2 , Simulação de Acoplamento Molecular , Nanoestruturas/química , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química
4.
Biopharm Drug Dispos ; 45(2): 83-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492211

RESUMO

AST-001 is a chemically synthesized inactive nitrogen mustard prodrug that is selectively cleaved to a cytotoxic aziridine (AST-2660) via aldo-keto reductase family 1 member C3 (AKR1C3). The purpose of this study was to investigate the pharmacokinetics and tissue distribution of the prodrug, AST-001, and its active metabolite, AST-2660, in mice, rats, and monkeys. After single and once daily intravenous bolus doses of 1.5, 4.5, and 13.5 mg/kg AST-001 to Sprague-Dawley rats and once daily 1 h intravenous infusions of 0.5, 1.5, and 4.5 mg/kg AST-001 to cynomolgus monkeys, AST-001 exhibited dose-dependent pharmacokinetics and reached peak plasma levels at the end of the infusion. No significant accumulation and gender differences were observed after 7 days of repeated dosing. In rats, the half-life of AST-001 was dose independent and ranged from 4.89 to 5.75 h. In cynomolgus monkeys, the half-life of AST-001 was from 1.66 to 5.56 h and increased with dose. In tissue distribution studies conducted in Sprague-Dawley rats and in liver cancer PDX models in female athymic nude mice implanted with LI6643 or LI6280 HepG2-GFP tumor fragments, AST-001 was extensively distributed to selected tissues. Following a single intravenous dose, AST-001 was not excreted primarily as the prodrug, AST-001 or the metabolite AST-2660 in the urine, feces, and bile. A comprehensive analysis of the preclinical data and inter-species allometric scaling were used to estimate the pharmacokinetic parameters of AST-001 in humans and led to the recommendation of a starting dose of 5 mg/m2 in the first-in-human dose escalation study.


Assuntos
Compostos de Mostarda Nitrogenada , Pró-Fármacos , Animais , Feminino , Camundongos , Ratos , Membro C3 da Família 1 de alfa-Ceto Redutase/efeitos dos fármacos , Macaca fascicularis , Camundongos Nus , Ratos Sprague-Dawley , Compostos de Mostarda Nitrogenada/farmacocinética , Aziridinas/farmacocinética , Relação Dose-Resposta a Droga
5.
Drug Dev Res ; 85(1): e22142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349266

RESUMO

Thyroid cancer is a highly differentiated and poorly malignant tumor. Interfering with glycolysis has become an effective means of controlling cancer progression and autophagy is negatively correlated with glycolysis. Aldo-keto reductase family 1 member C3 (AKR1C3) has been demonstrated to be highly expressed in thyroid cancer tissue and the higher AKR1C3 expression predicted the worse prognosis. We aimed to explore whether AKR1C3 could affect thyroid cancer progression by regulating autophagy-dependent glycolysis. AKR1C3 expression in thyroid cancer cells was detected by western blot. Then, AKR1C3 was knocked down by transfection with short hairpin RNA specific to AKR1C3 in the absence or presence of 3-methyladenine (3-MA) or PMA treatment. Cell cycle and apoptosis was detected by flow cytometry. Immunofluorescence staining was used to analyze LC3B expression. Extracellular acidification, glucose uptake and lactic acid secretion were detected. To evaluate the tumorigenicity of AKR1C3 insufficiency on thyroid cancer in vivo, TPC-1 cells with AKR1C3 knockdown were injected subcutaneously into nude mice. Then, cyclinD1 and Ki67 expression in tumorous tissues was measured by immunohistochemical analysis. Apoptosis was assessed by terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. Additionally, the expression of proteins related to cell cycle, apoptosis, glycolysis, autophagy, and extracellular signal-regulated kinase (ERK) signaling in cells and tumor tissues was assessed by western blot. Highly expressed AKR1C3 was observed in thyroid cancer cells. AKR1C3 knockdown induced cell cycle arrest and apoptosis of TPC-1 cells. Besides, autophagy was activated and glycolysis was inhibited following AKR1C3 silencing, and 3-MA treatment restored the impacts of AKR1C3 silencing on glycolysis. The further experiments revealed that AKR1C3 insufficiency inhibited ERK signaling and PMA application reversed AKR1C3 silencing-induced autophagy in TPC-1 cells. The in vivo results suggested that AKR1C3 knockdown inhibited the development of subcutaneous TPC-1 tumors in nude mice and inactivated the ERK signaling. Collectively, AKR1C3 silencing inhibited autophagy-dependent glycolysis in thyroid cancer by inactivating ERK signaling.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias da Glândula Tireoide , Animais , Camundongos , Membro C3 da Família 1 de alfa-Ceto Redutase , Autofagia , Glicólise , Camundongos Nus , Neoplasias da Glândula Tireoide/genética , Humanos
6.
Mol Carcinog ; 62(6): 833-844, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36920042

RESUMO

AKR1C3 is frequently overexpressed and it is a validated therapeutic target in various tumors including hepatocellular carcinoma (HCC). Our previous study showed that AKR1C3 facilitated HCC proliferation and metastasis by forming a positive feedback loop of AKR1C3-NF-κB-STAT3. Ferroptosis is a form of iron-dependent cell death driven by iron-dependent accumulation of lipid reactive oxygen species and plays an important role in tumor suppression. However, little is known about the role of AKR1C3 in ferroptosis susceptibility. In this study, we found that knockdown of AKR1C3 potently enhanced the sensitivity of HCC cells to ferroptosis inducers both in vitro and in vivo. Overexpression of AKR1C3 protected against ferroptosis in HCC cells. Mechanistically, AKR1C3 regulated ferroptosis through YAP/SLC7A11 signaling in HCC. AKR1C3 knockdown led to a decrease in YAP nuclear translocation, resulted in the inhibition of cystine transporter SLC7A11, and a subsequent increase in the intracellular levels of ferrous iron and ultimately ferroptosis. Moreover, we found that the combination of AKR1C3 and SLC7A11 was a strong predictor of poor prognosis in HCC. Collectively, these findings identify a novel role of AKR1C3 in ferroptosis, and highlighting a candidate therapeutic target to potentially improve the effect of ferroptosis-based antitumor therapy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Ferroptose/genética , Neoplasias Hepáticas/genética , Transdução de Sinais , Ferro , Membro C3 da Família 1 de alfa-Ceto Redutase , Sistema y+ de Transporte de Aminoácidos/genética
7.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901944

RESUMO

Aldo-keto reductase family 1 member C3 (AKR1C3) plays an important role in prostate cancer (PCa) progression, particularly in castration-resistant prostate cancer (CRPC). It is necessary to establish a genetic signature associated with AKR1C3 that can be used to predict the prognosis of PCa patients and provide important information for clinical treatment decisions. AKR1C3-related genes were identified via label-free quantitative proteomics of the AKR1C3-overexpressing LNCaP cell line. A risk model was constructed through the analysis of clinical data, PPI, and Cox-selected risk genes. Cox regression analysis, Kaplan-Meier (K-M) curves, and receiver operating characteristic (ROC) curves were used to verify the accuracy of the model, and two external datasets were used to verify the reliability of the results. Subsequently, the tumor microenvironment and drug sensitivity were explored. Moreover, the roles of AKR1C3 in the progression of PCa were verified in LNCaP cells. MTT, colony formation, and EdU assays were conducted to explore cell proliferation and drug sensitivity to enzalutamide. Migration and invasion abilities were measured using wound-healing and transwell assays, and qPCR was used to assess the expression levels of AR target genes and EMT genes. CDC20, SRSF3, UQCRH, INCENP, TIMM10, TIMM13, POLR2L, and NDUFAB1 were identified as AKR1C3-associated risk genes. These risk genes, established using the prognostic model, can effectively predict the recurrence status, immune microenvironment, and drug sensitivity of PCa. Tumor-infiltrating lymphocytes and several immune checkpoints that promote cancer progression were higher in high-risk groups. Furthermore, there was a close correlation between the sensitivity of PCa patients to bicalutamide and docetaxel and the expression levels of the eight risk genes. Moreover, through in vitro experiments, Western blotting confirmed that AKR1C3 enhanced SRSF3, CDC20, and INCENP expression. We found that PCa cells with a high expression of AKR1C3 have high proliferation ability and high migration ability and were insensitive to enzalutamide. AKR1C3-associated genes had a significant role in the process of PCa, immune responses, and drug sensitivity and offer the potential for a novel model for prognostic prediction in PCa.


Assuntos
Neoplasias da Próstata , Proteômica , Masculino , Humanos , Reprodutibilidade dos Testes , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Membro C3 da Família 1 de alfa-Ceto Redutase , Fatores de Processamento de Serina-Arginina
8.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003379

RESUMO

Several cell-signaling mechanisms are activated by visible light radiation in human keratinocytes, but the key regulatory proteins involved in this specific cellular response have not yet been identified. Human keratinocytes (HaCaT cells) were exposed to blue or red light at low or high irradiance for 3 days in cycles of 12 h of light and 12 h of dark. The cell viability, apoptotic rate and cell cycle progression were analyzed in all experimental conditions. The proteomic profile, oxidative stress and mitochondrial morphology were additionally evaluated in the HaCaT cells following exposure to high-irradiance blue or red light. Low-irradiance blue or red light exposure did not show an alteration in the cell viability, cell death or cell cycle progression. High-irradiance blue or red light reduced the cell viability, induced cell death and cell cycle G2/M arrest, increased the reactive oxygen species (ROS) and altered the mitochondrial density and morphology. The proteomic profile revealed a pivotal role of Cytoplasmic thioredoxin reductase 1 (TXNRD1) and Aldo-keto reductase family 1 member C3 (AKR1C3) in the response of the HaCaT cells to high-irradiance blue or red light exposure. Blue or red light exposure affected the viability of keratinocytes, activating a specific oxidative stress response and inducing mitochondrial dysfunction. Our results can help to address the targets for the therapeutic use of light and to develop adequate preventive strategies for skin damage. This in vitro study supports further in vivo investigations of the biological effects of light on human keratinocytes.


Assuntos
Apoptose , Proteômica , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Queratinócitos/metabolismo , Luz , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/metabolismo
9.
Oncologist ; 27(11): e870-e877, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36067250

RESUMO

PURPOSE: Aldo-keto reductase family 1 member C3 (AKR1C3) is important in prostate cancer progression, being a potential biomarker in metastatic castration-resistant prostate cancer (mCRPC). Previous explorations of AKR1C3 are mainly based on tissue samples. This study investigates using plasma-based liquid biopsy to validate the prognostic and predictive value of AKR1C3 in patients with mCRPC . MATERIALS AND METHODS: We prospectively recruited 62 patients with mCRPC. All patients received repeated prostate biopsies at the time of mCRPC diagnosis, and immunohistochemistry (IHC) staining was used to detect protein expression of AKR1C3 in the tissues. We took their blood simultaneously and performed digital droplet polymerase chain reaction (ddPCR) to measure expression levels of AKR1C3 in the exosomes. The detected plasma and tissue AKR1C3 expression levels were analyzed for patients' overall survival (OS) and progression-free survival under first-line abiraterone use (ABI-PFS). RESULTS: All other baseline characteristics were balanced between the 2 groups. 15/62 (24.2%) and 25/62 (40.3%) patients showed AKR1C3-EXO positive (≥20 copies/20 µL) and AKR1C3-IHC positive, respectively. Positive AKR1C3-EXO expression was associated with decreased patients' survival [ABI-PFS: 3.9 vs 10.1 months, P < .001; OS: 16.2 vs 32.5 months, P < .001]. AKR1C3-IHC positivity was also correlated with ABI-PFS and OS (P = .010, P = .016). In patients with worse baseline blood tests (including higher alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) level and lower hemoglobin (HB) level), and lower ISUP/WHO group (<4), their OS was significantly worse when showing AKR1C3-EXO positive. CONCLUSION: AKR1C3-EXO is associated with patient prognosis regarding OS and ABI-PFS and can be used as a biomarker in mCRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Prognóstico , Biomarcadores , RNA Mensageiro
10.
Cell Biol Int ; 46(6): 965-975, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35257428

RESUMO

ARID3A is upregulated in colorectal cancer and can promote the proliferation and metastasis of cancer cells. However, patients with higher level of ARID3A have a better prognosis. This study aimed to uncover the mechanism by which ARID3A benefits the prognosis of colon cancer. Our results indicated that ARID3A upregulation enhanced the chemosensitivity of colon cancer cells to 5-fluorouracil (5-FU), whereas ARID3A downregulation inhibited the chemosensitivity of colon cancer cells to 5-FU. Through database analysis, we found that AKR1C3, a drug resistance-related gene, was the target of ARID3A. Moreover, AKR1C3 was downregulated in colon cancer tissues compared to normal tissues. Next, we assessed the interaction between AKR1C3 and ARID3A, and found that ARID3A inhibited the transcription of AKR1C3, leading to the downregulation of AKR1C3 in colon cancer cells. We also verified that AKR1C3 inhibited the chemosensitivity of colon cancer cells to 5-FU. Moreover, patients with higher ratio of ARID3A to AKR1C3 had a better prognosis. This study suggested that ARID3A promoted chemosensitivity of colon cancer cells by inhibiting AKR1C3 in colon cancer. The ratio of ARID3A to AKR1C3 is a good marker to predict the prognosis of colon cancer patients.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase , Neoplasias do Colo , Proteínas de Ligação a DNA , Fatores de Transcrição , Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
11.
Arch Toxicol ; 96(12): 3265-3277, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35972551

RESUMO

Targeting mutations that trigger acute myeloid leukaemia (AML) has emerged as a refined therapeutic approach in recent years. Enasidenib (Idhifa) is the first selective inhibitor of mutated forms of isocitrate dehydrogenase 2 (IDH2) approved against relapsed/refractory AML. In addition to its use as monotherapy, a combination trial of enasidenib with standard intensive induction therapy (daunorubicin + cytarabine) is being evaluated. This study aimed to decipher enasidenib off-target molecular mechanisms involved in anthracycline resistance, such as reduction by carbonyl reducing enzymes (CREs) and drug efflux by ATP-binding cassette (ABC) transporters. We analysed the effect of enasidenib on daunorubicin (Daun) reduction by several recombinant CREs and different human cell lines expressing aldo-keto reductase 1C3 (AKR1C3) exogenously (HCT116) or endogenously (A549 and KG1a). Additionally, A431 cell models overexpressing ABCB1, ABCG2, or ABCC1 were employed to evaluate enasidenib modulation of Daun efflux. Furthermore, the potential synergism of enasidenib over Daun cytotoxicity was quantified amongst all the cell models. Enasidenib selectively inhibited AKR1C3-mediated inactivation of Daun in vitro and in cell lines expressing AKR1C3, as well as its extrusion by ABCB1, ABCG2, and ABCC1 transporters, thus synergizing Daun cytotoxicity to overcome resistance. This work provides in vitro evidence on enasidenib-mediated targeting of the anthracycline resistance actors AKR1C3 and ABC transporters under clinically achievable concentrations. Our findings may encourage its combination with intensive chemotherapy and even suggest that the effectiveness of enasidenib as monotherapy against AML could lie beyond the targeting of mIDH2.


Assuntos
Daunorrubicina , Leucemia Mieloide Aguda , Humanos , Daunorrubicina/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Antraciclinas , Antibióticos Antineoplásicos/uso terapêutico , Citarabina/uso terapêutico , Trifosfato de Adenosina
12.
Ann Diagn Pathol ; 56: 151839, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34784541

RESUMO

Transitional cell metaplasia (TCM) of the uterine cervix and vagina is typically seen in patients with adrenogenital syndrome with high serum androgen levels and in those under androgen treatment as well as in some peri/postmenopausal women. Considering that TCM occurs in patients with increased serum androgen levels, a microenvironment with altered sex hormones might be involved in the urothelial-like differentiation observed in TCM. To investigate a histogenetic role of androgen in TCM development, we compared the distribution patterns and intensity of androgen receptor (AR), estrogen receptor (ER), GATA3 (a transcription factor involved in androgen regulation), Ki-67, and AKR1C3 (an enzyme involved in androgen biosynthesis) expression in normal exocervical mucosa in young women (n = 25), senile atrophy (n = 23), and TCM (n = 29). In TCM, AR, ER, AKR1C3, and GATA3, expression was stronger and significantly increased upward into the intermediate and superficial layers compared with the senile atrophic mucosa and normal mucosa in young women. The epithelial layer in TCM is thicker than that in senile atrophic mucosa, although both conditions may occur in the same age group. Proliferation in TCM was significantly lower than that in young women but slightly higher than that in senile atrophy. Considering the conversion activity of AKR1C3, thicker epithelial layers in TCM compared with those in senile atrophy might be due to increased conversion of androstenedione to testosterone via increased AKR1C3 activity, increased conversion of testosterone to 17ß-estradiol by aromatization, and AR activation.


Assuntos
Colo do Útero/patologia , Pós-Menopausa/metabolismo , Idoso , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Diferenciação Celular , Colo do Útero/metabolismo , Feminino , Fator de Transcrição GATA3/metabolismo , Humanos , Imuno-Histoquímica , Metaplasia/metabolismo , Metaplasia/patologia , Pessoa de Meia-Idade , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo
13.
Biochem Biophys Res Commun ; 540: 83-89, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450484

RESUMO

Intracrine androgen synthesis plays a critical role in the development of castration-resistant prostate cancer (CRPC). Aldo-keto reductase family 1 member C3 (AKR1C3) is a vital enzyme in the intracrine androgen synthesis pathway. In this study, mesoporous silica nanoparticles (MSNs) were employed to deliver small interfering RNA targeting AKR1C3 (siAKR1C3) to downregulate AKR1C3 expression in CPRC cells. The optimal weight ratio of MSNs/siAKR1C3 was determined by a gel retardation assay. Prostate cancer cells such as VCaP cells, which intracrinally express AKR1C3, and LNCaP-AKR1C3 cells stably transfected with AKR1C3 were used to investigate the antitumour effect of MSNs-siAKR1C3. Fluorescence detection and Western blot analyses were applied to confirm the entrance of MSNs-siAKR1C3 into the cells. A SRB (Sulforhodamine B) assay was employed to assess the cell viability, and a radioimmunoassay was used to measure the androgen concentration. Moreover, real-time PCR (RT-PCR), Western blot analysis and ELISA were used to determine the transcription and expression of prostate-specific antigen (PSA), AKR1C3 and androgen receptor (AR). Meanwhile, a reporter gene assay was performed to determine the AR activity. Additionally, a castrated nude mouse xenograft tumour model was produced to verify the inhibitory effect of MSNs-siAKR1C3 in vivo. The results showed that the optimal weight ratio of MSNs/siAKR1C3 was 140:1, and the complex could effectively enter cells, downregulate AKR1C3 expression, reduce the androgen concentration, inhibit AR activation, and inhibit CRPC development both in vitro and in vivo. These results indicate that decreasing intracrine androgen synthesis and inactivating AR signals by MSNs-siAKR1C3 may be a potential effective method for CRPC treatment.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Androgênios/biossíntese , Nanopartículas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/terapia , RNA Interferente Pequeno/uso terapêutico , Dióxido de Silício/uso terapêutico , Membro C3 da Família 1 de alfa-Ceto Redutase/deficiência , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA Interferente Pequeno/genética , Receptores Androgênicos/genética , Testosterona/biossíntese , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Bioorg Med Chem ; 47: 116372, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454129

RESUMO

Breast cancer has the highest incidence and mortality in females, while prostate cancer has the second-highest incidence in males. Studies have shown that compounds from Brazilian green propolis have antitumor activities and can selectively inhibit the AKR1C3 enzyme, overexpressed in hormone-dependent prostate and breast tumors. Thus, in an attempt to develop new cytotoxic inhibitors against these cancers, three prenylated compounds, artepillin C, drupanin and baccharin, were isolated from green propolis to synthesize new derivatives via coupling reactions with different amino acids. All obtained derivatives were submitted to antiproliferative assays against four cancer cells (MCF-7, MDA MB-231, PC-3, and DU145) and two normal cell lines (MCF-10A and PNT-2) to evaluate their cytotoxicity. In general, the best activity was observed for compound6e, derived from drupanin, which exhibited half-maximal inhibitory concentration (IC50) of 9.6 ± 3 µM and selectivity index (SI) of 5.5 against MCF-7 cells.In silicostudies demonstrated that these derivatives present coherent docking interactions and binding modes against AKR1C3, which might represent a possible mechanism of inhibition in MCF-7 cells.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Cinamatos/farmacologia , Fenilpropionatos/farmacologia , Própole/química , Tricotecenos/farmacologia , Aminoácidos/análise , Aminoácidos/síntese química , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cinamatos/análise , Cinamatos/síntese química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fenilpropionatos/análise , Fenilpropionatos/síntese química , Própole/análise , Própole/síntese química , Própole/farmacologia , Relação Estrutura-Atividade , Tricotecenos/análise , Tricotecenos/síntese química
15.
Arch Toxicol ; 95(1): 67-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33025066

RESUMO

Midostaurin is an FMS-like tyrosine kinase 3 receptor (FLT3) inhibitor that provides renewed hope for treating acute myeloid leukaemia (AML). The limited efficacy of this compound as a monotherapy contrasts with that of its synergistic combination with standard cytarabine and daunorubicin (Dau), suggesting a therapeutic benefit that is not driven only by FLT3 inhibition. In an AML context, the activity of the enzyme aldo-keto reductase 1C3 (AKR1C3) is a crucial factor in chemotherapy resistance, as it mediates the intracellular transformation of anthracyclines to less active hydroxy metabolites. Here, we report that midostaurin is a potent inhibitor of Dau inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in a transfected cell model. Likewise, in the FLT3- AML cell line KG1a, midostaurin was able to increase the cellular accumulation of Dau and significantly decrease its metabolism by AKR1C3 simultaneously. The combination of those mechanisms increased the nuclear localization of Dau, thus synergizing its cytotoxic effects on KG1a cells. Our results provide new in vitro evidence of how the therapeutic activity of midostaurin could operate beyond targeting the FLT3 receptor.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Daunorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Estaurosporina/análogos & derivados , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Biotransformação , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Daunorrubicina/metabolismo , Sinergismo Farmacológico , Células HCT116 , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Estaurosporina/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
16.
J Cell Mol Med ; 24(20): 12032-12043, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32902124

RESUMO

Multiple mechanisms contribute to the survival and growth of metastatic castration-resistant prostate cancer (mCRPC) cells without androgen, including androgen receptor splice variants (AR-V) and de novo intratumoral androgen synthesis. AKR1C3 is a critical androgenic enzyme that plays different roles in mCRPC, such as an EMT driver or AR coactivator. However, the relationship and regulatory mechanisms between AKR1C3 and AR-V remain largely unknown. In this study, we observed a positive correlation between AKR1C3 and AR-V7 staining in tissues from prostate rebiopsy at mCRPC. Mechanistically, AKR1C3 interacts with AR-V7 protein in CRPC cells, which can reciprocally inhibit AR-V7 and AKR1C3 protein degradation. Biologically, this complex is essential for in vitro and in vivo tumour growth of CRPC cells after androgen deprivation as it represses B4GALT1, a unique tumour suppressor gene in PCa. Together, this study reveals AKR1C3/AR-V7 complex as a potential therapeutic target in mCRPC.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Galactosiltransferases/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Galactosiltransferases/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ligação Proteica , Estabilidade Proteica , Transcrição Gênica , Ubiquitina/metabolismo
17.
Prostate ; 80(14): 1223-1232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33258507

RESUMO

BACKGROUND: Antiandrogens are effective therapies that block androgen receptor (AR) transactivation and signaling in over 50% of castration-resistant prostate cancer (CRPC) patients. However, an estimated 30% of responders will develop resistance to these therapies within 2 years. JNJ-pan-AR is a broad-spectrum AR antagonist that inhibits wild-type AR as well as several mutated versions of AR that have emerged in patients on chronic antiandrogen treatment. In this work, we aimed to identify the potential underlying mechanisms of resistance that may result from chronic JNJ-pan-AR treatment. METHODS: The LNCaP JNJR prostate cancer subline was developed by chronically exposing LNCaP parental cells to JNJ-pan-AR. Transcriptomic and proteomic profiling was performed to identify potential drivers and/or biomarkers of the resistant phenotype. RESULTS: Several enzymes critical to intratumoral androgen biosynthesis, Aldo-keto reductase family 1 member C3 (AKR1C3), UGT2B15, and UGT2B17 were identified as potential upstream regulators of the JNJ-pan-AR resistant cells. While we confirmed the overexpression of all three enzymes in the resistant cells only AKR1C3 expression played a functional role in driving JNJ-pan-AR resistance. We also discovered that AKR1C3 regulates UGT2B15 and UGT2B17 expression in JNJ-pan-AR resistant cells. CONCLUSIONS: This study supports the rationale to further investigate the benefits of AKR1C3 inhibition in combination with antiandrogens to prevent CRPC disease progression.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Antagonistas de Receptores de Andrógenos/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/biossíntese , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Genômica , Glucuronosiltransferase/biossíntese , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/biossíntese , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Proteômica , Receptores Androgênicos/metabolismo , Transcrição Gênica
18.
Cell Commun Signal ; 18(1): 11, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980029

RESUMO

BACKGROUND: Androgen receptor targeted therapies have emerged as an effective tool to manage advanced prostate cancer (PCa). Nevertheless, frequent occurrence of therapy resistance represents a major challenge in the clinical management of patients, also because the molecular mechanisms behind therapy resistance are not yet fully understood. In the present study, we therefore aimed to identify novel targets to intervene with therapy resistance using gene expression analysis of PCa co-culture spheroids where PCa cells are grown in the presence of cancer-associated fibroblasts (CAFs) and which have been previously shown to be a reliable model for antiandrogen resistance. METHODS: Gene expression changes of co-culture spheroids (LNCaP and DuCaP seeded together with CAFs) were identified by Illumina microarray profiling. Real-time PCR, Western blotting, immunohistochemistry and cell viability assays in 2D and 3D culture were performed to validate the expression of selected targets in vitro and in vivo. Cytokine profiling was conducted to analyze CAF-conditioned medium. RESULTS: Gene expression analysis of co-culture spheroids revealed that CAFs induced a significant upregulation of cholesterol and steroid biosynthesis pathways in PCa cells. Cytokine profiling revealed high amounts of pro-inflammatory, pro-migratory and pro-angiogenic factors in the CAF supernatant. In particular, two genes, 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (HMGCS2) and aldo-keto reductase family 1 member C3 (AKR1C3), were significantly upregulated in PCa cells upon co-culture with CAFs. Both enzymes were also significantly increased in human PCa compared to benign tissue with AKR1C3 expression even being associated with Gleason score and metastatic status. Inhibiting HMGCS2 and AKR1C3 resulted in significant growth retardation of co-culture spheroids as well as of various castration and enzalutamide resistant cell lines in 2D and 3D culture, underscoring their putative role in PCa. Importantly, dual targeting of cholesterol and steroid biosynthesis with simvastatin, a commonly prescribed cholesterol synthesis inhibitor, and an inhibitor against AKR1C3 had the strongest growth inhibitory effect. CONCLUSIONS: From our results we conclude that CAFs induce an upregulation of cholesterol and steroid biosynthesis in PCa cells, driving them into AR targeted therapy resistance. Blocking both pathways with simvastatin and an AKR1C3 inhibitor may therefore be a promising approach to overcome resistances to AR targeted therapies in PCa. Video abstract.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Colesterol/biossíntese , Progressão da Doença , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Regulação para Cima , Idoso , Benzamidas/farmacologia , Vias Biossintéticas/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Meios de Cultivo Condicionados/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Anotação de Sequência Molecular , Nitrilas/farmacologia , Fenótipo , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Sinvastatina/farmacologia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
19.
Chem Biodivers ; 17(12): e2000519, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33111427

RESUMO

Castration-resistant prostate cancer (CRPC) is a fatal, metastatic form of prostate cancer, characterized by reactivation of the androgen axis. Aldo-keto reductase 1C3 (AKR1C3) converts androstenedione (AD) and 5α-androstanedione to testosterone (T) and 5α-dihydrotestosterone (DHT), respectively. In CRPC, AKR1C3 is upregulated and implicated in drug resistance and has been regarded as a potential therapeutic target. Here we examined a series of indole derivatives containing benzoic acid or phenylhydroxamic acid and found that 4-({3-[(3,4,5-trimethoxyphenyl)sulfanyl]-1H-indol-1-yl}methyl)benzoic acid (3e) and N-hydroxy-4-({3-[(3,4,5-trimethoxyphenyl)sulfanyl]-1H-indol-1-yl}methyl)benzamide (3q) inhibited 22Rv1 cell proliferation with IC50 values of 6.37 µM and 2.72 µM, respectively. In enzymatic assay, compounds 3e and 3q exhibited potent inhibitory effect against AKR1C3 (IC50 =0.26 and 2.39 µM, respectively). These results indicated that compounds 3e and 3q might be useful leads for further investigation of more potential AKR1C3 inhibitors used for CRPC.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Benzoatos/química , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Indóis/química , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antineoplásicos/química , Benzoatos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Humanos , Indóis/farmacologia , Masculino , Relação Estrutura-Atividade
20.
Int J Cancer ; 144(10): 2465-2477, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30367463

RESUMO

Different studies have shown that HPV16-positive OPSCC can be subdivided based on integration status (integrated, episomal and mixed forms). Because we showed that integration neither affects the levels of viral genes, nor those of virally disrupted human genes, a genome-wide screen was performed to identify human genes which expression is influenced by viral integration and have clinical relevance. Thirty-three fresh-frozen HPV-16 positive OPSCC samples with known integration status were analyzed by mRNA expression profiling. Among the genes of interest, Aldo-keto-reductases 1C1 and 1C3 (AKR1C1, AKR1C3) were upregulated in tumors with viral integration. Additionally, 141 OPSCC, including 48 HPV-positive cases, were used to validate protein expression by immunohistochemistry. Results were correlated with clinical and histopathological data. Non-hierarchical clustering resulted in two main groups differing in mRNA expression patterns, which interestingly corresponded with viral integration status. In OPSCC with integrated viral DNA, often metabolic pathways were deregulated with frequent upregulation of AKR1C1 and AKR1C3 transcripts. Survival analysis of 141 additionally immunostained OPSCC showed unfavorable survival rates for tumors with upregulation of AKR1C1 or AKR1C3 (both p <0.0001), both in HPV-positive (p ≤0.001) and -negative (p ≤0.017) tumors. OPSCC with integrated HPV16 show upregulation of AKR1C1 and AKR1C3 expression, which strongly correlates with poor survival rates. Also in HPV-negative tumors, upregulation of these proteins correlates with unfavorable outcome. Deregulated AKR1C expression has also been observed in other tumors, making these genes promising candidates to indicate prognosis. In addition, the availability of inhibitors of these gene products may be utilized for drug treatment.


Assuntos
20-Hidroxiesteroide Desidrogenases/genética , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Carcinoma de Células Escamosas/genética , Papillomavirus Humano 16/genética , Neoplasias Orofaríngeas/genética , Regulação para Cima/genética , Integração Viral/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , DNA Viral/genética , Feminino , Genes Virais/genética , Humanos , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Prognóstico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA