Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Lipid Res ; 65(3): 100525, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38417553

RESUMO

The availability of genome-wide transcriptomic and proteomic datasets is ever-increasing and often not used beyond initial publication. Here, we applied module-based coexpression network analysis to a comprehensive catalog of 35 mouse genome-wide liver expression datasets (encompassing more than 3800 mice) with the goal of identifying and validating unknown genes involved in cholesterol metabolism. From these 35 datasets, we identified a conserved module of genes enriched with cholesterol biosynthetic genes. Using a systematic approach across the 35 datasets, we identified three genes (Rdh11, Echdc1, and Aldoc) with no known role in cholesterol metabolism. We then performed functional validation studies and show that each gene is capable of regulating cholesterol metabolism. For the glycolytic gene, Aldoc, we demonstrate that it contributes to de novo cholesterol biosynthesis and regulates cholesterol and triglyceride levels in mice. As Aldoc is located within a genome-wide significant genome-wide association studies locus for human plasma cholesterol levels, our studies establish Aldoc as a causal gene within this locus. Through our work, we develop a framework for leveraging mouse genome-wide liver datasets for identifying and validating genes involved in cholesterol metabolism.


Assuntos
Frutose-Bifosfato Aldolase , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Animais , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Proteômica , Colesterol/metabolismo , Fígado/metabolismo
2.
Pathol Int ; 72(3): 176-186, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35147255

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. The spheroid colony formation assay is a useful method to identify cancer stem cells (CSCs). Using the DLD-1 and WiDr CRC cell lines, we performed microarray analyses of spheroid body-forming and parental cells and demonstrated that aldolase, fructose-bisphosphate C (ALDOC) was overexpressed in the spheroid body-forming cells of both lines. Cells transfected with small interfering RNA against ALDOC demonstrated lower proliferation, migration, and invasion compared with negative control cells. Both the number and size of spheres produced by the CRC cells were significantly reduced by ALDOC knockdown. Additionally, inhibition of ALDOC reduced lactate production. Immunohistochemistry was used to analyze ALDOC protein expression in tissues from 135 CRC patients and revealed that 66 (49%) cases were positive for ALDOC. The ALDOC-positive cases were associated with higher T and M grades and, as determined by Kaplan-Meier analysis, a poorer prognosis. Univariate and multivariate analyses indicated that ALDOC expression was an independent prognostic factor for CRC patients. Furthermore, ALDOC expression was associated with CD44 expression. These results suggest that ALDOC contributes to CRC progression and plays an important role in CSCs derived from CRC.


Assuntos
Neoplasias Colorretais/etiologia , Frutose-Bifosfatase/genética , Frutose-Bifosfato Aldolase/genética , Esferoides Celulares/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Frutose-Bifosfatase/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Esferoides Celulares/metabolismo
3.
Exp Cell Res ; 394(1): 112118, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502493

RESUMO

The MUC16 C-terminal (MUC16c) level is associated with tumor serum CA-125 levels, however, the roles remain unclear in gallbladder carcinoma (GBC). In this study, we found that MUC16c promoted glucose uptake and glycolysis for GBC cell proliferation. Mass spectrometry analysis suggested that MUC16c could combine with aldolase. The ALDOC mRNA and protein are overexpressed in GBC tumors. The IHC results also showed the consistent up-regulation of. ALDOC and MUC16c level in GBC tumor tissues than in peritumor tissues. We determined that MUC16c combining with ALDOC promoted ALDOC protein stability and disrupted the ability of ALDOC sensing glucose deficiency, which activated AMPK pathway and increased GBC cell proliferation. ALDOC knockdown significantly inhibited the glucose uptake and glycolysis induced by MUC16c. Our study established important roles of MUC16c promoting GBC cell glycolysis and proliferation and revealed the underlying mechanism of CA-125-related heavy tumor metabolic burden in GBC.


Assuntos
Antígeno Ca-125/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Frutose-Bifosfato Aldolase/metabolismo , Neoplasias da Vesícula Biliar/metabolismo , Proteínas de Membrana/metabolismo , Antígeno Ca-125/genética , Frutose-Bifosfato Aldolase/genética , Neoplasias da Vesícula Biliar/genética , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Humanos , Proteínas de Membrana/genética
4.
Biotechnol J ; 19(9): e2400163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39295558

RESUMO

The 3D multicellular tumor spheroid (MTS) model exhibits enhanced fidelity in replicating the tumor microenvironment and demonstrates exceptional resistance to clinical drugs compared to the 2D monolayer model. In this study, we used multiomics (transcriptome, proteomics, and metabolomics) tools to explore the molecular mechanisms and metabolic differences of the two culture models. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways revealed that the differentially expressed genes between the two culture models were mainly enriched in cellular components and biological processes associated with extracellular matrix, extracellular structural organization, and mitochondrial function. An integrated analysis of three omics data revealed 11 possible drug resistance targets. Among these targets, seven genes, AKR1B1, ALDOC, GFPT2, GYS1, LAMB2, PFKFB4, and SLC2A1, exhibited significant upregulation. Conversely, four genes, COA7, DLD, IFNGR1, and QRSL1, were significantly downregulated. Clinical prognostic analysis using the TCGA survival database indicated that high-expression groups of SLC2A1, ALDOC, and PFKFB4 exhibited a significant negative correlation with patient survival. We further validated their involvement in chemotherapy drug resistance, indicating their potential significance in improving prognosis and chemotherapy outcomes. These results provide valuable insights into potential therapeutic targets that can potentially enhance treatment efficacy and patient outcomes.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Transportador de Glucose Tipo 1 , Glicólise , Fosfofrutoquinase-2 , Esferoides Celulares , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/efeitos dos fármacos , Glicólise/genética , Glicólise/efeitos dos fármacos , Células HeLa , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Antineoplásicos/farmacologia
5.
Int J Biochem Cell Biol ; 158: 106407, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997056

RESUMO

BACKGROUND: The role of ALDOC which is an important regulator involved in tumor metabolic reprogramming and immune microenvironment in GC remains unclear. Therefore, we investigated the feasibility of ALDOC as a prognostic marker and therapeutic target. METHODS: We verified the expression of ALDOC in GC and its effect on the prognosis of GC patients by analyzing clinical data. The regulation of ALDOC on the biological behavior of GC cells was confirmed by experiments. The potential mechanism of miRNA regulating GC immune cell infiltration by inhibiting ALDOC was explored by experiments and bioinformatic analysis. We further analyzed the effect of ALDOC on somatic mutations in gastric cancer, and constructed a prognostic model based on ALDOC and related immune molecules. RESULTS: ALDOC is overexpressed in GC cells and tissues, which promotes malignant biological behavior of GC cells and is an independent risk factor for poor prognosis of GC patients. MiR-19a-5p promotes the expression of ALDOC by down-regulating ETS1, leading to poor prognosis in GC patients. ALDOC is significantly associated with immune infiltration in GC, regulates macrophage differentiation and promotes the progression of GC. ALDOC is significantly correlated with TMB and MSI of gastric cancer, and affects somatic mutation of gastric cancer. The prognostic model has good predictive efficiency. CONCLUSIONS: ALDOC is a potential prognostic marker and therapeutic target with abnormal immune-mediated effects. The prognostic model based on ALDOC provides a reference for prognosis prediction and individualized treatment of GC patients.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
6.
Gene ; 872: 147432, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062455

RESUMO

Pheochromocytoma and paraganglioma (PPGL), are rare neuroendocrine tumors arising from the adrenal medulla and extra-adrenal paraganglia, respectively. Up to about 60% are explained by germline or somatic mutations in one of the major known susceptibility genes e.g., inNF1,RET,VHL, SDHx,MAXandHRAS. Targeted Next Generation Sequencing was performed in 14 sporadic tumors using a panel including 26 susceptibility genes to characterize the mutation profile. A total of 6 germline and 8 somatic variants were identified. The most frequent somatic mutations were found in NF1(36%), four have not been reported earlier in PCC or PGL. Gene expression profile analysis showed that NF1 mutated tumors are classified into RTK3 subtype, cluster 2, with a high expression of genes associated with chromaffin cell differentiation, and into a RTK2 subtype, cluster 2, as well with overexpression of genes associated with cortisol biosynthesis. On the other hand, by analyzing the entire probe set on the array and TCGA data, ALDOC was found as the most significantly down regulated gene in NF1-mutated tumors compared to NF1-wild-type. Differential gene expression analysis showed a significant difference between Nt - and Ct-NF1 domains in mutated tumors probably engaging different cellular pathways. Notably, we had a metastatic PCC with a Ct-NF1 frameshift mutation and when performing protein docking analysis, Ct-NF1 showed an interaction with Nt-FAK suggesting their involvement in cell adhesion and cell growth. These results show that depending on the location of the NF1-mutation different pathways are activated in PPGLs. Further studies are required to clarify their clinical significance.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/genética , Feocromocitoma/patologia , Paraganglioma/genética , Paraganglioma/patologia , Mutação , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/patologia , Perfilação da Expressão Gênica
7.
Aging (Albany NY) ; 15(18): 9614-9632, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724906

RESUMO

Despite advancements in therapeutic options, the overall prognosis for non-small cell lung cancer (NSCLC) remains poor. Therefore, it is crucial to further explore the etiology and targets for novel treatments to effectively manage NSCLC. In this study, immunohistochemistry was used to analyze the expression of aldolase, fructose-bisphosphate C (ALDOC) protein in tumor tissues and adjacent non-malignant tissues from 79 NSCLC patients. Our findings revealed that ALDOC was overexpressed in NSCLC tissues. ALDOC expression was associated with lymph node metastasis, lymphatic metastasis and pathological stage. In addition, Kaplan-Meier analysis showed that higher ALDOC levels were indicative of a poorer prognosis. Additionally, we observed elevated ALDOC mRNA levels in NSCLC cell lines relative to normal cells. To investigate the functional roles of ALDOC, we infected cells with small interfering RNA against ALDOC, which led to attenuated proliferation and migration, as well as ameliorated apoptosis. Furthermore, through our investigations, we discovered that ubiquitin-conjugating enzyme E2N (UBE2N) acts as a downstream factor of ALDOC. ALDOC promoted NSCLC through affecting MYC-mediated UBE2N transcription and regulating the Wnt pathway. More importantly, we found that downregulation of UBE2N or the use of Wnt pathway inhibitor could reverse the promoting effects of ALDOC elevation on NSCLC development in vitro and in vivo. Based on these findings, our study highlights the potential of ALDOC as a future therapeutic target for NSCLC.

8.
Mil Med Res ; 10(1): 64, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082365

RESUMO

BACKGROUND: Cell metabolism plays a pivotal role in tumor progression, and targeting cancer metabolism might effectively kill cancer cells. We aimed to investigate the role of hexokinases in prostate cancer (PCa) and identify a crucial target for PCa treatment. METHODS: The Cancer Genome Atlas (TCGA) database, online tools and clinical samples were used to assess the expression and prognostic role of ADP-dependent glucokinase (ADPGK) in PCa. The effect of ADPGK expression on PCa cell malignant phenotypes was validated in vitro and in vivo. Quantitative proteomics, metabolomics, and extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) tests were performed to evaluate the impact of ADPGK on PCa metabolism. The underlying mechanisms were explored through ADPGK overexpression and knockdown, co-immunoprecipitation (Co-IP), ECAR analysis and cell counting kit-8 (CCK-8) assays. RESULTS: ADPGK was the only glucokinase that was both upregulated and predicted worse overall survival (OS) in prostate adenocarcinoma (PRAD). Clinical sample analysis demonstrated that ADPGK was markedly upregulated in PCa tissues vs. non-PCa tissues. High ADPGK expression indicates worse survival outcomes, and ADPGK serves as an independent factor of biochemical recurrence. In vitro and in vivo experiments showed that ADPGK overexpression promoted PCa cell proliferation and migration, and ADPGK inhibition suppressed malignant phenotypes. Metabolomics, proteomics, and ECAR and OCR tests revealed that ADPGK significantly accelerated glycolysis in PCa. Mechanistically, ADPGK binds aldolase C (ALDOC) to promote glycolysis via AMP-activated protein kinase (AMPK) phosphorylation. ALDOC was positively correlated with ADPGK, and high ALDOC expression was associated with worse survival outcomes in PCa. CONCLUSIONS: In summary, ADPGK is a driving factor in PCa progression, and its high expression contributes to a poor prognosis in PCa patients. ADPGK accelerates PCa glycolysis and progression by activating ALDOC-AMPK signaling, suggesting that ADPGK might be an effective target and marker for PCa treatment and prognosis evaluation.


Assuntos
Glucoquinase , Neoplasias da Próstata , Humanos , Masculino , Glucoquinase/genética , Glucoquinase/metabolismo , Próstata , Proteínas Quinases Ativadas por AMP
9.
Cells ; 12(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831290

RESUMO

Purkinje cells (PCs) are the principal cells of the cerebellar cortex and form a central element in the modular organization of the cerebellum. Differentiation of PCs based on gene expression profiles revealed two subpopulations with distinct connectivity, action potential firing and learning-induced activity changes. However, which basal cell physiological features underlie the differences between these subpopulations and to what extent they integrate input differentially remains largely unclear. Here, we investigate the cellular electrophysiological properties of PC subpopulation in adult and juvenile mice. We found that multiple fundamental cell physiological properties, including membrane resistance and various aspects of the action potential shape, differ between PCs from anterior and nodular lobules. Moreover, the two PC subpopulations also differed in the integration of negative and positive current steps as well as in size of the hyperpolarization-activated current. A comparative analysis in juvenile mice confirmed that most of these lobule-specific differences are already present at pre-weaning ages. Finally, we found that current integration in PCs is input history-dependent for both positive and negative currents, but this is not a distinctive feature between anterior and nodular PCs. Our results support the concept of a fundamental differentiation of PCs subpopulations in terms of cell physiological properties and current integration, yet reveals that history-dependent input processing is consistent across PC subtypes.


Assuntos
Cerebelo , Células de Purkinje , Camundongos , Animais , Células de Purkinje/fisiologia , Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Aprendizagem
10.
J Exp Clin Cancer Res ; 42(1): 69, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36945054

RESUMO

BACKGROUND: Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS: 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS: We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS: Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.


Assuntos
Neoplasias da Mama , Multiômica , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Glucose , Lactatos , Nutrientes , Esferoides Celulares , Microambiente Tumoral
11.
Neurotox Res ; 39(6): 1959-1969, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34773594

RESUMO

Isoquercitrin (ISO), an extract from Chinese traditional herb, exhibits potent neuroprotective roles in various disease models. However, its role in stroke is not fully understood. We established oxygen-glucose deprivation and reoxygenation (OGD/R) model in SH-SY5Y cell to study the roles of ISO in stroke. In the experiment, the changes of LDH level and cell viability (MTT) were analyzed. Apoptotic cells stained with anti-Annexin V antibody and propidium iodide (PI) were detected by flow cytometry. The mRNA and protein level of aldolase C (ALDOC) and nuclear factor erythroid 2-related factor (Nrf2) was determined by real-time quantitative polymerase chain reaction (qPCR) and Western blotting assay, respectively. The localization of Nrf2 was investigated by immunofluorescent assay. OGD/R reduced cell viability via inducing cell apoptosis, while ISO treatment reduced the level of apoptosis in OGD/R-treated SH-SY5Y cells ISO rescued OGD/R-treated cells. Mechanistically, the expression of Nrf2 and ALDOC was upregulated upon ISO treatment, while knockdown of ALDOC diminished the activation of autophagy and hence inhibited ISO-mediated protective activity. We further demonstrated that ISO enhanced ALDOC transcription by promoting nuclear translocation of Nrf2, and suppression of Nrf2 decreased the expression of ALDOC. Our data revealed that ISO exhibited neuroprotective activity in OGD/R model through Nrf2-ALDOC-autopagy axis and highlighted the potential application of ISO in stroke treatment.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Glucose/deficiência , Hipóxia/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Quercetina/análogos & derivados , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Glucose/metabolismo , Humanos , Hipóxia/metabolismo , L-Lactato Desidrogenase/metabolismo , Quercetina/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima/efeitos dos fármacos
12.
Aging (Albany NY) ; 13(16): 20164-20178, 2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34456184

RESUMO

Thyroid cancer (TC) is known with a high rate of persistence and recurrence. We aimed to develop a prognostic signature to monitor and assess the survival of TC patients. mRNA expression and methylation data were downloaded from the TCGA database. Then, R package methylmix was applied to construct a mixed model was used to identify methylation-driven genes (MDGs) according to the methylation levels. Furthermore, an MDGs based prognostic signature and predictive nomogram were constructed according to the analysis of univariate and multivariate Cox regression. Totally 62 methylation-driven genes that were mainly enriched in substrate-dependent cell migration, cellular response to mechanical stimulus, et al. were found in TC tissues. aldolase C (AldoC), C14orf62, dishevelled 1 (DVL1), and protein tyrosine phosphatase receptor type C (PTPRC) were identified to be significantly related to patients' survival, and may serve as independent prognostic biomarkers for TC. Additionally, the prognostic methylation signature and a novel prognostic, predictive nomogram was established based on the methylation level of 4 MDGs. In this study, we developed a 4-MDGs based prognostic model, which might be the potential predictors for the survival rate of TC patients, and this findings might provide a novel sight for accurate monitoring and prognosis assessment.


Assuntos
Proteínas Desgrenhadas/genética , Frutose-Bifosfato Aldolase/genética , Antígenos Comuns de Leucócito/genética , RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/genética , Algoritmos , Movimento Celular , Proliferação de Células , Metilação de DNA , Proteínas Desgrenhadas/metabolismo , Epigênese Genética , Frutose-Bifosfato Aldolase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Antígenos Comuns de Leucócito/metabolismo , Prognóstico , RNA Longo não Codificante/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/fisiopatologia
14.
Anticancer Res ; 38(11): 6059-6068, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30396920

RESUMO

BACKGROUND/AIM: NME/NM23 nucleoside diphosphate kinase 1 (NME1) is a metastasis suppressor gene, exhibiting reduced expression in metastatic cancers and the ability to suppress metastatic activity of cancer cells. We previously identified NME1-regulated genes with prognostic value in human melanoma. This study was conducted in melanoma cell lines aiming to elucidate the mechanism through which NME regulates one of these genes, aldolase C (ALDOC). MATERIALS AND METHODS: ALDOC mRNA and protein expression was measured using qRT-PCR and immunoblot analyses. Promoter-luciferase constructs and chromatin immunoprecipitation were employed to measure the impact of NME1 on ALDOC transcription. RESULTS: NME1 enhanced ALDOC transcription, evidenced by increased expression of ALDOC pre-mRNA and activity of an ALDOC promoter-luciferase module. NME1 was detected at the ALDOC promoter, and forced NME1 expression resulted in enhanced occupancy of the promoter by NME1, increased presence of epigenetic activation markers (H3K4me3 and H3K27ac), and recruitment of RNA polymerase II. CONCLUSION: This is the first study to indicate that NME1 induces transcription through its direct binding to the promoter region of a target gene.


Assuntos
Frutose-Bifosfato Aldolase/genética , Melanoma/genética , Nucleosídeo NM23 Difosfato Quinases/genética , Linhagem Celular Tumoral , Epigênese Genética , Frutose-Bifosfato Aldolase/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/enzimologia , Melanoma/patologia , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Metástase Neoplásica , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transcrição Gênica , Regulação para Cima
15.
Head Neck ; 38 Suppl 1: E1075-85, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26565993

RESUMO

BACKGROUND: Glycolysis machinery regulates cancer cell behavior. However, the roles of these glycolysis enzymes in oral squamous cell carcinoma (OSCC) progression remain unknown. METHODS: Fructose-bisphosphate aldolase C (ALDOC) expression in OSCC patients and cell lines was detected using quantitative real-time polymerase chain reaction (PCR). The functions of ALDOC in migration and invasion were determined using gain and loss of function approaches. An orthotopic OSCC animal model was performed to investigate the effects of ALDOC on metastasis and tumorigenesis in vivo. RESULTS: ALDOC expression is negatively significantly correlated with clinical outcome and cell migration in vitro and in vivo. ALDOC blocks adenosine triphosphate generation and lactate production, and mutation constructs of Arg42 and Lys146 functionally restore ALDOC-inhibited cell migration and invasion. CONCLUSION: ALDOC functions as an OSCC prognosis marker clinically, and suppresses migration and invasion by its catalytic domain of Arg42 and Lys146. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1075-E1085, 2016.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Neoplasias Bucais/enzimologia , Animais , Carcinoma de Células Escamosas/diagnóstico , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Neoplasias Bucais/diagnóstico , Mutação , Invasividade Neoplásica , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real
16.
J Comp Neurol ; 523(13): 1886-912, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25732420

RESUMO

The avian cerebellum is organized into multiple longitudinal stripes defined by expression profiles of aldolase C (zebrin II) in Purkinje cells. The relationship between the aldolase C striped pattern and the olivocerebellar projection pattern is crucial in understanding cerebellar functional compartmentalization. We identified all aldolase C stripes across all lobules with the serial section alignment analysis method and then looked at this relationship by anterograde and retrograde labeling of olivocerebellar axons in the chick cerebellum. Aldolase C stripes were generally consistent and continuous from lobule I through VII and to the medial part of lobules VIII-IXb. The dorsal and ventral lamellas (DL, VL) of the inferior olive projected to the stripes in these areas with a simple mediolateral topographic relation. A few aldolase C stripes appeared at the lateral edge of lobules VI-VIII. Several more stripes were added in the lateral parts of lobules IXa-IXb and IXc-X. The medial column (MC) of the inferior olive projected to the stripes in lobules VIII-X, including the added lateral stripes, with a complex topographic relation. Sharp boundaries between aldolase C-positive and -negative stripes often accompanied a gap in the Purkinje cell layer and bordered topographically distinct groups of axons. Although the compartmental organization of the chick cerebellum is comparable to that of the mammalian cerebellum, several significant differences in the organization suggest partly separate evolutionary lineages of the mammalian and avian cerebella. We propose that rostral lobules may be evolved by rostral extension of medial stripes from caudal lobules in the avian cerebellum.


Assuntos
Córtex Cerebelar/citologia , Frutose-Bifosfato Aldolase/metabolismo , Vias Neurais/fisiologia , Núcleo Olivar/metabolismo , Células de Purkinje/enzimologia , Animais , Animais Recém-Nascidos , Biotina/análogos & derivados , Biotina/metabolismo , Córtex Cerebelar/crescimento & desenvolvimento , Galinhas , Dextranos/metabolismo , Corantes Fluorescentes/metabolismo , Fatores de Transcrição Forkhead/metabolismo
17.
Autophagy ; 11(2): 225-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25607466

RESUMO

Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Tiorredoxinas/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/fisiologia , Proteína Beclina-1 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA