Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 89: 129303, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146837

RESUMO

Lens epithelial-derived growth factor (LEDGF) increases the efficiency of proviral DNA integration into the host genome by interacting with HIV integrase (IN) and directing it to a chromatin environment that favors viral transcription. Allosteric integrase inhibitors (ALLINIs), such as known 2-(tert-butoxy)acetic acid (1), bind to the LEDGF pocket on the catalytic core domain (CCD) of IN, but exert more potent antiviral activities by inhibition of late-stage HIV-1 replication events than through disruption of proviral integration at an earlier phase. A high-throughput screen (HTS) for compounds that disrupt IN-LEDGF interaction led to the identification of a novel arylsulfonamide series, as exemplified by 2, possessing ALLINI-like properties. Further SAR studies led to more potent compound 21 and provided key chemical biology probes revealing that arylsulfonamides are a novel class of ALLINIs with a distinct binding mode than that of 2-(tert-butoxy)acetic acids.


Assuntos
Fármacos Anti-HIV , Inibidores de Integrase de HIV , Integrase de HIV , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/química , Regulação Alostérica , Domínio Catalítico , Integrase de HIV/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569561

RESUMO

Integration of a desossiribonucleic acid (DNA) copy of the viral ribonucleic acid (RNA) into host genomes is a fundamental step in the replication cycle of all retroviruses. The highly conserved virus-encoded Integrase enzyme (IN; EC 2.7.7.49) catalyzes such a process by means of two consecutive reactions named 3'-processing (3-P) and strand transfer (ST). The Authors report and discuss the major discoveries and advances which mainly contributed to the development of Human Immunodeficiency Virus (HIV) -IN targeted inhibitors for therapeutic applications. All the knowledge accumulated over the years continues to serve as a valuable resource for the design and development of effective antiretroviral drugs.


Assuntos
Inibidores de Integrase de HIV , HIV-1 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Integrases , Inibidores de Integrase de HIV/farmacologia
3.
J Virol ; 91(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615207

RESUMO

Recent evidence indicates that inhibition of HIV-1 integrase (IN) binding to the viral RNA genome by allosteric integrase inhibitors (ALLINIs) or through mutations within IN yields aberrant particles in which the viral ribonucleoprotein complexes (vRNPs) are eccentrically localized outside the capsid lattice. These particles are noninfectious and are blocked at an early reverse transcription stage in target cells. However, the basis of this reverse transcription defect is unknown. Here, we show that the viral RNA genome and IN from ALLINI-treated virions are prematurely degraded in target cells, whereas reverse transcriptase remains active and stably associated with the capsid lattice. The aberrantly shaped cores in ALLINI-treated particles can efficiently saturate and be degraded by a restricting TRIM5 protein, indicating that they are still composed of capsid proteins arranged in a hexagonal lattice. Notably, the fates of viral core components follow a similar pattern in cells infected with eccentric particles generated by mutations within IN that inhibit its binding to the viral RNA genome. We propose that IN-RNA interactions allow packaging of both the viral RNA genome and IN within the protective capsid lattice to ensure subsequent reverse transcription and productive infection in target cells. Conversely, disruption of these interactions by ALLINIs or mutations in IN leads to premature degradation of both the viral RNA genome and IN, as well as the spatial separation of reverse transcriptase from the viral genome during early steps of infection.IMPORTANCE Recent evidence indicates that HIV-1 integrase (IN) plays a key role during particle maturation by binding to the viral RNA genome. Inhibition of IN-RNA interactions yields aberrant particles with the viral ribonucleoprotein complexes (vRNPs) eccentrically localized outside the conical capsid lattice. Although these particles contain all of the components necessary for reverse transcription, they are blocked at an early reverse transcription stage in target cells. To explain the basis of this defect, we tracked the fates of multiple viral components in infected cells. Here, we show that the viral RNA genome and IN in eccentric particles are prematurely degraded, whereas reverse transcriptase remains active and stably associated within the capsid lattice. We propose that IN-RNA interactions ensure the packaging of both vRNPs and IN within the protective capsid cores to facilitate subsequent reverse transcription and productive infection in target cells.


Assuntos
Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Genoma Viral , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , Animais , Fatores de Restrição Antivirais , Células CHO , Cricetulus , Células HEK293 , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , RNA Viral/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Montagem de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA