Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768425

RESUMO

The complexity of the cellular proteome facilitates the control of a wide range of cellular processes. Non-coding RNAs, including microRNAs and long non-coding RNAs, greatly contribute to the repertoire of tools used by cells to orchestrate various functions. Circular RNAs (circRNAs) constitute a specific class of non-coding RNAs that have recently emerged as a widely generated class of molecules produced from many eukaryotic genes that play essential roles in regulating cellular processes in health and disease. This review summarizes current knowledge about circRNAs and focuses on the functions of AMOTL1 circRNAs and AMOTL1 protein. Both products from the AMOTL1 gene have well-known functions in physiology, cancer, and other disorders. Using AMOTL1 as an example, we illustrate how focusing on both circRNAs and proteins produced from the same gene contributes to a better understanding of gene functions.


Assuntos
MicroRNAs , RNA Longo não Codificante , RNA/genética , RNA/metabolismo , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética
2.
EMBO Rep ; 21(12): e50642, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058421

RESUMO

The tumor suppressor Merlin/NF2, a key activator of the Hippo pathway in growth control, is regulated by phosphorylation. However, it is uncertain whether additional post-translational modifications regulate Merlin. Here, we show that ubiquitination is required to activate Merlin in the Hippo pathway. Ubiquitinated Merlin is mostly conjugated by one or two ubiquitin molecules. Such modification is promoted by serine 518 dephosphorylation in response to Ca2+ signaling or cell detachment. Merlin ubiquitination is mediated by the E3 ubiquitin ligase, NEDD4L, which requires a scaffold protein, AMOTL1, to approach Merlin. Several NF2-patient-derived Merlin mutations disrupt its binding to AMOTL1 and its regulation by the AMOTL1-NEDD4L apparatus. Lysine (K) 396 is the major ubiquitin conjugation residue. Disruption of Merlin ubiquitination by the K396R mutation or NEDD4L depletion diminishes its binding to Lats1 and inhibits Lats1 activation. These effects are also accompanied by loss of Merlin's anti-mitogenic and tumor suppressive properties. Thus, we propose that dephosphorylation and ubiquitination compose an intramolecular relay to activate Merlin functions in activating the Hippo pathway during growth control.


Assuntos
Neurofibromina 2 , Proteínas Serina-Treonina Quinases , Genes Supressores de Tumor , Via de Sinalização Hippo , Humanos , Ubiquitina-Proteína Ligases Nedd4 , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitinação
3.
Am J Med Genet A ; 185(1): 190-195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026150

RESUMO

AMOTL1 belongs to the Motin family of proteins that are involved in organogenesis and tumorigenesis through regulation of cellular migration, tube formation, and angiogenesis. While involvement of all AMOTs in development or suppression of cancers is relatively well described, little is known about the congenital phenotype of pathogenic variants in these genes in humans. Recently, a heterozygous variant in AMOTL1 was published in association with orofacial clefts and cardiac abnormalities in an affected father and his daughter. However, studies in mice did not recapitulate the human phenotype and the case was summarized as inconclusive. We present a female infant with cleft lip and palate, imperforate anus and dysmorphic features, in whom trio exome sequencing revealed a de novo variant in AMOTL1 affecting a highly conserved amino acid (c.479C>T; p.[Pro160Leu]). Bioinformatic predictions and in silico modeling supported pathogenicity. This case reinforces the conjecture regarding the disruptive effect of pathogenic variants in AMOTL1 on organ formation in humans. Studies of additional families will reveal the full phenotypic spectrum associated with this multiple malformation syndrome.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Cardiopatias Congênitas/genética , Proteínas de Membrana/genética , Adulto , Angiomotinas , Fenda Labial/complicações , Fenda Labial/patologia , Fissura Palatina/complicações , Fissura Palatina/patologia , Pai , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Humanos , Recém-Nascido , Masculino , Sequenciamento do Exoma
4.
Environ Toxicol ; 36(12): 2500-2511, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34480788

RESUMO

Angiomotin-like 1 (AMOTL1) is reportedly a pivotal tumor-associated protein that is strongly associated with the tumorigenesis of multiple malignant tumors. However, the issue of whether AMOTL1 plays a role in the tumorigenesis of glioma remains unclear. The aim of this work was to explore the possible relationship between AMOTL1 and glioma progression. Results demonstrated that high levels of AMOTL1 in glioma tissues were associated with a reduced survival rate in patients with glioma. Cellular functional assays revealed that silencing of AMOTL1 in glioma cell lines substantially decreased cell proliferation and invasion and increased cell apoptosis. Further investigation revealed that silencing of AMOTL1 inhibited the activation of yes-associated protein 1 (YAP1) and decreased the expression of YAP1 target genes. Reactivation of YAP1 reversed AMOTL1-silencing-induced antitumor effects, whereas inhibition of YAP1 abolished AMOTL1-overexpression-induced tumor-promoting effects in glioma cells. Silencing of AMOTL1 also retarded the growth of glioma cell-derived xenograft tumors in vivo. In conclusion, these findings suggested that AMOTL1 may exert a tumor-promoting function in glioma by enhancing the activation of YAP1 signaling. This work suggested AMOTL1 as a potential target for the development of antiglioma therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glioma , Proteínas de Membrana/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Angiomotinas , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Proteínas de Neoplasias , Proteínas de Sinalização YAP
5.
J Transl Med ; 16(1): 98, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650031

RESUMO

Members in Motin family, or Angiomotins (AMOTs), are adaptor proteins that localize in the membranous, cytoplasmic or nuclear fraction in a cell context-dependent manner. They control the bioprocesses such as migration, tight junction formation, cell polarity, and angiogenesis. Emerging evidences have demonstrated that AMOTs participate in cancer initiation and progression. Many of the previous studies have focused on the involvement of AMOTs in Hippo-YAP1 pathway. However, it has been controversial for years that AMOTs serve as either positive or negative growth regulators in different cancer types because of the various cellular origins. The molecular mechanisms of these opposite roles of AMOTs remain elusive. This review comprehensively summarized how AMOTs function physiologically and how their dysregulation promotes or inhibits tumorigenesis. Better understanding the functional roles of AMOTs in cancers may lead to an improvement of clinical interventions as well as development of novel therapeutic strategies for cancer patients.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Membrana/metabolismo , Animais , Desenvolvimento Embrionário , Humanos , Proteínas de Membrana/química , Modelos Biológicos , Neovascularização Fisiológica , Transdução de Sinais
6.
Mol Ther ; 25(9): 2062-2074, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28676341

RESUMO

Delayed or impaired wound healing is a major health issue worldwide, especially in patients with diabetes and atherosclerosis. Here we show that expression of the circular RNA circ-Amotl1 accelerated healing process in a mouse excisional wound model. Further studies showed that ectopic circ-Amotl1 increased protein levels of Stat3 and Dnmt3a. The increased Dnmt3a then methylated the promoter of microRNA miR-17, decreasing miR-17-5p levels but increasing fibronectin expression. We found that Stat3, similar to Dnmt3a and fibronectin, was a target of miR-17-5p. Decreased miR-17-5p levels would increase expression of fibronectin, Dnmt3a, and Stat3. All of these led to increased cell adhesion, migration, proliferation, survival, and wound repair. Furthermore, we found that circ-Amotl1 not only increased Stat3 expression but also facilitated Stat3 nuclear translocation. Thus, the ectopic expressed circ-Amotl1 and Stat3 were mainly translocated to nucleus. In the presence of circ-Amotl1, Stat3 interacted with Dnmt3a promoter with increased affinity, facilitating Dnmt3a transcription. Ectopic application of circ-Amotl1 accelerating wound repair may shed light on skin wound healing clinically.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Transporte de RNA , RNA/genética , Fator de Transcrição STAT3/metabolismo , Cicatrização/genética , Proteína 1 Semelhante a Angiopoietina , Animais , Sítios de Ligação , Movimento Celular , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Fibroblastos/metabolismo , Proteínas de Membrana/genética , Camundongos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , RNA/química , RNA/metabolismo , RNA Circular , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Transfecção
7.
Pulm Pharmacol Ther ; 38: 27-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27179426

RESUMO

BACKGROUND: Statin use in individuals with chronic obstructive pulmonary disease (COPD) with coexisting cardiovascular disease is associated with a reduced risk of exacerbations. The mechanisms by which statin plays a role in the pathophysiology of COPD have not been defined. To explore the mechanisms involved, we investigated the effect of statin on endothelial cell function, especially endothelial cell tight junctions. METHOD: We primarily assessed whether pitavastatin could help mitigate the development of emphysema induced by continuous cigarette smoking (CS) exposure. We also investigated the activation of liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling, which plays a role in maintaining endothelial functions, important tight junction proteins, zonula occludens (ZO)-1 and claudin-5 expression, and lung microvascular endothelial cell permeability. RESULTS: We found that pitavastatin prevented the CS-induced decrease in angiomotin-like protein 1 (AmotL1)-positive vessels via the activation of LKB1/AMPK signaling and IFN-γ-induced hyperpermeability of cultured human lung microvascular endothelial cells by maintaining the levels of AmotL1, ZO-1, and claudin-5 expression at the tight junctions. CONCLUSION: Our results indicate that the maintenance of lung microvascular endothelial cells by pitavastatin prevents tight junction protein dysfunctions induced by CS. These findings may ultimately lead to new and novel therapeutic targets for patients with COPD.


Assuntos
Células Endoteliais/efeitos dos fármacos , Enfisema Pulmonar/prevenção & controle , Quinolinas/farmacologia , Proteínas de Junções Íntimas/efeitos dos fármacos , Proteína 1 Semelhante a Angiopoietina , Animais , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/citologia , Pulmão/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Enfisema Pulmonar/etiologia , Fumar/efeitos adversos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
8.
Regen Ther ; 25: 290-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318480

RESUMO

Aim: This study aims to explore the mechanism of circ- AMOT-like protein 1 (Amotl1) in extracellular vesicles (Evs) derived from adipose-derived stromal cells (ADSCs) regulating SPARC translation in wound healing process. Methods: The morphology, wound healing rate of the wounds and Ki67 positive rate in mouse wound healing models were assessed by H&E staining and immunohistochemistry (IHC). The binding of IGF2BP2 and SPARC was verified by RNA pull-down. Adipose-derived stromal cells (ADSCs) were isolated and verified. The Evs from ADSCs (ADSC-Evs) were analyzed. Results: Overexpression of SPARC can promote the wound healing process in mouse models. IGF2BP2 can elevate SPARC expression to promote the proliferation and migration of HSFs. circ-Amotl1 in ADSC-Evs can increase SPARC expression by binding IGF2BP2 to promote the proliferation and migration of HSFs. Conclusion: ADSC-Evs derived circ-Amotl1 can bind IGF2BP2 to increase SPARC expression and further promote wound healing process.

9.
Biochem Biophys Res Commun ; 438(4): 607-12, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23942117

RESUMO

Arsenic exposure in humans causes a number of toxic manifestations in the skin including cutaneous neoplasm. However, the mechanism of these alterations remains elusive. Here, we provide novel observations that arsenic induced Hippo signaling pathway in the murine skin. This pathway plays crucial roles in determining organ size during the embryonic development and if aberrantly activated in adults, contributes to the pathogenesis of epithelial neoplasm. Arsenic treatment enhanced phosphorylation-dependent activation of LATS1 kinase and other Hippo signaling regulatory proteins Sav1 and MOB1. Phospho-LATS kinase is known to catalyze the inactivation of a transcriptional co-activator, Yap. However, in arsenic-treated epidermis, we did not observed its inactivation. Thus, as expected, unphosphorylated-Yap was translocated to the nucleus in arsenic-treated epidermis. Yap by binding to the transcription factors TEADs induces transcription of its target genes. Consistently, an up-regulation of Yap-dependent target genes Cyr61, Gli2, Ankrd1 and Ctgf was observed in the skin of arsenic-treated mice. Phosphorylated Yap is important in regulating tight and adherens junctions through its binding to αCatenin. We found disruption of these junctions in the arsenic-treated mouse skin despite an increase in αCatenin. These data provide evidence that arsenic-induced canonical Hippo signaling pathway and Yap-mediated disruption of tight and adherens junctions are independently regulated. These effects together may contribute to the carcinogenic effects of arsenic in the skin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arsênio/efeitos adversos , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Via de Sinalização Hippo , Camundongos , Camundongos Pelados , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Pele/metabolismo , Ativação Transcricional , Regulação para Cima/efeitos dos fármacos , Proteínas de Sinalização YAP
10.
Cell Signal ; 111: 110853, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586467

RESUMO

OBJECTIVE: To evaluate the effects and possible mechanisms of circular RNAs (circRNAs) on diabetic myocardial fibrosis (DMF). METHODS: We used an in vivo mice model of streptozotocin (STZ)-induced diabetes and conducted in vitro studies using cultured mouse cardiac fibroblast cells (CFs). RESULTS: We found that the expression of circ-AMOTL1 was significantly upregulated in the myocardial tissue of diabetic mice compared to that in normal tissues. Inhibition of circ-AMOTL1 improved cardiac function in mice with type I diabetes and significantly repressed STZ-induced myocardial mesenchymal and perivascular fibrosis. In addition, silencing circ-AMOTL1 inhibited cell proliferation, decreased the expression levels of TGF-ß1, collagen 1, collagen III, and α-SMA, and reduced the levels of ROS and NO in HG-treated CFs. Our data also indicated that silencing circ-AMOTL1 significantly reduced the expression of myristoylated alanine-rich C-kinase substrate (MARCKS). Finally, circ-AMOTL1 combined with the RNA-binding protein EIF4A3 to improve MARCKS stability. Moreover, co-transfection with si-circ-AMOTL1 and MARCKS reversed the effects of si-circ-AMOTL1 on cell proliferation, fibrotic marker proteins, and ROS and NO levels in vitro. CONCLUSION: Our data suggest that circ-AMOTL1 plays a key role in STZ-induced DMF by modulating MARCKS, and that targeting circ-AMOTL1 may be a potential strategy to treat DMF.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , MicroRNAs , Camundongos , Animais , Cardiomiopatias Diabéticas/genética , Diabetes Mellitus Experimental/metabolismo , Espécies Reativas de Oxigênio , Fibrose , Proliferação de Células , Colágeno , MicroRNAs/metabolismo
11.
Eur J Med Genet ; 65(11): 104623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116699

RESUMO

AMOTL1 is a member of the Motin protein family and localizes to tight junctions and is involved in cell polarity and paracellular permeability. Pathological variants have been reported in three patients from two separate families in recent years. The clinical spectrum includes cleft lip and palate along with a high incidence of congenital cardiac disease and ear malformations. We report a case of AMOTL1 pathogenic variant in a 11-year-old male patient with nonspecific and chronic liver dysfunction accompanied by persistently elevated liver enzymes since early infancy. Liver biopsy at 8 years of age revealed a mildly dilated central vein and sinusoid with no specific etiology. Liver dysfunction is not a known clinical feature of AMOTL1 malfunction. However, given that the protein is known to be involved in angiogenesis, it may be inferred that abnormalities in this process may lead to liver dysfunction. This is the first report of liver dysfunction identified in a patient with AMOTL1 malfunction, which will shed light on other putative functions of the protein.


Assuntos
Fenda Labial , Fissura Palatina , Hepatopatias , Angiomotinas , Criança , Fenda Labial/complicações , Fissura Palatina/complicações , Humanos , Hepatopatias/genética , Masculino , Proteínas de Membrana/metabolismo
12.
Curr Res Struct Biol ; 4: 21-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036934

RESUMO

The modulation of protein-protein interactions (PPIs) has developed into a well-established field of drug discovery. Despite the advances achieved in the field, many PPIs are still deemed as 'undruggable' targets and the design of PPIs stabilizers remains a significant challenge. The application of fragment-based methods for the identification of drug leads and to evaluate the 'tractability' of the desired protein target has seen a remarkable development in recent years. In this study, we explore the molecular characteristics of the 14-3-3/Amot-p130 PPI and the conceptual possibility of targeting this interface using X-ray crystallography fragment-based screening. We report the first structural elucidation of the 14-3-3 binding motif of Amot-p130 and the characterization of the binding mode and affinities involved. We made use of fragments to probe the 'ligandability' of the 14-3-3/Amot-p130 composite binding pocket. Here we disclose initial hits with promising stabilizing activity and an early-stage selectivity toward the Amot-p130 motifs over other representatives 14-3-3 partners. Our findings highlight the potential of using fragments to characterize and explore proteins' surfaces and might provide a starting point toward the development of small molecules capable of acting as molecular glues.

13.
Mol Ther Nucleic Acids ; 19: 50-60, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31812104

RESUMO

Cervical cancer is acknowledged as the most prevalent gynecological tumor and a severe public issue that threatens female health, resulting from its high incidence and fatality rate. Surging evidence have shown that circular RNAs (circRNAs) play significant roles in the initiation and progression of various malignancies. Although circAMOTL1 has been testified to execute oncogenic properties in breast cancer and prostate cancer, literature on its function and regulatory mechanism in cervical cancer development is still scanty. Using a bioinformatics analysis, we found circ_0004214 was a circular form of AMOTL1. Through qRT-PCR analysis, circAMOTL1 and its host gene AMOTL1 were both upregulated in cervical cancer tissues and closely correlated with poor prognosis of cervical cancer. Gain- or loss-of-function assays and in vivo experiments demonstrated that AMOTL1 promoted cervical cancer cell growth both in vitro and in vivo. Mechanically, circAMOTL1 served as a competing endogenous RNA (ceRNA) to prompt the expression of AMOTL1 through sponging miR-485-5p. Rescue assays revealed that miR-485-5p/AMOTL1 axis was involved in circ_AMOTL1-mediated cervical cancer progression. Our findings provide a better understanding of the molecular mechanism underlying circAMOTL1 in cervical cancer and indicated circAMOTL1/miR-485-5p/AMOTL1 as a promising novel therapeutic strategy for the treatment of this disease.

14.
Cancer Manag Res ; 12: 7219-7230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884340

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) may develop from a variety of oral potentially malignant disorders, but the mechanism of malignant transformation is still unknown. Among them, oral lichen planus (OLP) has a high prevalence. Previous studies have shown that α-enolase (ENO1) can promote cell proliferation and play an important role in tumorigenesis. In this study, we aim to explore the mechanism of ENO1 regulation in the process of OSCC tumorigenesis from OLP. METHODS: ENO1 expression in tissues was determined by real-time quantitative PCR and immunohistochemistry. ENO1 was knocked down in cal-27 to observe the change in cell proliferation. Then, RNA-seq and bioinformatics analyses were conducted between OLP and OSCC samples. The expression of circ-AMOTL1, miRNA-22-3p, and miRNA-1294 was assessed using the real-time quantitative PCR. With knockdown and overexpression of circ-AMOTL1 in vitro, the change of ENO1 in the mRNA level was also assessed. RESULTS: ENO1 was enhanced in the OSCC samples in comparison with OLP. Immunohistochemistry and real-time quantitative PCR results showed that ENO1 was significantly higher in OSCC tissue than in the OLP group, with a statistically significant difference (p<0.05). When ENO1 was knocked down in cal-27, cell proliferation was inhibited (p<0.05). The expression of miR-22-3p and miR-1294 was decreased in OSCC tissues, whereas ENO1 and circ-AMOTL1 increased. In an in vitro study, knockdown of circ-AMOTL1 resulted in a decrease of ENO1, while overexpression of circ-AMOTL1 led to an increase of ENO1 in the mRNA level. CONCLUSION: We confirmed that ENO1 expression was elevated in OSCC and increased cell proliferation. In an in vitro study, ENO1 expression was promoted by circ-AMOTL1. ENO1 may play a role as a tumor-promoting gene in OSCC through the circ-AMOTL1/miR-22-3p/miR-1294 network. These novel findings may shed further light on the pathogenesis from OLP to OSCC and the potential precursor markers.

15.
Viruses ; 11(2)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30708959

RESUMO

To define the links between paramyxovirus budding and cellular ESCRT machinery, we previously identified angiomotin-like 1 (AMOTL1) in a screen for host factors that bind to the matrix (M) protein of parainfluenza virus 5 (PIV5). This protein harbors three L/PPXY sequences, allowing it to interact with WW domain containing proteins including NEDD4 family members. We hypothesize that paramyxoviruses use AMOTL1 as a linker to indirectly recruit the same NEDD4 ubiquitin ligases for budding that other enveloped viruses recruit directly through their PPXY late domains. In support of this hypothesis, we found that AMOTL1 could link together M proteins and NEDD4 family proteins in three-way co-IP experiments. Both PIV5 and mumps virus M proteins could be linked to the NEDD4 family proteins NEDD4-1, NEDD4L, and NEDL1, provided that AMOTL1 was co-expressed as a bridging protein. AMOT and AMOTL2 could not substitute for AMOTL1, as they lacked the ability to bind with paramyxovirus M proteins. Attachment of a PPXY late domain sequence to PIV5 M protein obviated the need for AMOTL1 as a linker between M and NEDD4 proteins. Together, these results suggest a novel host factor recruitment strategy for paramyxoviruses to achieve particle release.


Assuntos
Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Vírus da Parainfluenza 5/fisiologia , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus , Angiomotinas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Ligação Proteica , Infecções por Rubulavirus , Ubiquitinação , Proteínas da Matriz Viral/genética
16.
Theranostics ; 7(16): 3842-3855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109781

RESUMO

As central nodes in cardiomyocyte signaling, nuclear AKT appears to play a cardio-protective role in cardiovascular disease. Here we describe a circular RNA, circ-Amotl1 that is highly expressed in neonatal human cardiac tissue, and potentiates AKT-enhanced cardiomyocyte survival. We hypothesize that circ-Amotl1 binds to PDK1 and AKT1, leading to AKT1 phosphorylation and nuclear translocation. In primary cardiomyocytes, epithelial cells, and endothelial cells, we found that forced circ-Amotl1 expression increased the nuclear fraction of pAKT. We further detected increased nuclear pAKT in circ-Amotl1-treated hearts. In vivo, circ-Amotl1 expression was also found to be protective against Doxorubicin (Dox)-induced cardiomyopathy. Putative PDK1- and AKT1-binding sites were then identified in silico. Blocking oligonucleotides could reverse the effects of exogenous circ-Amotl1. We conclude that circ-Amotl1 physically binds to both PDK1 and AKT1, facilitating the cardio-protective nuclear translocation of pAKT.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Humanos , Técnicas In Vitro , Recém-Nascido , Camundongos , MicroRNAs/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Circular , Ratos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
17.
Cell Signal ; 28(11): 1642-51, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27498087

RESUMO

Cell-to-cell junctions are critical for the formation of endothelial barriers, and its disorganization is required for sprouting angiogenesis. Members of the angiomotin (AMOT) family have emerged as key regulators in the control of endothelial cell (EC) junction stability and permeability. However, the underlying mechanism by which the AMOT family is regulated in ECs remains unclear. Here we report that HECW2, a novel EC ubiquitin E3 ligase, plays a critical role in stabilizing endothelial cell-to-cell junctions by regulating AMOT-like 1 (AMOTL1) stability. HECW2 physically interacts with AMOTL1 and enhances its stability via lysine 63-linked ubiquitination. HECW2 depletion in human ECs decreases AMOTL1 stability, loosening the cell-to-cell junctions and altering subcellular localization of yes-associated protein (YAP) from cytoplasm into the nucleus. Knockdown of HECW2 also results in increased angiogenic sprouting, and this effect is blocked by depletion of ANG-2, a potential target of YAP. These results demonstrate that HECW2 is a novel regulator of angiogenesis and provide new insights into the mechanisms coordinating junction stability and angiogenic activation in ECs.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Junções Intercelulares/metabolismo , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiomotinas , Angiopoietina-2/metabolismo , Deleção de Genes , Humanos , Neovascularização Fisiológica , Fosfoproteínas/metabolismo , Poliubiquitina/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Fatores de Transcrição , Proteínas de Sinalização YAP
18.
Cancer Lett ; 355(1): 148-58, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25218344

RESUMO

miRNAs have extensive functions in differentiation, metabolism, programmed cell death, and tumor metastasis by post-transcriptional regulation. Vasculogenic mimicry is an important pathway in tumor metastasis. Many factors can regulate vasculogenic mimicry, including miRNAs. In previous studies, miR-124 was found to repress proliferation and metastasis in different types of cancers, but whether it functions in cervical cancer remained unknown. Here, we demonstrate that miR-124 can repress vasculogenic mimicry, migration and invasion in HeLa and C33A cells in vitro. Furthermore, we reveal that the effect of miR-124 on vasculogenic mimicry, migration and invasion results from its interaction with AmotL1. MiR-124 regulates AmotL1 negatively by targeting its 3'untranslated region (3'UTR). We found that miR-124 can repress the EMT process. Together, these results improve our understanding of the function of miR-124 in tumor metastasis and will help to provide new potential target sites for cervical cancer treatment.


Assuntos
Carcinoma/metabolismo , Movimento Celular , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Mimetismo Molecular , Neovascularização Patológica , Neoplasias do Colo do Útero/metabolismo , Regiões 3' não Traduzidas , Angiomotinas , Sítios de Ligação , Carcinoma/irrigação sanguínea , Carcinoma/genética , Carcinoma/secundário , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Proteínas de Membrana/genética , MicroRNAs/genética , Invasividade Neoplásica , Transdução de Sinais , Transfecção , Neoplasias do Colo do Útero/irrigação sanguínea , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA