Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochim Biophys Acta ; 1833(12): 3155-3165, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24035922

RESUMO

This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.


Assuntos
Amiloide/toxicidade , Cálcio/metabolismo , Cerebelo/citologia , Espaço Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/toxicidade , Animais , Apoptose/efeitos dos fármacos , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Gangliosídeo G(M1)/farmacologia , Microscopia de Força Atômica , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Espectrometria de Fluorescência , Fatores de Tempo
2.
Neuropharmacology ; 222: 109308, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341809

RESUMO

Ketamine exerts rapid and long-lasting antidepressant effects in patients with treatment-resistant depression. However, its clinical use is limited by its undesirable psychotomimetic side effects. Accumulating evidence from preclinical studies has shown that the antidepressant effects of ketamine are dependent on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) activation, which triggers activation of the mechanistic target of rapamycin pathway and brain-derived neurotrophic factor release. Thus, AMPA-R has emerged as a promising new target for novel antidepressants with a rapid onset of action. However, almost all known AMPA-R potentiators carry the risk of a narrow bell-shaped dose-response curve and a poor safety margin against seizures. Our data suggest that agonistic activity is not only related to the risks of bell-shaped dose-response curves and seizures but also to the reduced synaptic transmission and procognitive effects of AMPA-R potentiators. In this review, we describe our original screening approach that led to the discovery of an investigational AMPA-R potentiator with low agonistic activity, TAK-653. We further review the in vitro and in vivo profiles of TAK-653, including its procognitive and antidepressant-like effects, as well as its safety profile, in comparison with known AMPA-R potentiators with agonistic activity and AMPA, an AMPA-R agonist. The low agnostic activity of TAK-653 may overcome limitations of known AMPA-R potentiators. This article is part of the Special Issue on 'Ketamine and its Metabolites'.


Assuntos
Ketamina , Humanos , Ketamina/farmacologia , Ketamina/uso terapêutico , Receptores de AMPA , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Antidepressivos/farmacologia , Convulsões/tratamento farmacológico
3.
Aging Cell ; 22(8): e13867, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37254617

RESUMO

"Lipid raft aging" in nerve cells represents an early event in the development of aging-related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n-3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of "lipid rafts aging" in old mice fed control diets, consisting in depletion of n-3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non-raft (R/NR) distribution of AMPA-R and mGluR5. Administration of the n-3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA-R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid-sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age-associated cognitive decline.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Feminino , Camundongos , Animais , Hipocampo , Microdomínios da Membrana/química , Microdomínios da Membrana/fisiologia , Dieta
4.
Aging Cell ; 20(9): e13455, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34409748

RESUMO

Intracellular amyloid beta oligomer (iAßo) accumulation and neuronal hyperexcitability are two crucial events at early stages of Alzheimer's disease (AD). However, to date, no mechanism linking iAßo with an increase in neuronal excitability has been reported. Here, the effects of human AD brain-derived (h-iAßo) and synthetic (iAßo) peptides on synaptic currents and action potential firing were investigated in hippocampal neurons. Starting from 500 pM, iAßo rapidly increased the frequency of synaptic currents and higher concentrations potentiated the AMPA receptor-mediated current. Both effects were PKC-dependent. Parallel recordings of synaptic currents and nitric oxide (NO)-associated fluorescence showed that the increased frequency, related to pre-synaptic release, was dependent on a NO-mediated retrograde signaling. Moreover, increased synchronization in NO production was also observed in neurons neighboring those dialyzed with iAßo, indicating that iAßo can increase network excitability at a distance. Current-clamp recordings suggested that iAßo increased neuronal excitability via AMPA-driven synaptic activity without altering membrane intrinsic properties. These results strongly indicate that iAßo causes functional spreading of hyperexcitability through a synaptic-driven mechanism and offers an important neuropathological significance to intracellular species in the initial stages of AD, which include brain hyperexcitability and seizures.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Animais , Feminino , Humanos , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Ratos Wistar
5.
Neuron ; 98(4): 783-800.e4, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29706584

RESUMO

How signaling molecules achieve signal diversity and specificity is a long-standing cell biology question. Here we report the development of a targeted delivery method that permits specific expression of homologous Ras-family small GTPases (i.e., Ras, Rap2, and Rap1) in different subcellular microdomains, including the endoplasmic reticulum, lipid rafts, bulk membrane, lysosomes, and Golgi complex, in rodent hippocampal CA1 neurons. The microdomain-targeted delivery, combined with multicolor fluorescence protein tagging and high-resolution dual-quintuple simultaneous patch-clamp recordings, allows systematic analysis of microdomain-specific signaling. The analysis shows that Ras signals long-term potentiation via endoplasmic reticulum PI3K and lipid raft ERK, whereas Rap2 and Rap1 signal depotentiation and long-term depression via bulk membrane JNK and lysosome p38MAPK, respectively. These results establish an effective subcellular microdomain-specific targeted delivery method and unveil subcellular microdomain-specific signaling as the mechanism for homologous Ras and Rap to achieve signal diversity and specificity to control multiple forms of synaptic plasticity.


Assuntos
Plasticidade Neuronal , Neurônios/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Retículo Endoplasmático/metabolismo , Potenciais Pós-Sinápticos Excitadores , Complexo de Golgi/metabolismo , Técnicas In Vitro , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Lisossomos/metabolismo , Sistema de Sinalização das MAP Quinases , Microdomínios da Membrana/metabolismo , Camundongos , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Receptores de AMPA/metabolismo , Transdução de Sinais , Transmissão Sináptica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Small GTPases ; 7(4): 257-264, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27739918

RESUMO

The IQSec/BRAG proteins are a subfamily of Arf-nucleotide exchange factors. Since their discovery almost 15 y ago, the BRAGs have been reported to be involved in diverse physiological processes from myoblast fusion, neuronal pathfinding and angiogenesis, to pathophysiological processes including X-linked intellectual disability and tumor metastasis. In this review we will address how, in each of these situations, the BRAGs are thought to regulate the surface levels of adhesive and signaling receptors. While in most cases BRAGs are thought to enhance the endocytosis of these receptors, how they achieve this remains unclear. Similarly, while all 3 BRAG proteins contain calmodulin-binding IQ motifs, little is known about how their activities might be regulated by calcium. These are some of the questions that are likely to form the basis of future research.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mioblastos/fisiologia , Neovascularização Fisiológica , Neurônios/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/metabolismo , Endocitose , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Ligação Proteica , Transdução de Sinais
7.
Antibodies (Basel) ; 5(2)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31557990

RESUMO

Little is known about the etiology of neuropsychiatric disorders. The identification of autoantibodies targeting the N-methyl-d-aspartate receptor (NMDA-R), which causes neurological and psychiatric symptoms, has reinvigorated the hypothesis that other patient subgroups may also suffer from an underlying autoimmune condition. In recent years, a wide range of neuropsychiatric diseases and autoantibodies targeting ion-channels or neuronal receptors including NMDA-R, voltage gated potassium channel complex (VGKC complex), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R), γ-aminobutyric acid receptor (GABA-R) and dopamine receptor (DR) were studied and conflicting reports have been published regarding the seroprevalence of these autoantibodies. A clear causative role of autoantibodies on psychiatric symptoms has as yet only been shown for the NMDA-R. Several other autoantibodies have been related to the presence of certain symptoms and antibody effector mechanisms have been proposed. However, extensive clinical studies with large multicenter efforts to standardize diagnostic procedures for autoimmune etiology and animal studies are needed to confirm the pathogenicity of these autoantibodies. In this review, we discuss the current knowledge of neuronal autoantibodies in the major neuropsychiatric disorders: psychotic, major depression, autism spectrum, obsessive-compulsive and attention-deficit/hyperactivity disorders.

8.
Eur Neuropsychopharmacol ; 25(10): 1787-802, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26235956

RESUMO

The enzyme methylenetetrahydrofolate-reductase (MTHFR) is part of the homocysteine and folate metabolic pathways. In utero, Mthfr-deficient environment has been reported as a risk factor for neurodevelopmental disorders such as autism and neural tube defects. Neonatal disruption of the GABAergic system is also associated with behavioral outcomes. The interaction between Mthfr deficiency and neonatal exposure to the GABA-potentiating drug vigabatrin (GVG) in mice alters anxiety, memory, and social behavior in a gender-dependent manner. In addition, a gender-dependent enhancement of proteins implicated in excitatory synapse plasticity in the cerebral cortex was shown. Here we show that in utero MTHFR deficiency is sufficient to alter the levels of glutamate receptor subunits GluR1, GluR2, and NR2B in the cerebral cortex and hippocampus of adult offspring with a WT genotype. In addition, FMRP1, CAMKII α and γ, and NLG1 levels in WT offspring were vulnerable to the in utero genotype. These effects depend on brain region and the cellular compartment tested. The effect of in utero MTHFR deficiency varies with the age of neonatal GVG exposure to modify GluR1, NR2A, reelin, CAMKII α, and NLG1 levels. These changes in molecular composition of the glutamatergic synapse were associated with increased anxiety-like behavior. Complex, multifactorial disorders of the nervous system show significant association with several genetic and environmental factors. Our data exemplify the contribution of an in utero MTHFR-deficient environment and early exposure to an antiepileptic drug to the basal composition of the glutamatergic synapses. The robust effect is expected to alter synapse function and plasticity and the cortico-hippocampal circuitry.


Assuntos
Córtex Cerebral/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Vigabatrina/toxicidade , Animais , Anticonvulsivantes/toxicidade , Ansiedade/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Genótipo , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Distribuição Aleatória , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Reelina , Serina Endopeptidases/metabolismo , Sinapses/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA