Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
FASEB J ; 38(11): e23714, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38814727

RESUMO

Preeclampsia (PE) is a complex human-specific complication frequently associated with placental pathology. The local renin-angiotensin system (RAS) in the human placenta, which plays a crucial role in regulating placental function, has been extensively documented. Glucocorticoids (GCs) are a class of steroid hormones. PE cases often have abnormalities in GCs levels and placental GCs barrier. Despite extensive speculation, there is currently no robust evidence indicating that GCs regulate placental RAS. This study aims to investigate these potential relationships. Plasma and placental samples were collected from both normal and PE pregnancies. The levels of angiotensin-converting enzyme (ACE), angiotensin II (Ang II), cortisol, and 11ß-hydroxysteroid dehydrogenases (11ßHSD) were analyzed. In PE placentas, cortisol, ACE, and Ang II levels were elevated, while 11ßHSD2 expression was reduced. Interestingly, a positive correlation was observed between ACE and cortisol levels in the placenta. A significant inverse correlation was found between the methylation statuses within the 11ßHSD2 gene promoter and its expression, meanwhile, 11ßHSD2 expression was negatively correlated with cortisol and ACE levels. In vitro experiments using placental trophoblast cells confirmed that active GCs can stimulate ACE transcription and expression through the GR pathway. Furthermore, 11ßHSD2 knockdown could enhance this activating effect. An in vivo study using a rat model of intrauterine GCs overexposure during mid-to-late gestation suggested that excess GCs in utero lead to increased ACE and Ang II levels in the placenta. Collectively, this study provides the first evidence of the relationships between 11ßHSD2 expression, GCs barrier, ACE, and Ang II levels in the placenta. It not only contributes to understanding the pathological features of the placental GCs barrier and RAS under PE conditions, also provides important information for revealing the pathological mechanism of PE.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Angiotensina II , Metilação de DNA , Peptidil Dipeptidase A , Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Humanos , Angiotensina II/metabolismo , Placenta/metabolismo , Animais , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Ratos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/genética , Adulto , Regulação para Baixo , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiologia , Hidrocortisona/metabolismo , Ratos Sprague-Dawley
2.
Med Res Rev ; 44(2): 587-605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947345

RESUMO

The renin-angiotensin system (RAS) has been widely known as a circulating endocrine system involved in the control of blood pressure. However, components of RAS have been found to be localized in rather unexpected sites in the body including the kidneys, brain, bone marrow, immune cells, and reproductive system. These discoveries have led to steady, growing evidence of the existence of independent tissue RAS specific to several parts of the body. It is important to understand how RAS regulates these systems for a variety of reasons: It gives a better overall picture of human physiology, helps to understand and mitigate the unintended consequences of RAS-inhibiting or activating drugs, and sets the stage for potential new therapies for a variety of ailments. This review fulfills the need for an updated overview of knowledge about local tissue RAS in several bodily systems, including their components, functions, and medical implications.


Assuntos
Rim , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Rim/metabolismo , Angiotensina II/metabolismo , Peptidil Dipeptidase A/metabolismo
3.
J Recept Signal Transduct Res ; 44(1): 35-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38666646

RESUMO

BACKGROUND: The pineal product melatonin (MEL) modulates blood vessels through G protein-coupled receptors (GPCRs) called melatonin type 1 receptor (MT1R) and melatonin type 2 receptor (MT2R), in that order. The renin-angiotensin system (RAS), which breaks down angiotensin II (Ang II) to create Ang 1-7, is thought to be mostly controlled by angiotensin-converting enzyme-2 (ACE2). AIM: The current work examines the involvement of ACE2 inhibitor, MEL, and ramelteon (RAM) in the vascular response to Ang II activities in the endothelial denuded (E-) and intact (E+) rat isolated thoracic aortic rings. METHOD: The isometric tension was measured to evaluate the vascular Ang II contractility using dose response curve (DRC). RESULTS: MEL and RAM caused a rightward shift of Ang II in endothelium E + and endothelium E- aorta. CONCLUSION: According to the current study, the distribution of MEL receptors and the endothelium's condition are related to the vasomodulatory effect of MEL and ACE2 on Ang II attenuation. These physiological interactions can control vascular tone and increase Ang II reactivity denude endothelial layaer.


Assuntos
Angiotensina II , Enzima de Conversão de Angiotensina 2 , Melatonina , Animais , Melatonina/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Ratos , Enzima de Conversão de Angiotensina 2/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Masculino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Peptidil Dipeptidase A/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/antagonistas & inibidores , Inibidores da Enzima Conversora de Angiotensina/farmacologia
4.
Circ Res ; 130(11): 1662-1681, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35440172

RESUMO

BACKGROUND: Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS: TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS: TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS: CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.


Assuntos
Linfócitos T CD4-Positivos , Hipertensão , Angiotensina II/farmacologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce , Fibrose , Humanos , Interleucina-9 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA
5.
Acta Pharmacol Sin ; 45(4): 765-776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110583

RESUMO

Hypertensive renal disease (HRD) contributes to the progression of kidney dysfunction and ultimately leads to end-stage renal disease. Understanding the mechanisms underlying HRD is critical for the development of therapeutic strategies. Deubiquitinating enzymes (DUBs) have been recently highlighted in renal pathophysiology. In this study, we investigated the role of a DUB, OTU Domain-Containing Protein 1 (OTUD1), in HRD models. HRD was induced in wild-type or Otud1 knockout mice by chronic infusion of angiotensin II (Ang II, 1 µg/kg per min) through a micro-osmotic pump for 4 weeks. We found that OTUD1 expression levels were significantly elevated in the kidney tissues of Ang II-treated mice. Otud1 knockout significantly ameliorated Ang II-induced HRD, whereas OTUD1 overexpression exacerbated Ang II-induced kidney damage and fibrosis. Similar results were observed in TCMK-1 cells but not in SV40 MES-13 cells following Ang II (1 µM) treatment. In Ang II-challenged TCMK-1 cells, we demonstrated that OTUD1 bound to CDK9 and induced CDK9 deubiquitination: OTUD1 catalyzed K63 deubiquitination on CDK9 with its Cys320 playing a critical role, promoting CDK9 phosphorylation and activation to induce inflammatory responses and fibrosis in kidney epithelial cells. Administration of a CDK9 inhibitor NVP-2 significantly ameliorated Ang II-induced HRD in mice. This study demonstrates that OTUD1 mediates HRD by targeting CDK9 in kidney epithelial cells, suggesting OTUD1 is a potential target in treating this disease.


Assuntos
Hipertensão Renal , Rim , Nefrite , Proteases Específicas de Ubiquitina , Animais , Camundongos , Angiotensina II/metabolismo , Células Epiteliais/metabolismo , Fibrose , Hipertensão Renal/enzimologia , Hipertensão Renal/patologia , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/enzimologia , Nefrite/patologia , Proteases Específicas de Ubiquitina/metabolismo , Modelos Animais de Doenças
6.
BMC Pulm Med ; 24(1): 137, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500104

RESUMO

BACKGROUND: Yanghe Pingchuan decoction (YPD) has been used for asthma treatment for many years in China. We sought to understand the mechanism of YPD, and find more potential targets for YPD-based treatment of asthma. METHODS: An ovalbumin-induced asthma model in rats was created. Staining (hematoxylin and eosin, Masson) was used to evaluate the treatment effect of YPD. RNA-sequencing was carried out to analyze global gene expression, and differentially expressed genes (DEGs) were identified. Analysis of the functional enrichment of genes was done using the Gene Ontology database (GO). Analysis of signaling-pathway enrichment of genes was done using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Real-time reverse transcription-quantitative polymerase chain reaction was undertaken to measure expression of DEGs. RESULTS: Pathology showed that YPD had an improvement effect on rats with asthma. RNA-sequencing showed that YPD led to upregulated and downregulated expression of many genes. The YPD-based control of asthma pathogenesis may be related to calcium ion (Ca2+) binding, inorganic cation transmembrane transporter activity, microtubule motor activity, and control of canonical signaling (e.g., peroxisome proliferator-activated receptor, calcium, cyclic adenosine monophosphate). Enrichment analyses suggested that asthma pathogenesis may be related to Ca2 + binding and contraction of vascular smooth muscle. A validation experiment showed that YPD could reduce the Ca2 + concentration by inhibiting the Angiopoietin-II (Ang-II)/Phospholipase (PLA)/calmodulin (CaM0 signaling axis. CONCLUSION: Control of asthma pathogenesis by YPD may be related to inhibition of the Ang-II/PLA/CaM signaling axis, reduction of the Ca2+ concentration, and relaxation of airway smooth muscle (ASM).


Assuntos
Asma , Cálcio , Medicamentos de Ervas Chinesas , Ratos , Animais , Cálcio/efeitos adversos , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , RNA/efeitos adversos , Expressão Gênica , Poliésteres/efeitos adversos
7.
Biochem Cell Biol ; 101(1): 87-100, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469862

RESUMO

Myocardial fibrosis is a common pathological companion of various cardiovascular diseases. To date, the role of enhancer of zeste homolog 2 (EZH2) in cancer has been well demonstrated including in renal carcinoma and its inhibitors have entered the stage of phase I/II clinical trials. However, the precise mechanism of EZH2 in cardiac diseases is largely unclear. In the current study, we first found that EZH2 expression was increased in Ang-II-treated cardiac fibroblasts (CFs) and mouse heart homogenates following isoproterenol (ISO) administration for 21 days, respectively. Ang-II induces CFs activation and increased collagen-I, collagen-III, α-SMA, EZH2, and trimethylates lysine 27 on histone 3 (H3K27me3) expressions can be reversed by EZH2 inhibitor (GSK126) and EZH2 siRNA. The ISO-induced cardiac hypertrophy, and fibrosis in vivo which were also related to the upregulation of EZH2 and its downstream target, H3K27me3, could be recovered by GSK126. Furthermore, the upregulation of EZH2 induces the decrease of paired box 6 (PAX6) and C-X-C motif ligand 10 (CXCL10) "which" were also reversed by GSK126 treatment. In summary, the present evidence strongly suggests that GSK126 could be a therapeutic intervention, blunting the development and progression of myocardial fibrosis in an EZH2-PAX6-CXCL10-dependent manner.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Animais , Camundongos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Fibrose , Histonas/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo
8.
Immunopharmacol Immunotoxicol ; 45(3): 304-316, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36326099

RESUMO

OBJECTIVES: Canagliflozin (CAN), a sodium-glucose co-transporter 2 inhibitor, is an anti-hyperglycemic drug that has been approved to treat diabetes. This study evaluated the beneficial effects of CAN on cerebral cortex intoxication induced by cisplatin (CIS). MATERIALS AND METHODS: Rats were allocated into four groups: normal control, CAN (10 mg/kg, P.O.) for 10 days, CIS (8 mg/kg, i.p.) as a single dose on the 5th day of the experiment, and CAN + CIS group. RESULTS: In comparison with CIS control rats, CAN significantly mitigated CIS-induced cortical changes in rats' behavior in the open field and forced swimming assessment as well as histological structure. Biochemically, CAN administration efficiently decreased lipid peroxidation biomarkers MDA and boosted the antioxidant status via a remarkable increase in the cortical reduced glutathione (GSH) content as well as enzymatic activities of antioxidant enzymes superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase (CAT), and glutathione peroxidase (GPx) mediated by up-regulation of heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptors (PPARγ), and silent information regulator (SIRT1)/forkhead box-O3 (FOXO-3) signals. Additionally, pretreatment with CAN significantly decreased cortical myeloperoxidase (MPO), nitrite (NO2-), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) levels. At the same time, it elevated the IL-10 level associated with the downregulation of Jun N-terminal kinase (JNK)/activator protein 1 (AP-1), TLR4/inducible nitric oxide synthase (iNOS)/nitric oxide (NO), and Ang II/Ang 1-7 signals. CONCLUSIONS: Due to the potent antioxidant and anti-inflammatory properties of CAN, our findings showed that CAN could be a good candidate for the protection against CIS-induced cortical intoxication in the patient receiving CIS.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Animais , Ratos , Antioxidantes/metabolismo , Lesões Encefálicas/tratamento farmacológico , Canagliflozina/farmacologia , Córtex Cerebral/metabolismo , Cisplatino/efeitos adversos , Heme Oxigenase-1 , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Sirtuína 1/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo
9.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047470

RESUMO

Kidney injury molecule-1 (KIM-1) is a biomarker of renal injury and a predictor of cardiovascular disease. Aldosterone, via activation of the mineralocorticoid receptor, is linked to cardiac and renal injury. However, the impact of mineralocorticoid receptor activation and blockade on KIM-1 is uncertain. We investigated whether renal KIM-1 is increased in a cardiorenal injury model induced by L-NAME/ANG II, and whether mineralocorticoid receptor blockade prevents the increase in KIM-1. Since statin use is associated with lower aldosterone, we also investigated whether administering eiSther a lipophilic statin (simvastatin) or a hydrophilic statin (pravastatin) prevents the increase in renal KIM-1. Female Wistar rats (8-10 week old), consuming a high salt diet (1.6% Na+), were randomized to the following conditions for 14 days: control; L-NAME (0.2 mg/mL in drinking water)/ANG II (225 ug/kg/day on days 12-14); L-NAME/ANG II + eplerenone (100 mg/kg/day p.o.); L-NAME/ANG II + pravastatin (20 mg/kg/day p.o.); L-NAME/ANG II + simvastatin (20 mg/kg/day p.o.). Groups treated with L-NAME/ANG II had significantly higher blood pressure, plasma and urine aldosterone, cardiac injury/stroke composite score, and renal KIM-1 than the control group. Both eplerenone and simvastatin reduced 24-h urinary KIM-1 (p = 0.0046, p = 0.031, respectively) and renal KIM-1 immunostaining (p = 0.004, p = 0.037, respectively). Eplerenone also reduced renal KIM-1 mRNA expression (p = 0.012) and cardiac injury/stroke composite score (p = 0.04). Pravastatin did not affect these damage markers. The 24-h urinary KIM-1, renal KIM-1 immunostaining, and renal KIM-1 mRNA expression correlated with cardiac injury/stroke composite score (p < 0.0001, Spearman ranked correlation = 0.69, 0.66, 0.59, respectively). In conclusion, L-NAME/ANG II increases renal KIM-1 and both eplerenone and simvastatin blunt this increase in renal KIM-1.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hipertensão , Acidente Vascular Cerebral , Animais , Feminino , Ratos , Aldosterona/metabolismo , Angiotensina II/metabolismo , Pressão Sanguínea , Eplerenona/farmacologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipertensão/metabolismo , Rim/metabolismo , NG-Nitroarginina Metil Éster , Pravastatina/farmacologia , Ratos Wistar , Receptores de Mineralocorticoides , RNA Mensageiro/metabolismo , Sinvastatina
10.
Int Heart J ; 64(3): 470-482, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37197924

RESUMO

Long noncoding RNAs (lncRNAs) can serve as treatment targets for abdominal aortic aneurysms (AAAs). Nonetheless, the exact role of FGD5 antisense RNA 1 (FGD5-AS1) in AAAs is unclear. Therefore, this study investigated the contribution of FGD5-AS1 to AAA growth regulated by vascular smooth muscle cells (VSMCs) and its potential mechanisms. ApoE-/- mice were used to establish the angiotensin II (Ang II)-elicited AAA model. RNA pull-down assay and dual luciferase reporter assay (DLRA) in human VSMCs were used in examining the interactions between FGD5-AS1 and its downstream proteins or miRNA targets. FGD5-AS1 expression in the mouse Ang II perfusion group was dramatically increased relative to the PBS-infused group. In the mouse AAA model, FGD5-AS1 overexpression induced SMC apoptosis, thereby promoting AAA growth. miR-195-5p acts as a potential FGD5-AS1 downstream target, whereas FGD5-AS1 promotes MMP3 expression by inhibiting miR-195-5p expression, thereby inhibiting proliferation and promoting apoptosis of smooth muscle cells. LncRNA FGD5-AS1 is detrimental to the proliferation and survival of SMCs during AAA growth. Therefore, FGD5-AS1 could be a novel treatment target for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Metaloproteinase 3 da Matriz , RNA Longo não Codificante , Animais , Humanos , Camundongos , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Apoptose/genética , Proliferação de Células/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
Toxicol Mech Methods ; 33(6): 452-462, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36747322

RESUMO

Despite the great importance of amphotericin B for the management of life-threatening systemic fungal infections, its nephrotoxic effect restricts its repeated administration. This study was designed to examine the prospective modulatory effects of xanthenone, an ACE2 activator, against amphotericin B nephrotoxicity. Male Wistar rats were allocated into four groups; control (1st), Xanthenone (2nd), Amphotericin B (3rd), and Xanthenone + Amphotericin B (4th). The second and fourth groups received xanthenone (2 mg/kg; s.c.) daily for 14 consecutive days. Amphotericin B (18.5 mg/kg; i.p.) was administered to the third and fourth groups daily starting from day 8. After 2 weeks, samples were withdrawn for analysis. The histopathological findings, molecular and biochemical markers showed that amphotericin B caused marked renal injury. Pretreatment with xanthenone ameliorated amphotericin B-induced deterioration in kidney function biomarkers (creatinine, urea, cystatin C, KIM-1) and guarded against the disturbance of serum electrolytes (Na+, K+, Mg2+) due to amphotericin B-induced tubular dysfunction. Besides, the ACE2 activator xanthenone-balanced renal Ang-II/Ang-(1-7), and so the inflammatory signaling p38 MAPK/NF-κB p65 and its downstream inflammatory cytokines (TNF-α, IL-6) were attenuated. Meanwhile, the anti-oxidant signaling Nrf2/HO-1 and glutathione content were preserved, but the lipid peroxidation marker MDA was declined. These regulatory effects of xanthenone eventually enhanced Bcl-2 (anti-apoptotic), but reduced Bax (pro-apoptotic) and cleaved caspase-3 (apoptotic executioner) protein expressions. Collectively, the regulatory effects of xanthenone on renal Ang-II/Ang-(1-7) could at least partially contribute to the mitigation of amphotericin B nephrotoxicity by attenuating inflammatory signaling, oxidative stress, and apoptosis, thus improving the tolerability to amphotericin B.


Assuntos
Anfotericina B , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Proteína X Associada a bcl-2/metabolismo , Anfotericina B/toxicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Ratos Wistar , Caspase 3/metabolismo , Estudos Prospectivos , Rim , Estresse Oxidativo , Apoptose
12.
Cytokine ; 150: 155754, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808537

RESUMO

Extracellular sulfatases (sulfatase 1 and sulfatase 2) mediate up- or down-regulatory effects of cytokines on angiotensin II (Ang II)-induced expression of hypertensive mediators in hypertensive cells. The overproduction of transforming growth factor-ß1 (TGF-ß1) is associated with chronic hypertension. In this study, we examined the role of extracellular sulfatases on TGF-ß1-induced effects associated with the expression of mediators related to hypertension in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). First, TGF-ß1 increased the expression of 12-lipoxygenase (12-LO) and endothelin-1 (ET-1), inhibited dimethylarginine dimethylaminohydrolase-1 (DDAH-1) expression and showed additive effects on Ang II-induced 12-LO and ET-1 expression as well as Ang II-induced inhibition of DDAH-1 expression in SHR VSMCs. However, it had no effect on the expression of 12-LO, ET-1, and DDAH-1 in VSMCs from normotensive Wistar Kyoto rats. Downregulation of sulfatase 2 (Sulf2) inhibited all of these hypertensive effects caused by TGF-ß1, while sulfatase 1 (Sulf1) had no effect on these events in SHR VSMCs. All these hypertensive effects of TGF-ß1 were dependent on the Ang II subtype 1 receptor (AT1 R) pathway, and not on Ang II subtype 2 receptor (AT2 R). In addition, downregulation of Sulf2 inhibited the expression of TGF-ß1-induced AT1 R and the additive effect of TGF-ß1 on Ang II-induced AT1 R expression. Additionally, downregulation of Sulf2, but not Sulf1, abrogated TGF-ß1-induced inhibition of AMP-activated protein kinase (AMPK) activation and the additive effect of TGF-ß1 on Ang II-induced inhibition of AMPK activation via the AT1 R pathway. Moreover, TGF-ß1-induced VSMCs proliferation and the additive effect of TGF-ß1 on Ang II-induced VSMCs proliferation were abrogated in Sulf2 siRNA-transfected SHR VSMCs, while these effects were maintained in Sulf1 siRNA-transfected SHR VSMCs. The hypertensive effects of TGF-ß1 through the AT1 R pathway were mainly dependent on Sulf2 activity in SHR VSMCs. Taken together, these results suggest that Sulf2, but not Sulf1, plays a major role in mediating the increased effects of TGF-ß1 in hypertensive VSMCs.


Assuntos
Hipertensão , Músculo Liso Vascular , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Células Cultivadas , Hipertensão/metabolismo , Ratos , Ratos Endogâmicos SHR , Sulfatases/efeitos adversos , Sulfatases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
13.
Microvasc Res ; 142: 104348, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35245516

RESUMO

BACKGROUND: Retinoblastoma protein (Rb) supports vasoprotective E2F Transcription Factor 1 (E2f1)/Dihydrofolate Reductase (Dhfr) pathway activity in endothelial cells. Cyclin I (Ccni) promotes Cyclin-Dependent Kinase-5 (Cdk5)-mediated Rb phosphorylation. Therefore, we hypothesized that endothelial Ccni may regulate cardiovascular homeostasis, vessel remodeling, and abdominal aortic aneurysm (AAA) formation. METHODS: Aortic CCNI mRNA expression was analyzed in the Gene Expression Omnibus (GEO) GSE57691 cohort consisting of AAA patients (n = 39) and healthy controls (n = 10). We employed wild-type (WT) mice and endothelial Ccni knockout (Ccnifl/flTie2-Cre) mice to conduct in vivo and ex vivo experimentation using an Angiotensin (Ang) II hypertension model and a CaCl2 AAA model. Mice were assessed for Rb/E2f1/Dhfr signaling, biopterin (i.e., biopterin [B], dihydrobiopterin [BH2], and tetrahydrobiopterin [BH4]) production, cardiovascular homeostasis, vessel remodeling, and AAA formation. RESULTS: Aortic CCNI mRNA expression was downregulated in AAA patients. Both Ang II- and CaCl2-induced WT mice showed aortic Ccni upregulation coupled with vasculoprotective upregulation of Rb/E2f1/Dhfr signaling and biopterins. Endothelial Ccni knockout downregulated medial Rb/E2f1/Dhfr signaling and biopterins in Ang II-induced hypertensive mice, which exacerbated eNos uncoupling and H2O2 production. Endothelial Ccni knockout impaired in vivo hemodynamic responses and endothelium-dependent vasodilatation in ex vivo mesenteric arteries in response to Ang II. Endothelial Ccni knockout exacerbated mesenteric artery remodeling and AAA risk in response to Ang II and CaCl2. CONCLUSIONS: Endothelial Ccni acts as a critical negative regulator of eNos uncoupling-mediated ROS generation and thereby reduces vulnerability to hypertension-induced vascular remodeling and AAA development in mice.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Hipertensão , Remodelação Vascular , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controle , Biopterinas/metabolismo , Cloreto de Cálcio/metabolismo , Ciclina I/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
14.
Mol Biol Rep ; 49(3): 2119-2128, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35149934

RESUMO

BACKGROUND: Angiotensin II (Ang II) contributes to the progression of glomerulosclerosis, mainly by inducing podocyte injury. Convincing evidence indicates that the mTOR inhibitor rapamycin could play a fundamental role in protection against podocyte injury. Nestin, a major cytoskeletal protein, is stably expressed in podocytes and correlates with podocyte damage. The purpose of this study was to investigate the effect of rapamycin on podocyte injury induced by Ang II and to clarify the role and mechanism of nestin in the protective effect of rapamycin of podocyte injury. METHODS AND RESULTS: We established an Ang II perfusion animal model, and the effects of rapamycin treatment on podocytes were investigated in vivo. In vitro, podocytes were stimulated with Ang II and rapamycin to observe podocyte injury, and nestin-siRNA was transfected to investigate the underlying mechanisms. We observed that Ang II induced podocyte injury both in vivo and in vitro, whereas rapamycin treatment relieved Ang II-induced podocyte injury. We further found that nestin co-localized with p-mTOR in glomeruli, and the protective effect of rapamycin was reduced by nestin-siRNA in podocytes. Moreover, co-IP indicated the interaction between nestin and p-mTOR, and nestin could affect podocyte injury via the mTOR/P70S6K signaling pathway. CONCLUSION: We demonstrated that rapamycin attenuated podocyte apoptosis via upregulation of nestin expression through the mTOR/P70S6K signaling pathway in an Ang II-induced podocyte injury.


Assuntos
Podócitos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Apoptose , Nestina/genética , Nestina/metabolismo , Podócitos/metabolismo , Sirolimo/farmacologia , Regulação para Cima
15.
Mol Biol Rep ; 49(7): 6341-6355, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35513634

RESUMO

BACKGROUND: G-protein-coupled ER (GPR30) plays an important role in cardioprotection. Recent studies have shown that the GPR30-specific agonist G-1 reduces the degree of myocardial fibrosis in rats with myocardial infarction, reduces the morbidity associated with atrial fibrillation, and inhibits the proliferation of cardiac fibroblasts in animal experiments. Nevertheless, the underlying mechanism of myocardial fibrosis and atrial fibrillation remains unclear. In this study, we explored the mechanism underlying the effect of GPR30 on atrial fibrosis and atrial fibrillation in OVX mice. METHODS: We established an animal model of atrial fibrillation induced by Ang II (derived from OVX C57BL/6 female mice) and observed the role of G-1 in cardiac function by echocardiography, hemodynamics, morphology and fibrosis-related and apoptosis-related protein expression by Masson's trichrome, immunofluorescence, western blotting and TUNEL staining. RESULTS: Echocardiography and body surface ECG showed that G-1 combined with Ang II significantly reduced atrial fibrosis and atrial fibrillation compared to Ang II alone. The G-1 treatment group exhibited changes in the mRNA and protein expression of apoptosis-related genes. Moreover, G-1 treatment also altered the levels of inflammation-related proteins and mRNAs. In primary cultured cardiac fibroblasts (CFSs), proliferation was significantly increased in response to Ang II, and G-1 inhibited cell proliferation and apoptosis. CONCLUSION: GPR30 is a potential therapeutic target for alleviating atrial fibrosis in OVX mice by upregulating Smad7 expression to inhibit the TGF-ß/Smad pathway.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/metabolismo , Animais , Fibrilação Atrial/patologia , Cardiomiopatias/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
Mol Biol Rep ; 49(5): 3433-3443, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35190927

RESUMO

BACKGROUND: The effects of trans-chalcone on atherosclerosis and NAFLD have been investigated. However, the underlying molecular mechanisms of these effects are not completely understood. This study aimed to deduce the impacts of trans-chalcone on the eNOS/AMPK/KLF-2 pathway in the heart tissues and the expression of Ang-II, PDFG, and COX-2 genes in liver sections of NMRI mice fed HCD. METHODS AND RESULTS: Thirty-two male mice were divided into four groups (n = 8): control group; fed normal diet. HCD group; fed HCD (consisted of 2% cholesterol) (12 weeks). TCh groups; received HCD (12 weeks) besides co-treated with trans-chalcone (20 mg/kg and 40 mg/kg b.w. dosages respectively) for 4 weeks. Finally, the blood samples were collected to evaluate the biochemical parameters. Histopathological observations of aorta and liver sections were performed by H&E staining. The real-time PCR method was used for assessing the expression of the aforementioned genes. Histopathological examination demonstrated atheroma plaque formation and fatty liver in mice fed HCD which were accomplished with alteration in biochemical factors and Real-time PCR outcomes. Administration of trans-chalcone significantly modulated the serum of biochemical parameters. These effects were accompanied by significant increasing the expression of eNOS, AMPK, KLF-2 genes in heart sections and significant decrease in COX-2, Ang-II, and PDGF mRNA expression in liver sections. CONCLUSION: Our findings propose that the atheroprotective and hepatoprotective effects of trans-chalcone may be attributed to the activation of the eNOS/AMPK/KLF-2 pathway and down-regulation of Ang-II, PDFG, and COX-2 genes, respectively.


Assuntos
Proteínas Quinases Ativadas por AMP , Angiotensina II , Chalcona , Fatores de Transcrição Kruppel-Like , Óxido Nítrico Sintase Tipo III , Hepatopatia Gordurosa não Alcoólica , Fator de Crescimento Derivado de Plaquetas , RNA Mensageiro , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Angiotensina II/metabolismo , Animais , Chalcona/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dieta , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Cardiovasc Drugs Ther ; 36(2): 363-370, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33394361

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease with a complex aetiology and high mortality. Functional and structural changes in the small pulmonary arteries lead to elevated pulmonary arterial pressure, resulting in right heart failure. The pathobiology of PAH is not fully understood, and novel treatment targets in PAH are desperately needed. The renin-angiotensin system is critical for maintaining homeostasis of the cardiovascular system. The system consists of the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang-(1-7)-Mas receptor axis. The former, the ACE-Ang II-AT1R axis, is involved in vasoconstrictive and hypertensive actions along with cardiac and vascular remodelling. The latter, the ACE2-Ang-(1-7)-Mas axis, generally mediates counterbalancing effects against those mediated by the ACE-Ang II-AT1R axis. Based on established functions, the ACE2-Ang-(1-7)-Mas axis may represent a novel target for the treatment of PAH. This review focuses on recent advances in pulmonary circulation science and the role of the ACE2-Ang-(1-7)-Mas axis in PAH.


Assuntos
Peptidil Dipeptidase A , Hipertensão Arterial Pulmonar , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Humanos , Fragmentos de Peptídeos , Peptidil Dipeptidase A/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina
18.
Clin Exp Hypertens ; 44(1): 1-10, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34414841

RESUMO

Background: ACE2, a component of the non-classic renin-angiotensin system (RAS), acts as a functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) spike protein, which enables the entry of the virus into the host cells. Non-classical ACE2 is one of two types of ACE2 that has a protective effect on vascular and respiratory cells. RAS modulators like angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are among the first-line treatment for hypertensive patients. An upregulation in ACE2 levels with RAS modulators was observed in few preclinical studies, which raised concerns regarding possible increased infectivity among patients treated with RAS modulators.Method: For shortlisting the outcome effects, open-ended, English-restricted databases, published literature, and various clinical studies performed utilizing RAS modulators in COVID 19 patients were considered. Conclusion: Current evidence reveals no increased risk of COVID-19 infection among hypertensive patients on ACEIs/ARBs compared to other antihypertensive medications. Several studies have demonstrated no detrimental effects of RAS modulators on clinical severity, hospital/intensive care unit stay, ventilation and mortality.  Hence, we can conclude that neither ARBs nor ACEIs treatment will cause any side effects or undesirable interactions in COVID-19 infected hypertensive patients.


Assuntos
COVID-19 , Hipertensão , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Humanos , Hipertensão/tratamento farmacológico , Sistema Renina-Angiotensina , SARS-CoV-2
19.
Molecules ; 27(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408447

RESUMO

The binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein to its cellular receptor, the angiotensin-converting enzyme 2 (ACE2), causes its downregulation, which subsequently leads to the dysregulation of the renin-angiotensin system (RAS) in favor of the ACE-angiotensin II (Ang II)-angiotensin II type I receptor (AT1R) axis. AT1R has a major role in RAS by being involved in several physiological events including blood pressure control and electrolyte balance. Following SARS-CoV-2 infection, pathogenic episodes generated by the vasoconstriction, proinflammatory, profibrotic, and prooxidative consequences of the Ang II-AT1R axis activation are accompanied by a hyperinflammatory state (cytokine storm) and an acute respiratory distress syndrome (ARDS). AT1R, a member of the G protein-coupled receptor (GPCR) family, modulates Ang II deleterious effects through the activation of multiple downstream signaling pathways, among which are MAP kinases (ERK 1/2, JNK, p38MAPK), receptor tyrosine kinases (PDGF, EGFR, insulin receptor), and nonreceptor tyrosine kinases (Src, JAK/STAT, focal adhesion kinase (FAK)), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. COVID-19 is well known for generating respiratory symptoms, but because ACE2 is expressed in various body tissues, several extrapulmonary pathologies are also manifested, including neurologic disorders, vasculature and myocardial complications, kidney injury, gastrointestinal symptoms, hepatic injury, hyperglycemia, and dermatologic complications. Therefore, the development of drugs based on RAS blockers, such as angiotensin II receptor blockers (ARBs), that inhibit the damaging axis of the RAS cascade may become one of the most promising approaches for the treatment of COVID-19 in the near future. We herein review the general features of AT1R, with a special focus on the receptor-mediated activation of the different downstream signaling pathways leading to specific cellular responses. In addition, we provide the latest insights into the roles of AT1R in COVID-19 outcomes in different systems of the human body, as well as the role of ARBs as tentative pharmacological agents to treat COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Receptor Tipo 1 de Angiotensina , Angiotensina I , Angiotensina II , Antagonistas de Receptores de Angiotensina/farmacologia , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Humanos , Receptor Tipo 1 de Angiotensina/metabolismo , SARS-CoV-2
20.
Toxicol Mech Methods ; 32(7): 518-529, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35253586

RESUMO

In this study, the mitigative impact of bradykinin potentiating factor (BPF) and low doses of γ-irradiation (LDR) were evaluated against doxorubicin (DOX) hepatotoxicity through Ang II/AMPK crosstalk. Rats have received a single dose of DOX (10 mg/kg, i.p.). BPF administration at a dose of 1 µg/g (b.wt./twice a week) was started one week before the administration of DOX and followed throughout the study for another consecutive week where LDR rats were subjected to two low fractions of γ-irradiation; 0.5 Gy/fraction/week up to the cumulative dose of 1 Gy at 7 days before and after doxorubicin administration. DOX produced a remarkable disturbance in serum hepatic enzymes activities, hepatic oxidative stress indices, as well as hepatic inflammatory and fibrotic markers in response to a marked elevation in hepatic angiotensin II (Ang II) together with marked depression in hepatic AMP-activated protein kinase (AMPK) expressions. The combination of BPF and LDR produced a significant improvement in all examined parameters as well as mitigates hepatic toxicity through inhibition of Ang II induced by DOX, which might also be mediated by AMPK activation. Furthermore, histopathological and immunohistochemical examination reinforced the previous results. In conclusion, these findings shed new light on the mechanism underlying the anti-inflammatory and anti-fibrosis consequence of our remedy and support the potential use of it as a preventive and therapeutic candidate against hepatic toxicity through Ang II/AMPK crosstalk.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Venenos de Escorpião , Proteínas Quinases Ativadas por AMP , Animais , Bradicinina , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doxorrubicina/toxicidade , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA