Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Med Res Rev ; 44(1): 275-364, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37621230

RESUMO

Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Oxirredução
2.
Environ Sci Technol ; 58(26): 11822-11832, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38899941

RESUMO

The potential of Ru(III)-mediated advanced oxidation processes has attracted attention due to the recyclable catalysis, high efficiency at circumneutral pHs, and robust resistance against background anions (e.g., phosphate). However, the reactive species in Ru(III)-peracetic acid (PAA) and Ru(III)-ferrate(VI) (FeO42-) systems have not been rigorously examined and were tentatively attributed to organic radicals (CH3C(O)O•/CH3C(O)OO•) and Fe(IV)/Ru(V), representing single electron transfer (SET) and double electron transfer (DET) mechanisms, respectively. Herein, the reaction mechanisms of both systems were investigated by chemical probes, stoichiometry, and electrochemical analysis, revealing different reaction pathways. The negligible contribution of hydroxyl (HO•) and organic (CH3C(O)O•/CH3C(O)OO•) radicals in the Ru(III)-PAA system clearly indicated a DET reaction via oxygen atom transfer (OAT) that produces Ru(V) as the only reactive species. Further, the Ru(III)-performic acid (PFA) system exhibited a similar OAT oxidation mechanism and efficiency. In contrast, the 1:2 stoichiometry and negligible Fe(IV) formation suggested the SET reaction between Ru(III) and ferrate(VI), generating Ru(IV), Ru(V), and Fe(V) as reactive species for micropollutant abatement. Despite the slower oxidation rate constant (kinetically modeled), Ru(V) could contribute comparably as Fe(V) to oxidation due to its higher steady-state concentration. These reaction mechanisms are distinctly different from the previous studies and provide new mechanistic insights into Ru chemistry and Ru(III)-based AOPs.


Assuntos
Oxirredução , Rutênio , Rutênio/química , Transporte de Elétrons , Catálise , Ferro/química
3.
Environ Res ; 241: 117657, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37980988

RESUMO

In this study, the manganese oxide/biochar composites (Mn@BC) were synthesized from Phytolacca acinosa Roxb. The Mn@BC was analyzed via techniques of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). The results show that MnOx is successfully loaded on the surface of BC, and the load of MnOx can increase the number of surface functional groups of BC. X-ray photoelectron spectroscopy (XPS) shows that MnOx loaded on BC mainly exists in three valence forms: Mn(Ⅱ), Mn(Ⅲ), and Mn(Ⅳ). The ability of Mn@BC to activate periodate (PI) was studied by simulating the degradation of methylene blue (MB) dye. The degradation experiment results showed that the MB removal rate by the Mn@BC/PI system reached 97.4% within 30 min. The quenching experiment and electron paramagnetic resonance (EPR) analysis confirmed that Mn@BC can activate PI to produce iodate (IO3•), singlet oxygen (1O2), and hydroxyl radical (•OH), which can degrade MB during the reaction. Response surface methodology (RSM) based on Box-Behnken Design (BBD) was used to determine the interaction between pH, Mn@BC and PI concentration in the Mn@BC/PI system, and the optimum technological parameters were determined. When pH = 5.4, Mn@BC concentration 0.56 mg/L, PI concentration 1.1 mmol/L, MB removal rate can reach 98.05%. The cyclic experiments show that Mn@BC can be reused. After four consecutive runs, the removal rate of MB by the Mn@BC/PI system is still 82%, and the Mn@BC/PI system also shows high performance in treating MB in actual water bodies and degrading other pollutants. This study provides a practical method for degrading dyes in natural sewage.


Assuntos
Manganês , Poluentes Químicos da Água , Manganês/análise , Azul de Metileno/análise , Poluentes Químicos da Água/análise , Adsorção
4.
Environ Res ; 243: 117848, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065396

RESUMO

The application of bimetal supported graphite phase carbon nitride in activated peroxymonosulfate (PMS) process has become a research hotspot in recent years. In this study, 8-g C3N4/Mo/Ni composite catalyst material was successfully prepared by doping Mo and Ni in graphite phase carbon nitride. The bimetallic active sites were formed in the catalyst, and PMS was activated by the metal valence Mo6+/Mo4+ and Ni2+/Ni(0) through redox double cycle to effectively degrade phenol. When pH was neutral, the degradation rate of 20 mg/L phenol solution with 8-g C3N4/Mo/Ni (0.35 g/L) and PMS (0.6 mM) could reach 95% within 20 min. The degradation rate of 8-g C3N4/Mo/Ni/PMS catalytic system could reach more than 90% within 20min under the condition of pH range of 3-11 and different anions. Meanwhile, the degradation effects of RhB, MB and OFX on different pollutants within 30min were 99%, 100% and 82%, respectively. Electron spin resonance and quenching experiments showed that in 8-g C3N4/Mo/Ni/PMS system, the degradation mechanism was mainly non-free radicals, and the main active species in the degradation process was 1O2. This study provides a new idea for the study of bimetal supported graphite phase carbon nitride activation of PMS and the theoretical study of degradation mechanism.


Assuntos
Grafite , Nitrilas , Compostos de Nitrogênio , Peróxidos , Grafite/química , Fenol , Fenóis
5.
Ecotoxicol Environ Saf ; 271: 115937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211511

RESUMO

In this study, a non-thermal dielectric barrier discharge-Fenton/photo-Fenton process was investigated to remove phenol from synthetic wastewater. The changes and optimal values of influencing parameters, including treatment time, iron concentration, phenol initial concentration, and pH, were investigated based on the central composite design (CCD) method. The presence of 0.4 mmol/L of iron in the phenol solution with a concentration of 100 mg/L increased the removal efficiency and pseudo-first-order kinetic constant compared to dielectric barrier discharge cold plasma (DBDP) alone from 0.0824 min-1 and 56.8% to 0.2078 min-1 and 86.83%, respectively. The phenol removal efficiency was reduced to 52.9%, 45.6% and 31.8% by adding tert-butyl alcohol (TBA) with concentrations of 50, 100, and 200 mg/l, respectively. After 12 min of DBDP irradiation, the pH of the sample decreased from 5.95 to 3.42, and the temperature of the sample increased from 19.3 to 37.2 degrees Celsius. The chemical oxygen demand (COD) of the sample containing 100 mg/L phenol under plasma-Fenton/photo-Fenton irradiation decreased from 241 mg/L to 161 mg/L. Phenol removal efficiency after 10 min of treatment in the presence of 0.4 mmol/L of iron with the reactor volume of 50 mL was 87%, but the efficiency decreased to 76%, 47%, and 9% by increasing the volume to 100, 200, and 400 mL, respectively. Reducing the power led to a decrease in the removal efficiency from 56.8% for 100 W power to 10.8% for 40 W. The energy efficiency for 50% removal by DBDP and plasma-Fenton/photo-Fenton systems was 5.86×10-3 kWh/mg and 1.27×10-3 kWh/mg, respectively.


Assuntos
Fenol , Poluentes Químicos da Água , Águas Residuárias , Oxirredução , Peróxido de Hidrogênio , Fenóis , Ferro , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos
6.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000290

RESUMO

The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.


Assuntos
Antibacterianos , Oxirredução , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Animais , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Biofilmes/efeitos dos fármacos
7.
J Environ Manage ; 351: 120023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181683

RESUMO

The widespread presence of organic micropollutants in the environment reflects the inability of traditional wastewater treatment plants to remove them. In this context, advanced oxidation processes (AOPs) have emerged as promising quaternary wastewater treatment technologies since they efficiently degrade recalcitrant components by generating highly reactive free radicals. Nonetheless, the chemical characterization of potentially harmful byproducts is essential to avoid the contamination of natural water bodies with hazardous substances. Given the complexity of wastewater matrices, the implementation of comprehensive analytical methodologies is required. In this work, the simultaneous photoelectrochemical degradation of seven environmentally relevant pharmaceuticals and one metabolite from the EU Watch List 2020/1161 was examined in ultrapure water and simulated wastewater, achieving excellent removal efficiencies (overall >95%) after 180 min treatment. The reactor unit was linked to an online LC sample manager, allowing for automated sampling every 15 min and near real-time process monitoring. Online comprehensive two-dimensional liquid chromatography (LC × LC) coupled with high resolution mass spectrometry (HRMS) was subsequently used to tentatively identify degradation products after photoelectrochemical degradation. Two reversed-phase liquid chromatography (RPLC) columns were used: an SB-C18 column operated with 5 mM ammonium formate at pH 5.8 (1A) and methanol (1B) as the mobile phases in the first dimension and an SB-Aq column using acidified water at pH 3.1 (2A) and acetonitrile (2B) as the mobile phases in the second dimension. This resulted in a five-fold increase in peak capacity compared to one-dimensional LC while maintaining the same total analysis time of 50 min. The LC x LC method allowed the tentative identification of 12 venlafaxine, 7 trimethoprim and 10 ciprofloxacin intermediates. Subsequent toxicity predictions suggested that some of these byproducts were potentially harmful. This study presents an effective hybrid technology for the simultaneous removal of pharmaceuticals from contaminated wastewater matrices and demonstrates how multidimensional liquid chromatography techniques can be applied to better understand the degradation mechanisms after the treatment of micropollutants with AOPs.


Assuntos
Poluentes Químicos da Água , Água , Água/análise , Águas Residuárias , Cromatografia Líquida , Espectrometria de Massas , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
8.
J Environ Manage ; 366: 121723, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003897

RESUMO

The inefficiency of catalysts in sulfate radical-based advanced oxidation processes (SR-AOPs) is primarily attributed to the sluggish circulation of redox couples. Herein, a carbon defects-enriched NBC-C3N5@CoMn (NCC) was synthesized through a self-assembly approach. The carbon defects within the NCC induce the electron trap effect, thereby facilitating the efficient cycling of redox couples in photo-Fenton-like processes during contaminant degradation. This effect enables the self-regeneration of the NCC catalyst. The reductive redox couples (Co (II) and Mn (II)) are continuously regenerated following the degradation process. Within the NCC, CoMn layered double hydroxides (LDHs) act as primary active sites, promoting the generation of hydroxyl radicals (•OH), sulfate radicals (SO4•-) and singlet oxygen (1O2) through continuous electron gain and loss. Additionally, the internal electric field established within the NCC further accelerates electron transfer. Density Functional Theory (DFT) calculations confirm that the carbon defects-enriched NCC exhibits lower adsorption energies and higher electron transfer efficiencies than carbon defect-deficient NCC. This study introduces a novel photocatalyst with self-regenerating capabilities, presenting an innovative approach to regulate redox couples in SR-AOPs for sustainable degradation.


Assuntos
Carbono , Oxirredução , Carbono/química , Catálise , Radical Hidroxila/química
9.
J Environ Manage ; 352: 120095, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266523

RESUMO

The present study investigates the treatment of real coke plant effluent utilising several ultrasound-based hybrid oxidation approaches including Ultrasound (US) alone, US + catalyst, US + H2O2, US + Fenton, US + Ozone, and US + Peroxone, with main objective as maximizing the reduction of chemical oxygen demand (COD). Ultrasonic horn at power of 130 W, frequency as 20 kHz and duty cycle as 70% was applied. Study with varying catalyst (TiO2) dose from 0.5 g/L - 2 g/L revealed 1 g/L as the optimum dose resulting in 65.15% reduction in COD. A 40 ml/L dose of H2O2 was shown to be optimal, giving an 81.96% reduction in COD, based on the study of varied doses of H2O2 from 20 ml/L to 60 ml/L. US + Fenton reagent combination at optimum Fe2+/H2O2 (w/v) ratio of 1:1 resulted in a COD reduction of 85.29% whereas reduction of COD as 81.75% was obtained at the optimum flow rate of ozone as 1 LPM for US + Ozone approach. US + Peroxone demonstrated the best efficiency (90.48%) for COD reduction. To find the toxicity effects, the treated (US + peroxone) and non-treated samples were tested for the growth of bacterial cultures. It was observed that the toxicity of the treated sample increased only marginally after treatment. High-resolution liquid chromatography mass spectrometry (HR-LCMS) analysis was also performed to establish intermediate compounds. Overall, the coupling of ultrasound with oxidation processes produced better results with US + Peroxone established as best treatment approach for coke plant effluent.


Assuntos
Coque , Ozônio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Oxirredução , Ozônio/química
10.
Molecules ; 29(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893438

RESUMO

In recent years, the efficient removal of organic pollutants from wastewater has emerged as a critical area of global research interest. Against this backdrop, an array of innovative technologies for wastewater treatment has been developed. Among numerous advanced oxidation processes (AOPs), periodate (PI), an emerging oxidizing agent in AOPs, has garnered significant attention from researchers. Particularly, the integration of ultrasound (US)-activated PI systems has been recognized as an exceptionally promising approach for the synergistic degradation of organic pollutants in wastewater. In this paper, we conducted a thorough analysis of the mechanisms underlying the degradation of organic pollutants using the US/PI system. Furthermore, we comprehensively delineated the effects of ultrasonic power, periodate concentration, temperature, pH, coexisting inorganic ions, and dissolved organic matter on the removal efficiency of organic pollutants and summarized application cases of the US/PI system for the degradation of different pollutants. Finally, we also offered prospective discussions on the future trajectories of US/PI technology development.

11.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474463

RESUMO

Developing a green, low-carbon, and circular economic system is the key to achieving carbon neutrality. This study investigated the organics removal efficiency in a three-dimensional electrode reactor (3DER) constructed from repurposed industrial solid waste, i.e., Mn-loaded steel slag, as the catalytic particle electrodes (CPE). The CPE, a micron-grade material consisting primarily of transition metals, including Fe and Mn, exhibited excellent electric conductivity, catalytic ability, and recyclability. High rhodamine B (RhB) removal efficiency in the 3DER was observed through a physical modelling experiment. The optimal operating condition was determined through a single-factor experiment in which 5.0 g·L-1 CPE and 3 mM peroxymonosulfate (PMS) were added to a 200 mL solution of 10 mM RhB under a current intensity of 0.5 A and a 1.5 to 2.0 cm distance between the 2D electrodes. When the initial pH value of the simulated solution was 3 to 9, the RhB removal rate exceeded 96% after 20 min reaction. In addition, the main reactive oxidation species in the 3DER were determined. The results illustrated that HO• and SO4•- both existed, but that the contribution of SO4•- to RhB removal was much lower than that of HO• in the 3DER. In summary, this research provides information on the potential of the 3DER for removing refractory organics from water.

12.
Environ Geochem Health ; 46(9): 344, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073643

RESUMO

Ammonia nitrogen is a common pollutant in water and soil, known for its biological toxicity and complex removal process. Traditional biological methods for removing ammonia nitrogen are often inefficient, especially under varying temperature conditions. This study reviews physicochemical techniques for the treatment and recovery of ammonia nitrogen from water. Key methods analyzed include ion exchange, adsorption, membrane separation, struvite precipitation, and advanced oxidation processes (AOPs). Findings indicate that these methods not only remove ammonia nitrogen but also allow for nitrogen recovery. Ion exchange, adsorption, and membrane separation are effective in separating ammonia nitrogen, while AOPs generate reactive species for efficient degradation. Struvite precipitation offers dual benefits of removal and resource recovery. Despite their advantages, these methods face challenges such as secondary pollution and high energy consumption. This paper highlights the development principles, current challenges, and future prospects of physicochemical techniques, emphasizing the need for integrated approaches to enhance ammonia nitrogen removal efficiency.


Assuntos
Amônia , Poluentes Químicos da Água , Purificação da Água , Amônia/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Adsorção , Oxirredução , Nitrogênio/química , Troca Iônica , Estruvita/química , Precipitação Química
13.
Environ Sci Technol ; 57(47): 18597-18606, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36563128

RESUMO

Radicals in advanced oxidation processes (AOPs) degrade micropollutants during water and wastewater treatment, but the transformation of dissolved organic matter (DOM) may be equally important. Ketone moieties in DOM are known disinfection byproduct precursors, but ketones themselves are intermediates produced during AOPs. We found that aromatic alcohols in DOM underwent transformation to ketones by one-electron oxidants (using SO4•- as a representative), and the formed ketones significantly increased trichloromethane (CHCl3) formation potential (FP) upon subsequent chlorination. CHCl3-FPs from aromatic ketones (Ar-CO-CH3, average of 22 mol/mol) were 6-24 times of CHCl3-FPs from aromatic alcohols (Ar-CH(OH)-CH3, average of 0.85 mol/mol). At a typical SO4•- exposure of 7.0 × 10-12 M·s, CHCl3-FPs from aromatic alcohol transformation increased by 24.8%-112% with an average increase of 53.4%. Notably, SO4•- oxidation of aliphatic alcohols resulted in minute changes in CHCl3-FPs due to their low reactivities with SO4•- (∼107 M-1 s-1). Other one-electron oxidants (Cl2•-, Br2•-,and CO3•-) are present in AOPs and also lead to aromatic alcohol-ketone transformations similar to SO4•-. This study highlights that subtle changes in DOM physicochemical properties due to one-electron oxidants can greatly affect the reactivity with free chlorine and the formation of chlorinated byproducts.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Oxidantes , Matéria Orgânica Dissolvida , Clorofórmio , Cetonas , Elétrons , Poluentes Químicos da Água/análise , Cloro/química , Purificação da Água/métodos , Halogenação , Desinfecção , Álcool Benzílico
14.
Environ Res ; 229: 115936, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080279

RESUMO

The presence of phenolic compounds in the aquatic environment has posed severe risks due to their toxicity. Among the phenolic families, nitro- and alkyl-phenolic compounds have been categorized as precedence contaminants by the United States Environmental Protection Agency (US EPA). Therefore, efficient treatment methods for wastewater containing nitro- and alkyl-phenolic compounds are urgently needed. Due to the advantages of creating reactive species and generating efficient degradation of hazardous contaminants in wastewater, advanced oxidation processes (AOPs) are well-known in the field of treating toxic contaminants. In this review paper, the recent directions in AOPs, catalysts, mechanisms, and kinetics of AOPs are comprehensively reviewed. Furthermore, the conclusion summarizes the research findings, future prospects, and opportunities for this study. The main direction of AOPs lies on the optimization of catalyst and operating parameters, with industrial applications remain as the main challenge. This review article is expected to present a summary and in-depth understanding of AOPs development; and thus, inspiring scientists to accelerate the evolution of AOPs in industrial applications.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Poluentes Químicos da Água/toxicidade , Fenóis , Oxirredução , Catálise
15.
Environ Res ; 237(Pt 2): 117019, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652219

RESUMO

Graphitic carbon nitride (GCN) is an optical semiconductor with excellent photoactivity under visible light irradiation. It has been widely applied for organic micropollutant removal from contaminated water, and less investigated for microorganisms' inactivation. The photocatalytic degradation mechanism using GCN is attributed to a series of reactions with reactive oxygen species and photogenerated holes that can be boosted by modifying its physical-chemical structure. This work reports a successful improvement of the overall photocatalytic and electrocatalytic activities of the pristine material by thermal and chemical modification by a copolymerisation synthesis method. The copolymerisation of dicyandiamide as a precursor with barbituric acid strongly reduced photoluminescence due to the enhanced charge separation thus improving the catalyst efficiency under visible light irradiation. The material with 1.6 wt% of barbituric acid showed the best photocatalytic performance and electrochemical properties. This photocatalyst was selected for immobilisation on a conductive carbon foam, which promotes a higher electrochemical active surface area and enhanced mass transfer. This three-dimensional metal-free electrode was employed for the photoelectrochemical inactivation of two different microorganisms, Escherichia coli, and Enterococcus faecalis, obtaining removals below the detection limit after 30 min in simulated faecal-contaminated waters. This photoelectrochemical reactor was also applied to treat polluted river and urban waste waters, and the faecal contamination indicators were vastly reduced to values below the detection limit in 60 min in both cases, showing the wide applicability of this innovative photoelectrode for different types of polluted aqueous matrices.

16.
Environ Res ; 229: 116021, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121349

RESUMO

To achieve an efficient remediation of a winery wastewater (WW), it was studied a physical-chemical process (coagulation-flocculation-decantation - CFD) involving plant-based coagulants (PBC) with advanced oxidation processes (AOPs), aiming to achieve the Portuguese legal limits. Initially, one invasive (Acacia dealbata) and three native species (Quercus ilex, Platanus x acerifólia and Tanacetum vulgare) were collected and used as plant-based coagulants (PBCs). The combination of Platanus acerifólia (P.a.) seeds with polyvinylpolypyrrolidone (PVPP) achieved high turbidity (97.3%) and chemical oxygen demand (COD = 48.2%) removals, from raw WW, with [PBC] = 0.1 g/L, [PVPP] = 5 mg/L, pH = 3.0, fast mix = 150 rpm/3 min, slow mix = 20 rpm/20 min, sedimentation time = 12 h. Different AOPs were studied to treat raw WW, with photo-Fenton process revealing the highest COD efficiency (88.0%). To enhance the capabilities of photo-Fenton, ethylenediamine-N,N'-disuccinic acid trisodium salt (EDDS) was assessed as a chelation agent, reducing iron precipitation. The pre-treatment of WW by PBCs followed by EDDS/photo-Fenton (pH = 6.0, [H2O2] = 175 mM, [Fe2+] = 5 mM, [EDDS] = 1 mM, T = 298 K, time = 240 min) increased the COD removal, whatever the radiation source applied (UV-C, UV-A and solar). Among the different processes, the combined P. a. seeds and UV-C/EDDS/Fenton allowed increase the WW biodegradability from 0.26 to 0.46, and achieved a COD removal of 95.7%, reaching the Portuguese legal limits. As final remark, the synergy of PBCs and EDDS/photo-Fenton is considered effective and sustainable process for raw WW remediation and water reuse.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Povidona , Oxirredução , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos
17.
Environ Res ; 217: 114874, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36457240

RESUMO

Due to the increasing of industrial plastic waste and its refractory characteristics, it is extremely urgent to develop new degradation technology and environmentally friendly catalyst for industrial plastic waste. Manganese oxides are one of the most promising candidates for the catalytic degradation of plastic wastes. However, an improved understanding of the structural properties affecting their catalytic activity is required for high-efficient wastewater treatment. We herein report the surface reactivity effects of δ-MnO2 structural defects with regards to Bisphenol A (BPA) degradation/probe in the presence of peroxymonosulfate (PMS). Four δ-MnOx samples with different Mn(III) contents (different Mn(III)-deficient sample) were prepared and their structural properties as well as surface reactivity were characterized by batch test, ESR and XAFS analysis. For the Mn(III)-deficient sample, BPA removal was principally affected by direct electron transfer, with the adsorbed BPA degraded following hydroxylation. In contrast, a small fraction of Mn(III) substitution in δ-MnO2 could significantly encouraged the activation of PMS to produce SO4-☐and ☐OH, and a BPA degradation via beta scission. Moreover, the Mn(III)-rich δ-MnO2 demonstrate a high BPA removal rate even with a low sample load, which performed well following a reuse of five times. Our results provide a new way for the improvement of δ-MnO2 activity for the use of industrial plastic wastes treatment.


Assuntos
Compostos de Manganês , Óxidos , Óxidos/química , Oxirredução , Compostos de Manganês/química , Elétrons , Peróxidos
18.
Ecotoxicol Environ Saf ; 259: 114988, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182300

RESUMO

Antibiotics are extensively used in human medicine and animal breeding. The use of antibiotics has posed significant risks and challenges to the natural water environment. On a global scale, antibiotics have been frequently detected in the environment, azithromycin (254-529 ng·L-1), ciprofloxacin (245-1149 ng·L-1), ofloxacin (518-1998 ng·L-1), sulfamethoxazole (1325-5053 ng·L-1), and tetracycline (31.4-561 ng·L-1) are the most detected antibiotics in wastewater and surface water. Abuses of antibiotics has caused a significant threat to water resources and has seriously threatened the survival of human beings. Therefore, there is an urgent need to reduce antibiotic pollution and improve the environment. Researchers have been trying to develop effective methods and technologies for antibiotic degradation in water. Finding efficient and energy-saving methods for treating water pollutants has become an important global topic. Photocatalytic technology can effectively remove highly toxic, low-concentration, and difficult-to-treat pollutants, and tungsten trioxide (WO3) is an extremely potential alternative catalyst. Pt/WO3 photocatalytic degradation efficiency of tetracycline was 72.82%, While Cu-WO3 photocatalytic degradation efficiency of tetracycline was 96.8%; WO3/g-C3N4 photocatalytic degradation efficiency of ceftiofur was 70%, WO3/W photocatalytic degradation efficiency of florfenicol was 99.7%; WO3/CdWO4 photocatalytic degradation efficiency of ciprofloxacin was 93.4%; WO3/Ag photocatalytic degradation efficiency of sulfanilamide was 96.2%. Compared to other water purification methods, photocatalytic technology is non-toxic and ensures complete degradation through a stable reaction process, making it an ideal water treatment method. Here, we summarize the performance and corresponding principles of tungsten trioxide-based materials as a photocatalytic catalyst and provide substantial insight for further improving the photocatalytic potential of WO3-based materials.


Assuntos
Antibacterianos , Óxidos , Humanos , Ciprofloxacina , Tetraciclinas , Catálise
19.
J Environ Manage ; 329: 117048, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542888

RESUMO

Present report, an investigation of highly concentrated and low bio-degradable pharmaceutical wastewater (HCPWW) treatment; simultaneously ammoniacal nitrogen recovery for struvite fertilizer. The use of multiple solvents and many formulation processes in HCPWW, resulting highly refractory chemicals. Here, in this study focused on evaluation of chemo-biocatalysts for the removal of refractory organics, nitrogen recovery from HCPWW. The initial organics, and nitrogen content in HCPWW was 20,753 ± 4606 mg/L; BOD, 6550 ± 1500 mg/L and NH4+-N, 1057.9 ± 185.8 mg/L. Initially, the biodegradability (BOD5: COD ratio from 0.32 to 0.45) of HCPWW, which was improved by heterogeneous Fenton oxidation (HFO) processes, and porous carbon (PCC, 30 g/L), along with FeSO4.7H2O, 200 mg/L and H2O2 (30% v/v), 0.4 ml/L were used as a catalyst in a weakly acidic medium. For the biocatalytic processes, the microbial culture cultivated from sewage and incorporated into a Fluidized Immobilized Carbon Catalytic Oxidation reactor (FICCO), and dominant species are Pseudomonas Putida sp., Pseudomonas Kilionesis sp., and Pseudomonas Japonica sp., which is identified by using 16 S rDNA sequencing analysis. The COD and BOD5 removal efficiency of 65-93% and 70-82%, and follow the pseudo-second-order kinetic model with the rate constants of 1.0 × 10-4 L COD-1 h-1, 1.5 × 10-3 L COD-1 h-1 and 3.0 × 10-3 L COD-1 h-1 in the HFO-FICCO-CAACO catalytic processes. The optimized hydraulic retention time (HRT) of FICCO reactor was 24 h, and 1 h for the Chemo-Autotrophic Activated Carbon Oxidation (CAACO) reactor for maximum organics removal. MAP (Magnesium Ammonium Phosphate precipitation) process showed 90% of NH4+-N elimination and recovered it as a struvite fertilizer at an optimum molar ratio of 1:1.3:1.3 (NH4+-N: Na2HPO4.2H2O: MgO). FT-IR, UV-visible, and UV-fluorescence data confirm the effective elimination of organics. Hence, this integrated treatment system is appropriate for the management of pharmaceutical wastewater especially elimination of complex organic molecules and the recovery of nitrogen in the wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Estruvita , Nitrogênio , Peróxido de Hidrogênio , Fertilizantes , Espectroscopia de Infravermelho com Transformada de Fourier , Esgotos/química , Preparações Farmacêuticas , Reatores Biológicos
20.
J Environ Manage ; 328: 117007, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521216

RESUMO

Sonochemical oxidation was employed for the degradation of the drug dexamethasone (Dex). The oxidation at 20 kHz followed pseudo-first-order kinetics and increased with applied ultrasound power density. Acoustic cavitation at 71 W/L was able to eliminate 500 µg/L of dexamethasone from ultrapure water at inherent pH in less than 60 min. The oxidation was enhanced at pH 3 and decreased at increased Dex concentration. Scavenging experiments with tert-butanol showed that hydroxyl radicals play a crucial role in decomposition, where the reaction mainly occurs on the gas-liquid interface of the formed cavities. The addition of chloride did not affect Dex removal, while in the presence of 10 mg/L of humic acid or bicarbonate, the apparent kinetic constant decreased from 0.0423 ± 0.004 min-1 to about 0.03 ± 0.002 min-1. The rate in secondary effluent was 3.3 times lower than in ultrapure water due to the complexity of the actual matrix. Six transformation products were identified via high resolution LC-MS during the sonochemical oxidation of 3 mg/L Dex in ultrapure water. The presence of polyethylene or polystyrene microplastics slightly enhanced DEX sonodegradation. The effect of ultrasound irradiation at 71 W/L for 60 min on the microplastics surfaces was inconsiderable.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos , Poluentes Químicos da Água/química , Água/química , Oxirredução , Dexametasona , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA