Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 205: 107228, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810904

RESUMO

Coronavirus disease 2019 (COVID-19) affected people worldwide, and fever is one of the major symptoms of this disease. Although Acetaminophen (APAP) is a common fever-reducing medication, it can also mediate liver injury. However, the role of PGC-1α in regulating mitochondrial quality control by lactate dehydrogenase B (LDHB), a vital enzyme catalyzing the conversion of lactate to pyruvate, in APAP-induced hepatotoxicity, is unclear. Here, gene expression omnibus data of patients with APAP-induced liver injury were used to explore gene expression profiles. AML12 cells and C57/BL6 mice were used to establish models of APAP-induced acute liver injury. SIRT1 and PGC-1α were overexpressed in vitro via lentiviral transfection to establish stable cell lines. The results showed that APAP treatment decreased SIRT1/PGC-1α/LDHB expression and increased protein lactylation, mitochondrial lactate levels, and pathological damage in liver mitochondria. PGC-1α upregulation or activation ameliorated APAP-induced damage in the cells and liver. Furthermore, PGC-1α overexpression increased LDHB synthesis, reduced lactylation, and induced a switch from lactate to pyruvate production. These results suggest that PGC-1α and LDHB play a role in APAP-induced liver injury by regulating mitochondrial quality control and lactate metabolic reprogramming. Therefore, the PGC-1α/LDHB axis is a potential therapeutic target for APAP-induced liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , L-Lactato Desidrogenase , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Camundongos , Humanos , Masculino , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Linhagem Celular , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Isoenzimas
2.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589685

RESUMO

Excessive acetaminophen (APAP) can induce neutrophil activation and hepatocyte death. Along with hepatocyte dysfunction and death, NETosis (a form of neutrophil-associated inflammation) plays a vital role in the progression of acute liver injury (ALI) induced by APAP overdose. It has been shown that activated neutrophils tend to migrate towards the site of injury and participate in inflammatory processes via formation of neutrophil extracellular traps (NETs). In this study we investigated whether NETs were involved in hepatocyte injury and contributed to APAP-induced ALI progression. ALI mouse model was established by injecting overdose (350 mg/kg) of APAP. After 24 h, blood and livers were harvested for analyses. We showed that excessive APAP induced multiple programmed cell deaths of hepatocytes including pyroptosis, apoptosis and necroptosis, accompanied by significantly increased NETs markers (MPO, citH3) in the liver tissue and serum. Preinjection of DNase1 (10 U, i.p.) for two consecutive days significantly inhibited NETs formation, reduced PANoptosis and consequently alleviated excessive APAP-induced ALI. In order to clarify the communication between hepatocytes and neutrophils, we induced NETs formation in isolated neutrophils, and treated HepaRG cells with NETs. We found that NETs treatment markedly increased the activation of GSDMD, caspase-3 and MLKL, while pre-treatment with DNase1 down-regulated the expression of these proteins. Knockdown of AIM2 (a cytosolic innate immune receptor) abolished NETs-induced PANoptosis in HepaRG cells. Furthermore, excessive APAP-associated ALI was significantly attenuated in AIM2KO mice, and PANoptosis occurred less frequently. Upon restoring AIM2 expression in AIM2KO mice using AAV9 virus, both hepatic injury and PANoptosis was aggravated. In addition, we demonstrated that excessive APAP stimulated mtROS production and mitochondrial DNA (mtDNA) leakage, and mtDNA activated the TLR9 pathway to promote NETs formation. Our results uncover a novel mechanism of NETs and PANoptosis in APAP-associated ALI, which might serve as a therapeutic target.

3.
Arch Toxicol ; 98(5): 1533-1542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466352

RESUMO

Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Ratos , Humanos , Masculino , Animais , Acetaminofen/toxicidade , Acetaminofen/metabolismo , Bile/metabolismo , Cromatografia Líquida , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ratos Wistar , Espectrometria de Massas em Tandem , Fígado/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Junções Íntimas/metabolismo
4.
Bull Environ Contam Toxicol ; 112(2): 39, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353786

RESUMO

Acetaminophen (N-acetyl-p-aminophenol; APAP) is one of the most widely used analgesics. To examine the toxicity of APAP, we used zebrafish embryos as model animals to detect the effect of APAP on the thyroid system of zebrafish embryos. The zebrafish embryos were exposed to APAP from 4 h post fertilization (4 hpf) until observation. The experimental results showed that APAP caused pericardial edema and decreased pigmentation in the zebrafish embryos or larvae. The APAP treatment caused a decrease in the expression of tpo and thrß in the zebrafish at 36 and 72 hpf. The transcriptomic analysis found that APAP affected retinol metabolism, the metabolism of xenobiotics by cytochrome P450, and the tyrosine metabolism pathway. The harmful effect of APAP on zebrafish embryos might be due to its disrupting effect on the functional regulation of the thyroid hormone system.


Assuntos
Acetaminofen , Perciformes , Animais , Acetaminofen/toxicidade , Peixe-Zebra , Tiroxina , Pigmentação , Glândula Tireoide
5.
Toxicol Appl Pharmacol ; 479: 116722, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37848124

RESUMO

Acetaminophen (APAP) overdose disrupts hepatocellular lysosomes, which release ferrous iron (Fe2+) that translocates into mitochondria putatively via the mitochondrial calcium uniporter (MCU) to induce oxidative/nitrative stress, the mitochondrial permeability transition (MPT), and hepatotoxicity. To investigate how MCU deficiency affects mitochondrial Fe2+ uptake and hepatotoxicity after APAP overdose, global MCU knockout (KO), hepatocyte specific (hs) MCU KO, and wildtype (WT) mice were treated with an overdose of APAP both in vivo and in vitro. Compared to strain-specific WT mice, serum ALT decreased by 88 and 56%, respectively, in global and hsMCU KO mice at 24 h after APAP (300 mg/kg). Hepatic necrosis also decreased by 84 and 56%. By contrast, when MCU was knocked out in Kupffer cells, ALT release and necrosis were unchanged after overdose APAP. Intravital multiphoton microscopy confirmed loss of viability and mitochondrial depolarization in pericentral hepatocytes of WT mice, which was decreased in MCU KO mice. CYP2E1 expression, hepatic APAP-protein adduct formation, and JNK activation revealed that APAP metabolism was equivalent between WT and MCU KO mice. In cultured hepatocytes after APAP, loss of cell viability decreased in hsMCU KO compared to WT hepatocytes. Using fructose plus glycine to prevent cell killing, mitochondrial Fe2+ increased progressively after APAP, as revealed with mitoferrofluor (MFF), a mitochondrial Fe2+ indicator. By contrast in hsMCU KO hepatocytes, mitochondrial Fe2+ uptake after APAP was suppressed. Rhod-2 measurements showed that Ca2+ did not increase in mitochondria after APAP in either WT or KO hepatocytes. In conclusion, MCU mediates uptake of Fe2+ into mitochondria after APAP and plays a central role in mitochondrial depolarization and cell death during APAP-induced hepatotoxicity.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Acetaminofen/toxicidade , Mitocôndrias Hepáticas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mitocôndrias/metabolismo , Hepatócitos/metabolismo , Necrose/metabolismo , Camundongos Endogâmicos C57BL
6.
Int Microbiol ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878229

RESUMO

The emergence of drug resistance, caused due the presence of pharmaceutical contaminant in the environment, highlights the critical need for pharmaceutical drugs management. Pharmaceutical drugs are sourced in wastewater as pharmaceutical industrial effluents, antibiotic misuse, and inappropriate disposal of expired pharmaceuticals, eventually ending up in sewage deposition. In this work, we aimed to degrade paracetamol (APAP) through the mycoremediation approach in laboratory scale. The isolated paracetamol degradation fungal strain, identified as Aspergillus niger KCAC efficiently degraded the drug into non-toxic metabolites. The results demonstrated that 99.6% degradation rate was achieved by Aspergillus niger KCAC. Unique, low-cost, eco-friendly bioformulation of the fungal isolate was prepared during the study using used vegetable cooking oil as substrate. The bioformulation showed extended shelf-life and can be used in future for large-scale application. Thus, this detailed investigation on paracetamol biodegradation may be useful in developing a wastewater treatment system effective against paracetamol-contaminated wastewater.

7.
Cell Biol Toxicol ; 39(6): 2685-2707, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36809385

RESUMO

Improper use of acetaminophen (APAP) will induce acute liver failure. This study is designed to investigate whether early growth response-1 (EGR1) participated in the promotion on liver repair and regeneration after APAP-induced hepatotoxicity provided by natural compound chlorogenic acid (CGA). APAP induced the nuclear accumulation of EGR1 in hepatocytes regulated by extracellular-regulated protein kinase (ERK)1/2. In Egr1 knockout (KO) mice, the liver damage caused by APAP (300 mg/kg) was more severe than in wild-type (WT) mice. Results of chromatin immunoprecipitation and sequencing (ChIP-Seq) manifested that EGR1 could bind to the promoter region in Becn1, Ccnd1, and Sqstm1 (p62) or the catalytic/modify subunit of glutamate-cysteine ligase (Gclc/Gclm). Autophagy formation and APAP-cysteine adduct (APAP-CYS) clearance were decreased in Egr1 KO mice administered with APAP. The EGR1 deletion reduced hepatic cyclin D1 expression at 6, 12, or 18 h post APAP administration. Meanwhile, the EGR1 deletion also decreased hepatic p62, Gclc and Gclm expression, GCL enzymatic activity, and glutathione (GSH) content and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activation and thus aggravated oxidative liver injury induced by APAP. CGA increased EGR1 nuclear accumulation; enhanced hepatic Ccnd1, p62, Gclc, and Gclm expression; and accelerated the liver regeneration and repair in APAP-intoxicated mice. In conclusion, EGR1 deficiency aggravated liver injury and obviously delayed liver regeneration post APAP-induced hepatotoxicity through inhibiting autophagy, enhancing liver oxidative injury, and retarding cell cycle progression, but CGA promoted the liver regeneration and repair in APAP-intoxicated mice via inducing EGR1 transcriptional activation.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Regeneração Hepática , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/patologia , Glutationa/metabolismo , Hiperplasia/metabolismo , Hiperplasia/patologia , Camundongos Endogâmicos C57BL
8.
Cell Biol Toxicol ; 39(6): 2761-2774, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046119

RESUMO

AIMS: Purinergic signaling-mediated mitochondria dysfunction and innate immune-mediated inflammation act as triggers during acetaminophen (APAP)-induced liver injury (AILI). However, the underlying mechanisms by which purinoceptor regulates mitochondria function and inflammation response in the progression of AILI remains unclear. METHODS: First, the hepatic level of purinergic receptor P2X 1 (P2RX1) was identified in the DILI patients and APAP-induced WT mice. P2rx1 knockout (KO) mice (P2rx1-/-) with 300 mg/kg APAP challenge were used for the analysis of the potential role of P2RX1 in the progression of AILI. Administration of DMX, the activator of stimulator of interferon genes (STING), was performed to investigate the effects of the STING-related pathway on APAP-treated P2rx1-/- mice. RESULTS: The elevated hepatic P2RX1 levels were found in DILI patients and the AILI mice. P2rx1 depletion offered protection against the initial stages of AILI, mainly by inhibiting cell death and promoting inflammation resolution, which was associated with alleviating mitochondria dysfunction. Mechanistically, P2rx1 depletion could inhibit STING-TANK-binding kinase 1 (TBK1)-P65 signaling pathways in vivo. We then showed that DMX-mediated STING activation could greatly aggravate the liver injury of P2rx1-/- mice treated with APAP. CONCLUSION: Our data confirmed that P2RX1 was inducted during AILI, identified P2RX1 as a novel regulator in mitochondria dysfunction and STING pathways, and suggested a promising therapeutic approach for AILI involving the blockade of P2RX1. 1. It first demonstrated the protective effects of P2rx1 deficiency on acetaminophen-induced liver injury (AILI). 2. P2rx1 knockout alleviates mitochondria function and promotes inflammation resolution after APAP treatment. 3. It first reported the regulation of P2RX1 on the STING signaling pathway in the progress of AILI. 4. P2RX1 blockade is a promising therapeutic strategy for AILI.


Assuntos
Analgésicos não Narcóticos , Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Falência Hepática Aguda , Humanos , Animais , Camundongos , Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Transdução de Sinais , Falência Hepática Aguda/metabolismo , Inflamação/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL
9.
Toxicol Pathol ; 51(3): 112-125, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37158481

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease and its influence on drug-induced liver injury (DILI) is not fully understood. We investigated whether NAFLD can influence acetaminophen (APAP [N-acetyl-p-aminophenol])-induced hepatotoxicity in a diet-induced obese (DIO) mouse model of NAFLD. The male C57BL/6NTac DIO mice, fed a high-fat diet for more than 12 weeks, developed obesity, hyperinsulinemia, impaired glucose tolerance, and hepatomegaly with hepatic steatosis, similar to human NAFLD. In the acute toxicity study after a single dose of APAP (150 mg/kg), compared with control lean mice, the DIO mice had decreased serum transaminase levels and less severe hepatocellular injury. The DIO mice also had altered expression of genes related to APAP metabolism. Chronic APAP exposure for 26 weeks did not predispose the DIO mice with NAFLD to more severe hepatotoxicity compared with the lean mice. These results suggested that the C57BL/6NTac DIO mouse model appears to be more tolerant to APAP-induced hepatotoxicity than lean mice, potentially related to altered xenobiotic metabolizing capacity in the fatty liver. Further mechanistic studies with APAP and other drugs in NAFLD animal models are necessary to investigate the mechanism of altered susceptibility to intrinsic DILI in some human NAFLD patients.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Acetaminofen/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Obesidade
10.
BMC Med Inform Decis Mak ; 23(1): 102, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264381

RESUMO

BACKGROUND: This study aimed to compare clinical and laboratory characteristics of supra-therapeutic (RSTI) and acute acetaminophen exposures using a predictive decision tree (DT) algorithm. METHODS: We conducted a retrospective cohort study using the National Poison Data System (NPDS). All patients with RSTI acetaminophen exposure (n = 4,522) between January 2012 and December 2017 were included. Additionally, 4,522 randomly selected acute acetaminophen ingestion cases were included. After that, the DT machine learning algorithm was applied to differentiate acute acetaminophen exposure from supratherapeutic exposures. RESULTS: The DT model had accuracy, precision, recall, and F1-scores of 0.75, respectively. Age was the most relevant variable in predicting the type of acetaminophen exposure, whether RSTI or acute. Serum aminotransferase concentrations, abdominal pain, drowsiness/lethargy, and nausea/vomiting were the other most important factors distinguishing between RST and acute acetaminophen exposure. CONCLUSION: DT models can potentially aid in distinguishing between acute and RSTI of acetaminophen. Further validation is needed to assess the clinical utility of this model.


Assuntos
Acetaminofen , Analgésicos não Narcóticos , Humanos , Acetaminofen/efeitos adversos , Estudos Retrospectivos , Algoritmos , Árvores de Decisões
11.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569554

RESUMO

Kupffer cells (KCs) play a key part in the pathological process of acetaminophen (APAP)-induced acute liver injury (ALI), the leading cause of acute liver failure in the world. CXC motif chemokine ligand 5 (CXCL5) exerts proinflammatory effects in acute respiratory distress syndrome and arthritis. In the current study, we aim to reveal the effects of CXCL5 on the activation of KCs and the role of CXCL5 in the pathogenesis of APAP-induced hepatotoxicity. The in vivo study, conducted on mice intraperitoneally injected with APAP (300 mg/kg) to establish the ALI model and then treated with Anti-CXCL5 mAb at 30 min and 12 h after the APAP challenge, showed that CXCL5 expression significantly increased in injured livers, and Anti-CXCL5 mAb mitigated the degree of APAP-evoked ALI in mice which was proven through biochemicals and histological examination. Also, neutralization of CXCL5 had no significant effect on APAP metabolism in the liver but exhibited anti-inflammatory effects and ameliorated hepatocellular death in the injured liver. The in vitro data displayed that recombinant mouse CXCL5 treatment promoted APAP-induced cellular toxicity in primary hepatocytes co-cultured with KCs, compared with single-cultured hepatocytes. Consistent with the result, we found that the Anti-CXCL5 mAb gradient decreased LPS-induced expression of inflammatory cytokines in single-cultured KCs. Therefore, CXCL5 could stimulate KCs to produce inflammatory mediators, therefore damaging hepatocytes from APAP toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Células de Kupffer , Camundongos , Animais , Células de Kupffer/metabolismo , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
12.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511082

RESUMO

A water-soluble acacetin prodrug has been synthesized and reported by our group previously. Acetaminophen (APAP) overdose is a leading cause of acute liver injury. We found that subcutaneous injection of acacetin prodrug (5, 10, 20 mg/kg) decreased serum ALT, AST, and ALP, corrected the abnormal MDA and GSH in liver, and improved intrahepatic hemorrhage and destruction of liver structures in APAP (300 mg/kg)-treated mice. Molecular mechanism analysis revealed that the expressions of endoplasmic reticulum (ER) stress markers ATF6, CHOP, and p-PERK, apoptosis-related protein BAX, and cleaved caspase 3 were decreased by acacetin in a dose-dependent manner in vivo and in vitro. Moreover, via the acacetin-upregulated peroxisome-proliferator-activated receptor gamma (PPARγ) of HepG2 cells and liver, the suppressive effect of acacetin on ER stress and apoptosis was abolished by PPARγ inhibitor (GW9662) or PPARγ-siRNA. Molecular docking revealed that acacetin can bind to three active pockets of PPARγ, mainly by hydrogen bond. Our results provide novel evidence that acacetin prodrug exhibits significant protective effect against APAP-induced liver injury by targeting PPARγ, thereby suppressing ER stress and hepatocyte apoptosis. Acacetin prodrug is likely a promising new drug candidate for treating patients with acute liver injury induced by APAP.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Flavonas , Pró-Fármacos , Animais , Camundongos , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estresse Oxidativo , PPAR gama/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Regulação para Cima , Flavonas/farmacologia , Flavonas/uso terapêutico
13.
J Appl Biomed ; 21(2): 91-98, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37212153

RESUMO

This research demonstrated the protective effect and possible mechanism of the Sophora viciifolia extract (SVE) against acetaminophen-induced liver injury in mice. The levels of ALT and AST in the serum and antioxidant enzyme activity in the liver were measured. We used immunohistochemistry to detect CYP2E1, Nrf2, and Keap1 protein expression in the liver. The mRNA expression in the liver of TNF-α, NF-κB, and IL-6, Nrf2 and its downstream genes HO-1 and GCLC were measured by qRT-PCR. We found that SVE could decrease the ALT and AST levels, promote the activities of SOD, CAT, GSH-Px, and GSH, and ameliorate pathological liver lesions. SVE could down-regulate the mRNA expression of inflammatory factors and up-regulate Nrf2, HO-1 and GCLC. SVE reduced the protein expression of the CYP2E1 and increased the Nrf2 and Keap1. SVE has been shown to have a protective effect against APAP-induced liver injury, possibly through activation of the Keap1-Nrf2 pathway.


Assuntos
Acetaminofen , Doença Hepática Crônica Induzida por Substâncias e Drogas , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Acetaminofen/efeitos adversos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Frutas/metabolismo , Antioxidantes/farmacologia , RNA Mensageiro
14.
J Hepatol ; 77(1): 71-83, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35131407

RESUMO

BACKGROUND & AIMS: Acetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity. METHODS: We performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes. RESULTS: Prior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity. CONCLUSIONS: APAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication. LAY SUMMARY: Only one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within ∼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Overdose de Drogas , Acetaminofen/metabolismo , Acetilcisteína/farmacologia , Animais , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
15.
J Hepatol ; 76(3): 558-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34736969

RESUMO

BACKGROUND & AIMS: Drug-induced liver injury (DILI) remains challenging to treat and is still a leading cause of acute liver failure. MG53 is a muscle-derived tissue-repair protein that circulates in the bloodstream and whose physiological role in protection against DILI has not been examined. METHODS: Recombinant MG53 protein (rhMG53) was administered exogenously, using mice with deletion of Mg53 or Ripk3. Live-cell imaging, histological, biochemical, and molecular studies were used to investigate the mechanisms that underlie the extracellular and intracellular action of rhMG53 in hepatoprotection. RESULTS: Systemic administration of rhMG53 protein, in mice, can prophylactically and therapeutically treat DILI induced through exposure to acetaminophen, tetracycline, concanavalin A, carbon tetrachloride, or thioacetamide. Circulating MG53 protects hepatocytes from injury through direct interaction with MLKL at the plasma membrane. Extracellular MG53 can enter hepatocytes and act as an E3-ligase to mitigate RIPK3-mediated MLKL phosphorylation and membrane translocation. CONCLUSIONS: Our data show that the membrane-delimited signaling and cytosolic dual action of MG53 effectively preserves hepatocyte integrity during DILI. rhMG53 may be a potential treatment option for patients with DILI. LAY SUMMARY: Interventions to treat drug-induced liver injury and halt its progression into liver failure are of great value to society. The present study reveals that muscle-liver cross talk, with MG53 as a messenger, serves an important role in liver cell protection. Thus, MG53 is a potential treatment option for patients with drug-induced liver injury.


Assuntos
Hepatócitos/citologia , Proteínas de Membrana/metabolismo , Substâncias Protetoras/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas , Citosol/metabolismo , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Proteínas de Membrana/análise , Proteínas de Membrana/sangue , Camundongos , Fatores de Proteção
16.
Hum Reprod ; 37(5): 922-935, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259261

RESUMO

STUDY QUESTION: Do paracetamol (N-acetyl-para-aminophenol (APAP) or acetaminophen) and/or its metabolites affect human sperm Ca2+-signalling and function? SUMMARY ANSWER: While APAP itself does not interact with Ca2+-signalling in human sperm, its metabolite N-arachidonoyl phenolamine (AM404), produced via fatty acid amide hydrolase (FAAH), interferes with human sperm Ca2+-signalling and function through a suggested CatSper channel-dependent action. WHAT IS KNOWN ALREADY: Studies have shown that adult men with high urinary levels of over-the-counter mild analgesic APAP have impaired sperm motility and increased time-to-pregnancy. STUDY DESIGN, SIZE, DURATION: This study consists of (i) an in vivo human pharmaceutical APAP exposure experiment to understand to what degree APAP reaches the sperm cells in the seminal fluid; (ii) in vitro calcium imaging and functional experiments in freshly donated human sperm cells to investigate CatSper channel-dependent activation by APAP and its metabolites; and (iii) experiments to understand the in situ capabilities of human sperm cells to form APAP metabolite AM404. PARTICIPANTS/MATERIALS, SETTING, METHODS: Three healthy young males participated in the in vivo human exposure experiment after prior consent. Human semen samples were provided by healthy young volunteer donors after prior consent on the day of the in vitro experiments. MAIN RESULTS AND THE ROLE OF CHANCE: Pharmaceutical APAP exposure reaches the seminal plasma in high micromolar concentrations and accumulates in the seminal plasma between 3 and 5 days of exposure (P-value 0.023). APAP and its primary metabolite 4-aminophenol (4AP) do not interact with human sperm Ca2+-signalling. Instead, the APAP metabolite AM404 produced via FAAH interferes with human sperm Ca2+-signalling through a CatSper-dependent action. Also, AM404 significantly increases sperm cell penetration into viscous mucous (P-value of 0.003). FAAH is functionally expressed in human sperm cells in the neck/midpiece region, as evidenced by immunohistochemical staining and the ability of human sperm cells to hydrolyse the fluorogenic FAAH substrate arachidonyl 7-amino, 4-methyl coumarin amide in an FAAH-dependent manner. Importantly, human sperm cells have the capacity to form AM404 in situ after exposure to 4AP (P-value 0.0402 compared to vehicle-treated sperm cells). LIMITATIONS, REASONS FOR CAUTION: The experiments were conducted largely in vitro. Future studies are needed to test whether APAP can disrupt human sperm function in vivo through the action of AM404. WIDER IMPLICATIONS OF THE FINDINGS: We hypothesize that these observations could, at least in part, be responsible for the negative association between male urinary APAP concentrations, sperm motility and time-to-pregnancy. STUDY FUNDING/COMPETING INTEREST(S): D.M.K. is funded by the Lundbeck Foundation, grant number R324-2019-1881, and the Svend Andersen Foundation. A.R. is funded by a BRIDGE-Translational Excellence Programme grant funded by the Novo Nordisk Foundation, grant agreement number: NNF18SA0034956. All authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Acetaminofen , Motilidade dos Espermatozoides , Acetaminofen/farmacologia , Adulto , Ácidos Araquidônicos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Humanos , Masculino , Preparações Farmacêuticas/metabolismo , Progesterona/metabolismo , Espermatozoides/metabolismo
17.
Toxicol Appl Pharmacol ; 449: 116130, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35714712

RESUMO

Epidemiological studies have linked long-term/high-dose usage of paracetamol (N-acetyl-para-aminophenol, APAP) during pregnancy to adverse neuropsychiatric outcomes, primarily attention-deficit hyperactive disorder (ADHD), in the offspring. Though variable, ADHD has been associated with phenotypic alterations characterized by reductions in grey matter densities and aberrations in structural connectivity, effects which are thought to originate in neurodevelopment. We used embryonic chicken cerebellar granule neurons (CGNs) and neuronally differentiating human NTERA2 cells (NT2Ns) to investigate the in vitro effects of APAP on cell viability, migration, neuritogenesis, and the intracellular levels of various proteins involved in neurodevelopment as well as in the maintenance of the structure and function of neurites. Exposure to APAP ranging from 100 to 1600 µM yielded concentration- and time-dependent reductions in cell viability and levels of neurite arborization, as well as reductions in the levels of the cytoskeletal protein ß2-spectrin, with the highest APAP concentration resulting in between 50 and 75% reductions in the aforementioned metrics over the course of 72 h. Exposure to APAP also reduced migration in the NT2Ns but not CGNs. Moreover, we found concentration- and time-dependent increases in punctate aggregation of the cytoskeletal protein ß3-tubulin following exposure to APAP in both cell model systems, with the highest APAP concentration approximately doubling the number of aggregates over 72-120 h. Our findings demonstrate that APAP negatively perturbs neurite arborization degree, with concurrent reductions in the protein levels of ß2-spectrin and disruption of the integrity of ß3-tubulin, both proteins of which play important roles in neuronal structure and function.


Assuntos
Acetaminofen , Plasticidade Neuronal , Acetaminofen/efeitos adversos , Animais , Linhagem Celular , Embrião de Galinha , Proteínas do Citoesqueleto , Feminino , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gravidez , Espectrina , Tubulina (Proteína)
18.
J Magn Reson Imaging ; 56(6): 1809-1817, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35420237

RESUMO

BACKGROUND: Early detection and accurate assessment of N-acetyl-p-aminophenol (APAP)-induced hepatotoxicity can prevent further aggravation of liver injury and reduce the incidence of liver failure. PURPOSE: To evaluate the potential of multiple MRI parameters for assessing APAP-induced hepatotoxicity in an experimental rat model. STUDY TYPE: Prospective. ANIMAL MODEL: Twenty-one APAP-treated rats and 12 control rats. FIELD STRENGTH/SEQUENCE: A 3 T, T1 mapping, Gd-EOB-DTPA-enhanced MRI, and intravoxel incoherent motion (IVIM). ASSESSMENT: The severity of histological changes was assessed by a liver pathologist. Rat livers were pathologically classified into three groups: normal (n = 12), mild necrosis (n = 13), and moderate necrosis (n = 8). T1 relaxation time (T1) and diffusion parameters were measured. The reduction rate of T1 (ΔT1%) at different time points, the maximum value of ΔT1%, time period to the maximum value of ΔT1%, and time period from ΔT1max (%) to 2/3 value of ΔT1max (%) (ΔT1-T2/3) were calculated. Transporters activities like organic anion-transporting polypeptide 1 (oatp1) and multidrug resistance-associated protein 2 (mrp2) were compared among different necrotic groups. STATISTICAL TESTS: ANOVA/Kruskal-Wallis. Pearson/Spearman correlation. P < 0.05 was considered statistical significance. RESULTS: T1 Precontrast and ΔT1-T2/3 were strongly correlated with the severity of necrosis (r = 0.9094; r = 0.7978, respectively) and showed significant differences between the two groups. The apparent diffusion coefficient (ADC) and tissue diffusivity (D) values were significantly lower in the moderate necrosis group than in the normal and mild necrosis groups. The oatp1 activity of the necrosis groups was significantly reduced compared to that of the normal group, but the differences between normal and mild (P = 0.21), normal and moderate group (P = 0.56) were not significant. Meanwhile, enlargement of bile canaliculi and sparse microvilli was observed in the necrotic groups. CONCLUSION: MRI parameters such as precontrast T1 and ΔT1-T2/3 had promising potential in assessing the severity of early-stage hepatotoxicity in an APAP overdose rat model. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Ratos , Meios de Contraste , Estudos Prospectivos , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Necrose , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem
19.
Mol Biol Rep ; 49(7): 5863-5874, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35366176

RESUMO

BACKGROUND: Acetaminophen (APAP) is a worldwide antipyretic as well as an analgesic medication. It has been extensively utilized during the outbreak of coronavirus 2019 (COVID-19). APAP misuse would lead to liver injury. Diacerein (DIA), an anthraquinone derivative, has antioxidant and inflammatory properties. Hence, this study attempted to evaluate the impact of DIA treatment on liver injury induced by APAP and its influence on nuclear factor-κB (NF-κB) /toll-like receptor 4 (TLR4)/high mobility group box-1(HMGB-1) signaling as well as the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression. METHODS: Male albino rats received 25 as well as 50 mg/kg/day DIA orally for seven days. One hour after the last administration, rats received APAP (1gm/kg, orally). For histopathological analysis, liver tissues and blood were collected, immunohistochemical (IHC) assay, biochemical assay, as well as quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: DIA markedly reduced liver injury markers and ameliorated histopathological changes. Moreover, DIA dose-dependently alleviated oxidative stress status caused by APAP administration along with inflammatory markers, including the level of interleukin-1 beta (IL-1ß), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Furthermore, DIA downregulated protein levels as well as mRNA of HMGB-1, TLR4, NF-κB p65 expression, and enhanced PPAR-γ expression. Moreover, DIA ameliorated apoptotic (Bax) and caspase-3 expressions and increased the anti-apoptotic (Bcl2) expression. CONCLUSIONS: This study demonstrated that DIA exerts anti-apoptotic, anti-inflammatory, and antioxidant properties against liver injury induced by APAP that is attributed to inhibition of the HMGB1/TLR4/NF-κB pathway, besides upregulation of the expression of PPAR-γ.


Assuntos
COVID-19 , Doença Hepática Induzida por Substâncias e Drogas , Proteína HMGB1 , Acetaminofen , Animais , Antraquinonas/metabolismo , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteína HMGB1/metabolismo , Humanos , Fígado/metabolismo , Masculino , NF-kappa B/metabolismo , PPAR gama/metabolismo , Ratos , Receptor 4 Toll-Like/genética
20.
Xenobiotica ; 52(6): 633-643, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36149338

RESUMO

CYP2E1 plays an important role in drug metabolism and drug-induced hepatotoxicity. Here, we aimed to investigate a potential role for the nuclear receptor REV-ERBα in regulation of CYP2E1 expression and acetaminophen (APAP)-induced hepatotoxicity, and to determine the underlying mechanisms.Regulatory effects of REV-ERBα on CYP2E1 expression were assessed in vivo (using Rev-erbα-/- mice) and in vitro (using AML12 and HepG2 cells). In vitro microsomal CYP2E1 activity was probed using its specific substrate p-nitrophenol. Pharmacokinetic and acute toxicity studies were performed with Rev-erbα-/- and wild-type mice after APAP administration.We found that Rev-erbα ablation led to decreases in hepatic CYP2E1 expression and activity in mice. In line with this, APAP-induced hepatotoxicity was attenuated in Rev-erbα-deficient mice. The attenuated toxicity was due to down-regulation of APAP metabolism mediated by CYP2E1, which was evidenced by a decrease in formation of the toxic intermediate metabolite NAPQI (i.e. reduced APAP-cysteine and APAP-N-acetylcysteine levels). Furthermore, positive regulation of CYP2E1 expression by REV-ERBα was confirmed in both AML12 and HepG2 cells. Based on luciferase reporter assays, it was found that REV-ERBα regulated Cyp2e1 transcription and expression through repression of DEC2.In conclusion, REV-ERBα positively regulates CYP2E1 expression in mice, thereby affecting APAP metabolism and hepatotoxicity.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Acetilcisteína/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo , Luciferases/metabolismo , Luciferases/farmacologia , Camundongos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA