Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.717
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39353437

RESUMO

Complex structural variations (cxSVs) are often overlooked in genome analyses due to detection challenges. We developed ARC-SV, a probabilistic and machine-learning-based method that enables accurate detection and reconstruction of cxSVs from standard datasets. By applying ARC-SV across 4,262 genomes representing all continental populations, we identified cxSVs as a significant source of natural human genetic variation. Rare cxSVs have a propensity to occur in neural genes and loci that underwent rapid human-specific evolution, including those regulating corticogenesis. By performing single-nucleus multiomics in postmortem brains, we discovered cxSVs associated with differential gene expression and chromatin accessibility across various brain regions and cell types. Additionally, cxSVs detected in brains of psychiatric cases are enriched for linkage with psychiatric GWAS risk alleles detected in the same brains. Furthermore, our analysis revealed significantly decreased brain-region- and cell-type-specific expression of cxSV genes, specifically for psychiatric cases, implicating cxSVs in the molecular etiology of major neuropsychiatric disorders.

2.
Cell ; 186(18): 3968-3982.e15, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37586362

RESUMO

Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Feminino , Humanos , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Progressão da Doença , Genômica/métodos , Análise da Expressão Gênica de Célula Única , Linhagem Celular Tumoral
3.
Cell ; 172(1-2): 275-288.e18, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328916

RESUMO

The neuronal gene Arc is essential for long-lasting information storage in the mammalian brain, mediates various forms of synaptic plasticity, and has been implicated in neurodevelopmental disorders. However, little is known about Arc's molecular function and evolutionary origins. Here, we show that Arc self-assembles into virus-like capsids that encapsulate RNA. Endogenous Arc protein is released from neurons in extracellular vesicles that mediate the transfer of Arc mRNA into new target cells, where it can undergo activity-dependent translation. Purified Arc capsids are endocytosed and are able to transfer Arc mRNA into the cytoplasm of neurons. These results show that Arc exhibits similar molecular properties to retroviral Gag proteins. Evolutionary analysis indicates that Arc is derived from a vertebrate lineage of Ty3/gypsy retrotransposons, which are also ancestors to retroviruses. These findings suggest that Gag retroelements have been repurposed during evolution to mediate intercellular communication in the nervous system.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Exossomos/metabolismo , Produtos do Gene gag/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Endocitose , Feminino , Produtos do Gene gag/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia
4.
Cell ; 172(1-2): 262-274.e11, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328915

RESUMO

Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. Here, we report that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, our results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Produtos do Gene gag/genética , Corpos Multivesiculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Produtos do Gene gag/química , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/metabolismo , Plasticidade Neuronal , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Terminações Pré-Sinápticas/fisiologia , Ligação Proteica , Domínios Proteicos , Retroelementos/genética
5.
Mol Cell ; 75(1): 13-25.e5, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31151856

RESUMO

Arc is a synaptic protein essential for memory consolidation. Recent studies indicate that Arc originates in evolution from a Ty3-Gypsy retrotransposon GAG domain. The N-lobe of Arc GAG domain acquired a hydrophobic binding pocket in higher vertebrates that is essential for Arc's canonical function to weaken excitatory synapses. Here, we report that Arc GAG also acquired phosphorylation sites that can acutely regulate its synaptic function. CaMKII phosphorylates the N-lobe of the Arc GAG domain and disrupts an interaction surface essential for high-order oligomerization. In Purkinje neurons, CaMKII phosphorylation acutely reverses Arc's synaptic action. Mutant Arc that cannot be phosphorylated by CaMKII enhances metabotropic receptor-dependent depression in the hippocampus but does not alter baseline synaptic transmission or long-term potentiation. Behavioral studies indicate that hippocampus- and amygdala-dependent learning requires Arc GAG domain phosphorylation. These studies provide an atomic model for dynamic and local control of Arc function underlying synaptic plasticity and memory.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo , Sequência de Aminoácidos , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Técnicas de Introdução de Genes , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Células de Purkinje/citologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sinapses/fisiologia , Transmissão Sináptica
6.
Proc Natl Acad Sci U S A ; 121(13): e2313488121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513104

RESUMO

Weyl semimetal showing open-arc surface states is a prominent example of topological quantum matter in three dimensions. With the bulk-boundary correspondence present, nontrivial surface-bulk hybridization is inevitable but less understood. Spectroscopies have been often limited to verifying the existence of surface Fermi arcs, whereas its spectral shape related to the hybridization profile in energy-momentum space is not well studied. We present an exactly solvable formalism at the surface for a wide range of prototypical Weyl semimetals. The resonant surface state and the bulk influence coexist as a surface-bulk hybrid and are treated in a unified manner. Directly accessible to angle-resolved photoemission spectroscopy, we analytically reveal universal information about the system obtained from the spectroscopy of resonant topological states. We systematically find inhomogeneous and anisotropic singular responses around the surface-bulk merging borderline crossing Weyl points, highlighting its critical role in the Weyl topology. The response in scanning tunneling spectroscopy is also discussed. The results will provide much-needed insight into the surface-bulk-coupled physical properties and guide in-depth spectroscopic investigation of the nontrivial hybrid in many topological semimetal materials.

7.
Traffic ; 24(11): 522-532, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37545033

RESUMO

Localization of messenger RNA (mRNA) in dendrites is crucial for regulating gene expression during long-term memory formation. mRNA binds to RNA-binding proteins (RBPs) to form messenger ribonucleoprotein (mRNP) complexes that are transported by motor proteins along microtubules to their target synapses. However, the dynamics by which mRNPs find their target locations in the dendrite have not been well understood. Here, we investigated the motion of endogenous ß-actin and Arc mRNPs in dissociated mouse hippocampal neurons using the MS2 and PP7 stem-loop systems, respectively. By evaluating the statistical properties of mRNP movement, we found that the aging Lévy walk model effectively describes both ß-actin and Arc mRNP transport in proximal dendrites. A critical difference between ß-actin and Arc mRNPs was the aging time, the time lag between transport initiation and measurement initiation. The longer mean aging time of ß-actin mRNP (~100 s) compared with that of Arc mRNP (~30 s) reflects the longer half-life of constitutively expressed ß-actin mRNP. Furthermore, our model also permitted us to estimate the ratio of newly generated and pre-existing ß-actin mRNPs in the dendrites. This study offers a robust theoretical framework for mRNP transport, which provides insight into how mRNPs locate their targets in neurons.


Assuntos
Actinas , Ribonucleoproteínas , Camundongos , Animais , Actinas/metabolismo , Ribonucleoproteínas/metabolismo , Dendritos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
J Biol Chem ; 300(5): 107237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552740

RESUMO

Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates of the microtubule-associated protein tau, a main component of neurofibrillary tangles. Alzheimer's disease (AD) is the most common type of tauopathy and dementia, with amyloid-beta pathology as an additional hallmark feature of the disease. Besides its role in stabilizing microtubules, tau is localized at postsynaptic sites and can regulate synaptic plasticity. The activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that plays a key role in synaptic plasticity, learning, and memory. Arc has been implicated in AD pathogenesis and regulates the release of amyloid-beta. We found that decreased Arc levels correlate with AD status and disease severity. Importantly, Arc protein was upregulated in the hippocampus of Tau KO mice and dendrites of Tau KO primary hippocampal neurons. Overexpression of tau decreased Arc stability in an activity-dependent manner, exclusively in neuronal dendrites, which was coupled to an increase in the expression of dendritic and somatic surface GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. The tau-dependent decrease in Arc was found to be proteasome-sensitive, yet independent of Arc ubiquitination and required the endophilin-binding domain of Arc. Importantly, these effects on Arc stability and GluA1 localization were not observed in the commonly studied tau mutant, P301L. These observations provide a potential molecular basis for synaptic dysfunction mediated through the accumulation of tau in dendrites. Our findings confirm that Arc is misregulated in AD and further show a physiological role for tau in regulating Arc stability and AMPA receptor targeting.


Assuntos
Proteínas do Citoesqueleto , Dendritos , Proteínas do Tecido Nervoso , Complexo de Endopeptidases do Proteassoma , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Dendritos/metabolismo , Dendritos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas tau/metabolismo , Proteínas tau/genética , Ubiquitina/metabolismo , Ubiquitinação
9.
FASEB J ; 38(17): e23861, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39247969

RESUMO

Recently, amyloid-ß oligomers (AßOs) have been studied as the primary pathogenic substances in Alzheimer's disease (AD). Our previous study revealed that the Aß expression level is closely related to ARC progression. Here, we demonstrated that the accumulation of AßOs in the lens epithelium of age-related cataract (ARC) patients increased during ARC progression and that this alteration was consistent with the changes in mitochondrial function, oxidative stress, and cellular apoptosis. In vitro, human lens epithelial cells (HLECs) treated with AßOs exhibited Ca2+ dyshomeostasis, impaired mitochondrial function, elevated oxidative stress levels, and increased apoptosis. Moreover, the proapoptotic effect of AßOs was alleviated after the uptake of mitochondrial Ca2+ was inhibited. These results establish that AßOs may promote HLEC apoptosis by inducing mitochondrial Ca2+ overload, thus preliminarily revealing the possible association between the accumulation of AßOs and other pathological processes in ARC.


Assuntos
Peptídeos beta-Amiloides , Apoptose , Catarata , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Catarata/metabolismo , Catarata/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Cristalino/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo
10.
Immunity ; 45(2): 267-79, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27496733

RESUMO

Toll-like receptors (TLRs) and other pattern-recognition receptors (PRRs) sense microbial ligands and initiate signaling to induce inflammatory responses. Although the quality of inflammatory responses is influenced by internalization of TLRs, the role of endosomal maturation in clearing receptors and terminating inflammatory responses is not well understood. Here, we report that Drosophila and mammalian Vps33B proteins play critical roles in the maturation of phagosomes and endosomes following microbial recognition. Vps33B was necessary for clearance of endosomes containing internalized PRRs, failure of which resulted in enhanced signaling and expression of inflammatory mediators. Lack of Vps33B had no effect on trafficking of endosomes containing non-microbial cargo. These findings indicate that Vps33B function is critical for determining the fate of signaling endosomes formed following PRR activation. Exaggerated inflammatory responses dictated by persistence of receptors in aberrant endosomal compartments could therefore contribute to symptoms of ARC syndrome, a disease linked to loss of Vps33B.


Assuntos
Artrogripose/imunologia , Colestase/imunologia , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Infecções por Escherichia coli/imunologia , Inflamação/imunologia , Macrófagos/fisiologia , Insuficiência Renal/imunologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Artrogripose/genética , Células Cultivadas , Colestase/genética , Drosophila , Proteínas de Drosophila/genética , Técnicas de Inativação de Genes , Camundongos , Transporte Proteico , RNA Interferente Pequeno/genética , Insuficiência Renal/genética , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA