Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
New Phytol ; 241(6): 2448-2463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308183

RESUMO

The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
2.
Funct Integr Genomics ; 23(2): 123, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055658

RESUMO

Multi-pistil trait in wheat is of great potential value in plant development research and crop breeding. Our previous studies identified the Pis1 locus that causes three pistils in wheat by genetic mapping using multiple DNA marker systems. However, there are still 26 candidate genes on the locus, and the causal gene remains to be found. In this study, we aimed to approach the molecular mechanism of multi-pistil formation. Comparative RNA sequencing (RNA-Seq) during the pistil formation was undertaken in four wheat lines: a three-pistil mutant TP, a single-pistil TILLING mutant of TP (SP), a three-pistil near-isogenic line CM28TP with the background of cultivar Chunmai 28 (CM28), and CM28. Electron microscopic analysis specified probable developmental stages of young spikes for the three-pistil formation. mRNA sequencing in the young spikes of the four lines represented 253 down-regulated genes and 98 up-regulated genes in both three-pistil lines, which included six potential genes for ovary development. Weighted gene co-expression analysis represented three-pistil trait-associated transcription factor-like genes, among which one hub gene, ARF5, was the most highlighted. ARF5 is on the Pis1 locus and an orthologue of MONOPTEROS which mediates tissue development in Arabidopsis. qRT-PCR validation implies that the deficiency of ARF5 underlies the three-pistil formation in wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Triticum , Triticum/genética , Melhoramento Vegetal , Marcadores Genéticos , Flores/genética
3.
Plant Biotechnol J ; 20(5): 862-875, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34890129

RESUMO

Optimal root system architecture is beneficial for water-fertilizer use efficiency, stress tolerance and yield improvement of crops. However, because of the complexity of root traits and difficulty in phenotyping deep roots, the study on mechanisms of root development is rarely reported in wheat (Triticum aestivum L.). In this study, we identified that the LBD (LATERAL ORGAN BOUNDARIES DOMAIN) gene TaMOR (MORE ROOT in wheat) determines wheat crown root initiation. The mor mutants exhibited less or even no crown root, dwarfism, less grain number and lodging caused by few roots. The observation of cross sections showed that crown root initiation is inhibited in the mor mutants. Molecular assays revealed that TaMOR interacts with the auxin response factor ARF5 to directly induce the expression of the auxin transporter gene PIN2 (PIN-FORMED 2) in the root base to regulate crown root initiation. In addition, a 159-bp MITE (miniature inverted-repeat transposable element) insertion causing DNA methylation and lower expression of TaMOR-B was identified in TaMOR-B promoter, which is associated with lower root dry weight and shorter plant height. The results bring new light into regulation mechanisms of crown root initiation and offer a new target for the improvement of root system architecture in wheat.


Assuntos
Raízes de Plantas , Triticum , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Triticum/metabolismo
4.
J Cell Biochem ; 122(2): 198-208, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32985032

RESUMO

Mammalian female meiosis must be tightly regulated to produce high-quality mature oocytes for subsequent regular fertilization and healthy live birth of the next generation. GTPases control many important signal pathways involved in diverse cellular activities. ADP-ribosylation factor family members (Arfs) in mice possess GTPase activities, and some members have been found to function in meiosis. However, whether other Arfs play a role in meiosis is unknown. In this study, we found that Arl2 and Arf5 are the richest among Arfs in mouse oocytes, and they are more abundant in oocytes than in granular cells. Furthermore, Arl2 and Arf5 depletion both impeded meiotic progression, but by affecting spindles and microfilaments, respectively. Moreover, Arl2 and Arf5 depletion both significantly increased regular reactive oxygen species levels and decreased mitochondrial membrane potential and autophagy, indicating that oocyte quality was damaged by Arl2 and Arf5 depletion. These results suggest that Arl2 and Arf5 are two novel essential GTPases required for oocyte meiosis and quality control.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Fatores de Ribosilação do ADP/genética , Citoesqueleto de Actina/metabolismo , Animais , Feminino , Proteínas de Ligação ao GTP/genética , Meiose/genética , Meiose/fisiologia , Camundongos , Fuso Acromático/metabolismo
5.
New Phytol ; 226(6): 1781-1795, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32083754

RESUMO

The gaseous plant hormone ethylene induces the ripening of climacteric fruit, including apple (Malus domestica). Another phytohormone, auxin, is known to promote ethylene production in many horticultural crops, but the regulatory mechanism remains unclear. Here, we found that auxin application induces ethylene production in apple fruit before the stage of commercial harvest, when they are not otherwise capable of ripening naturally. The expression of MdARF5, a member of the auxin response factor transcription factor (TF) family involved in the auxin signaling pathway, was enhanced by treatment with the synthetic auxin naphthaleneacetic acid (NAA). Further studies revealed that MdARF5 binds to the promoter of MdERF2, encoding a TF in the ethylene signaling pathway, as well as the promoters of two 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes (MdACS3a and MdACS1) and an ACC oxidase (ACO) gene, MdACO1, all of which encode key steps in ethylene biosynthesis, thereby inducing their expression. We also observed that auxin-induced ethylene production was dependent on the methylation of the MdACS3a promoter. Our findings reveal that auxin induces ethylene biosynthesis in apple fruit through activation of MdARF5 expression.


Assuntos
Malus , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
New Phytol ; 222(2): 752-767, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582614

RESUMO

Wood development is strictly regulated by various phytohormones and auxin plays a central regulatory role in this process. However, how the auxin signaling is transducted in developing secondary xylem during wood formation in tree species remains unclear. Here, we identified an Aux/INDOLE-3-ACETIC ACID 9 (IAA9)-AUXIN RESPONSE FACTOR 5 (ARF5) module in Populus tomentosa as a key mediator of auxin signaling to control early developing xylem development. PtoIAA9, a canonical Aux/IAA gene, is predominantly expressed in vascular cambium and developing secondary xylem and induced by exogenous auxin. Overexpression of PtoIAA9m encoding a stabilized IAA9 protein significantly represses secondary xylem development in transgenic poplar. We further showed that PtoIAA9 interacts with PtoARF5 homologs via the C-terminal III/IV domains. The truncated PtoARF5.1 protein without the III/IV domains rescued defective phenotypes caused by PtoIAA9m. Expression analysis showed that the PtoIAA9-PtoARF5 module regulated the expression of genes associated with secondary vascular development in PtoIAA9m- and PtoARF5.1-overexpressing plants. Furthermore, PtoARF5.1 could bind to the promoters of two Class III homeodomain-leucine zipper (HD-ZIP III) genes, PtoHB7 and PtoHB8, to modulate secondary xylem formation. Taken together, our results suggest that the Aux/IAA9-ARF5 module is required for auxin signaling to regulate wood formation via orchestrating the expression of HD-ZIP III transcription factors in poplar.


Assuntos
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Populus/crescimento & desenvolvimento , Transdução de Sinais , Xilema/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/genética , Populus/genética , Ligação Proteica , Madeira/crescimento & desenvolvimento , Xilema/genética
7.
Development ; 142(4): 702-11, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25617434

RESUMO

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS (ARF5)-dependent auxin signalling and auxin transport. This MONOPTEROS-dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling.


Assuntos
Arabidopsis/embriologia , Arabidopsis/metabolismo , Brassica napus/embriologia , Brassica napus/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Sementes/citologia , Sementes/metabolismo , Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Brassica napus/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
Plant Cell Rep ; 36(6): 843-858, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28255787

RESUMO

KEY MESSAGE: Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes/embriologia , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética
9.
Genesis ; 52(2): 127-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24281793

RESUMO

Patterning of numerous features of plants depends on transduction of the auxin signal. Auxin signaling is mediated by several pathways, the best understood of which relies on the function of the MONOPTEROS (MP) gene. Seven mp mutant alleles have been described in the widely used Columbia background of Arabidopsis: two extensively characterized and five only partially characterized. One of these five mp alleles appears to be extinct and thus unavailable for analysis. We show that two of the four remaining, partially characterized mp alleles reported to be in the Columbia background are in fact not in this background. We extend characterization of the remaining two Columbia alleles of mp, and we identify and characterize four new alleles of mp in the Columbia background, among which the first low-expression allele of mp and the strongest Columbia allele of mp. These genetic resources provide the research community with new experimental opportunities for insight into the function of MP-dependent auxin signaling in plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/classificação , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Alelos , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Mutagênese Insercional , Polimorfismo Genético , Sementes/genética , Transdução de Sinais/genética
10.
Heliyon ; 10(7): e29099, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617932

RESUMO

Background: ARF family proteins are a kind of small GTPases, which are involved in regulating a variety of basic functions of cells. In recent years, the role and molecular regulatory mechanisms of ARFs in tumor progression have received increasing attention, and research reports on most of their family members are increasing. However, research on the clinical and pathological relevance of ARF5 in cancer, especially in hepatocellular carcinoma, still needs to be improved. Methods: RNA-seq data in the Cancer Genome Atlas (TCGA) and genome tissue expression (GTEx) databases were used to analyze the expression and pathological data of ARFs family in Pan-cancer. Kaplan-Meier and Cox regression were used for prognostic analysis of ARF5 and Pan-cancer. Combined with ImmuCellAI database and TIMER2 database, the relationship between ARF5 expression and immune cell tumor infiltration in hepatocellular carcinoma (HCC) was analyzed. WGCNA is used to construct the co-expression gene network related to ARF5 expression in HCC and screen important modules and central genes. GO and KEGG path enrichment analysis were carried out for the genes in the modules with clinical significance. GSEA analysis was performed to take into account the role of genes with small differences. Finally, ceRNA network analysis was used to explore the molecular mechanism of miRNAs and lncRNAs regulating ARF5 expression. Results: ARFs family (ARF1, ARF3, ARF4, ARF5, ARF6) are generally highly expressed in Pan-cancer. ARF5 is significantly highly expressed in 29 cancers, and the high expression of ARF5 in HCC patients is significantly negatively correlated with OS, DFI, PFI and DSS, which may lead to cancer deterioration by participating in tumor immune infiltration of HCC. Through WGCNA analysis, the expression of ARF5 in HCC may be involved in many cellular processes that consume a lot of energy, such as ribosome formation, RNA and protein synthesis and lipids, as well as COVID-19, nonalcoholic fatty liver, neurodegenerative diseases and other disease pathways. Conclusion: ARFs, especially ARF5, are overexpressed in many human tumors. This study shows for the first time that ARF5 is significantly correlated with the poor prognosis of HCC patients, which may play a role as an oncogene, suggesting that ARF5 has the potential as a biomarker for the diagnosis and treatment of HCC.

11.
Plant Physiol Biochem ; 201: 107827, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329689

RESUMO

Woody bamboos are important resource of industrial fibres. Auxin signaling plays a key role in multiple plant developmental processes, as yet the role of auxin/indole acetic acid (Aux/IAA) in culm development of woody bamboos has not been previously characterized. Dendrocalamus sinicus Chia et J. L. Sun is the largest woody bamboo documented in the world. Here, we identified two alleles of DsIAA21 gene (sIAA21 and bIAA21) from the straight- and bent-culm variants of D. sinicus, respectively, and studied how the domains I, i, and II of DsIAA21 affect the gene transcriptional repression. The results showed that bIAA21 expression was rapidly induced by exogenous auxin in D. sinicus. In transgenic tobacco, sIAA21 and bIAA21 mutated in domains i, and II significantly regulated plant architecture and root development. Stem cross sections revealed that parenchyma cells were smaller in transgenic plants than that in wild type plants. Domain i mutation changed the leucine and proline at position 45 to proline and leucine (siaa21L45P and biaa21P45L) strongly repressed cell expansion and root elongation by reducing the gravitropic response. Substitution of isoleucine with valine in domain II of the full length DsIAA21 resulted in dwarf stature in transgenic tobacco plants. Furthermore, the DsIAA21 interacted with auxin response factor 5 (ARF5) in transgenic tobacco plants, suggesting that DsIAA21 might inhibit stem and root elongation via interacting with ARF5. Taken together, our data indicated that DsIAA21 was a negative regulator of plant development and suggested that amino acid differences in domain i of sIAA21 versus bIAA21 affected their response to auxin, and might play a key role in the formation of the bent culm variant in D. sinicus. Our results not only shed a light on the morphogenetic mechanism in D. sinicus, but also provided new insights into versatile function of Aux/IAAs in plants.


Assuntos
Fator V , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Fator V/genética , Fator V/metabolismo , Leucina/genética , Leucina/metabolismo , Ácidos Indolacéticos/metabolismo , Mutação/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Plants (Basel) ; 10(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34451638

RESUMO

Silver birch (Betula pendula Roth) is an economically important species in Northern Europe. The current research focused on the molecular background of different xylogenesis scenarios in the birch trunks. The study objects were two forms of silver birch, silver birch trees, and Karelian birch trees; the latter form is characterized by the formation of two types of wood, non-figured (straight-grained) and figured, respectively, while it is currently not clear which factors cause this difference. We identified VND/NST/SND genes that regulate secondary cell wall biosynthesis in the birch genome and revealed differences in their expression in association with the formation of xylem with different ratios of structural elements. High expression levels of BpVND7 accompanied differentiation of the type of xylem which is characteristic of the species. At the same time, the appearance of figured wood was accompanied by the low expression levels of the VND genes and increased levels of expression of NST and SND genes. We identified BpARF5 as a crucial regulator of auxin-dependent vascular patterning and its direct target-BpHB8. A decrease in the BpARF5 level expression in differentiating xylem was a specific characteristic of both Karelian birch with figured and non-figured wood. Decreased BpARF5 level expression in non-figured trees accompanied by decreased BpHB8 and VND/NST/SND expression levels compared to figured Karelian birch trees. According to the results obtained, we suggested silver birch forms differing in wood anatomy as valuable objects in studying the regulation of xylogenesis.

13.
Curr Biol ; 31(4): 892-899.e3, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33275890

RESUMO

The plant hormone auxin is a fundamental regulator of organ patterning and development that regulates gene expression via the canonical AUXIN RESPONSE FACTOR (ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) combinatorial system. ARF and Aux/IAA factors interact, but at high auxin concentrations, the Aux/IAA transcriptional repressor is degraded, allowing ARF-containing complexes to activate gene expression. ARF5/MONOPTEROS (MP) is an important integrator of auxin signaling in Arabidopsis development and activates gene transcription in cells with elevated auxin levels. Here, we show that in ovules, MP is expressed in cells with low levels of auxin and can activate the expression of direct target genes. We identified and characterized a splice variant of MP that encodes a biologically functional isoform that lacks the Aux/IAA interaction domain. This MP11ir isoform was able to complement inflorescence, floral, and ovule developmental defects in mp mutants, suggesting that it was fully functional. Our findings describe a novel scenario in which ARF post-transcriptional regulation controls the formation of an isoform that can function as a transcriptional activator in regions of subthreshold auxin concentration.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis , Arabidopsis , Óvulo Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Isoformas de Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Dev Cell ; 55(5): 603-616.e5, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33232670

RESUMO

Axillary meristems (AMs) give rise to lateral shoots and are critical to plant architecture. Understanding how developmental cues and environmental signals impact AM development will enable the improvement of plant architecture in agriculture. Here, we show that ARGONAUTE10 (AGO10), which sequesters miR165/166, promotes AM development through the miR165/166 target gene REVOLUTA. We reveal that AGO10 expression is precisely controlled temporally and spatially by auxin, brassinosteroids, and light to result in AM initiation only in the axils of leaves at a certain age. AUXIN RESPONSE FACTOR 5 (ARF5) activates while BRASSINAZOLE-RESISTANT 1 (BZR1) and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) repress AGO10 transcription directly. In axils of young leaves, BZR1 and PIF4 repress AGO10 expression to prevent AM initiation. In axils of older leaves, ARF5 upregulates AGO10 expression to promote AM initiation. Our results uncover the spatiotemporal control of AM development through the cooperation of hormones and light converging on a regulator of microRNA.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácidos Indolacéticos/metabolismo , Transdução de Sinal Luminoso , Meristema/genética , Mutação/genética , Folhas de Planta/metabolismo , Fatores de Tempo , Transcrição Gênica
15.
Cell Calcium ; 89: 102226, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505782

RESUMO

Contact sites between the endoplasmic reticulum (ER) and plasma membrane (PM) regulate both non-vesicular lipid transfer as well as Ca2+ signaling with multiple interactions between the two pathways. Here I discuss recent findings that offer exciting insights into the role of store-operated Ca2+ entry (SOCE), Oxysterol-binding protein (OSBP)-related proteins ORP3, Arf5 and the Arf GEF IQSec1 in this crosstalk and how they regulate cell migration and focal adhesion disassembly.


Assuntos
Sinalização do Cálcio , Membrana Celular/metabolismo , Movimento Celular , Retículo Endoplasmático/metabolismo , Lipídeos/química , Animais , Adesões Focais/metabolismo , Humanos
16.
J Plant Physiol ; 240: 153010, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31352021

RESUMO

Plant-growth-promoting rhizobacteria (PGPR) improve plant growth by altering the root architecture, although the mechanisms underlying this alteration have yet to be unravelled. Through microarray analysis of PGPR-treated rice roots, a large number of differentially regulated genes were identified. Ectopic expression of one of these genes, OsASR6 (ABA STRESS RIPENING6), had a remarkable effect on plant growth in Arabidopsis. Transgenic lines over-expressing OsASR6 had larger leaves, taller inflorescence bolts and greater numbers of siliques and seeds. The most prominent effect was observed in root growth, with the root biomass increasing four-fold compared with the shoot biomass increase of 1.7-fold. Transgenic OsASR6 over-expressing plants showed higher conductance, transpiration and photosynthesis rates, leading to an ˜30% higher seed yield compared with the control. Interestingly, OsASR6 expression led to alterations in the xylem structure, an increase in the xylem vessel size and altered lignification, which correlated with higher conductance. OsASR6 is activated by auxin and, in turn, increases auxin responses and root auxin sensitivity, as observed by the increased expression of auxin-responsive genes, such as SAUR32 and PINOID, and the key auxin transcription factor, ARF5. Collectively, these phenomena led to an increased root density. The effects of OsASR6 expression largely mimic the beneficial effects of PGPRs in rice, indicating that OsASR6 activation may be a key factor governing PGPR-mediated changes in rice. OsASR6 is a potential candidate for the manipulation of rice for improved productivity.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/anatomia & histologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Oryza/química , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência
17.
Front Plant Sci ; 8: 1813, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114256

RESUMO

Auxin regulates nearly all aspects of plant growth and development including cell division, cell elongation and cell differentiation, which are achieved largely by rapid regulation of auxin response genes. However, the functions of a large number of auxin response genes remain uncharacterized. Paclobutrazol Resistance (PRE) proteins are non-DNA binding basic helix-loop-helix transcription factors that have been shown to be involved in gibberellin and brassinosteroid signaling, and light responses in Arabidopsis. Here, we provide molecular and genetic evidence that PRE6, one of the six PRE genes in Arabidopsis, is an auxin response gene, and that PRE6 is involved in the regulation of auxin signaling. By using quantitative RT-PCR, we showed that the expression level of PRE6 was increased in response to exogenously applied IAA. GUS staining results also showed that the expression of GUS reporter gene in the PRE6p:GUS transgenic seedlings was elevated in response to auxin. Phenotypic analysis showed that overexpression of PRE6 in Arabidopsis resulted in auxin-related phenotypes including elongated hypocotyl and primary roots, and reduced number of lateral roots when compared with the Col wild type seedlings, whereas opposite phenotypes were observed in the pre6 mutants. Further analysis showed that PRE6 overexpression plants were hyposensitive, whereas pre6 mutants were hypersensitive to auxin in root and hypocotyl elongation and lateral root formation assays. By using protoplasts transfection, we showed that PRE6 functions as a transcriptional repressor. Consistent with this, the expression of the auxin response reporter DR5:GUS was decreased in PRE6 overexpression lines, but increased in pre6 mutants. When co-transfected into protoplasts, ARF5 and ARF8 activated the expression of the PRE6p:GUS reporter. Chromatin immunoprecipitation assays showed that ARF5 and ARF8 can be recruited to the promoter regions of PRE6. Taken together, these results suggest that PRE6 is an auxin response gene whose expression is directly regulated by ARF5 and ARF8, and that PRE6 is a transcriptional repressor that negatively regulates auxin responses in Arabidopsis.

18.
Plant Signal Behav ; 12(6): e1331198, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28534650

RESUMO

Calcium (Ca2+) ions play pivotal roles as second messengers in intracellular signal transduction, and coordinate many biological processes. Changes in intracellular Ca2+ levels are perceived by Ca2+ sensors such as calmodulin (CaM) and CaM-like (CML) proteins, which transduce Ca2+ signals into cellular responses by regulation of diverse target proteins. Insights into molecular functions of CaM targets are thus essential to understand the molecular and cellular basis of Ca2+ signaling. During the last decade, IQ67-domain (IQD) proteins emerged as the largest class of CaM targets in plants with mostly unknown functions. In the March issue of Plant Physiology, we presented the first comprehensive characterization of the 33-membered IQD family in Arabidopsis thaliana. We showed, by analysis of the subcellular localization of translational green fluorescent protein (GFP) fusion proteins, that most IQD members label microtubules (MTs), and additionally often localize to the cell nucleus or to membranes, where they recruit CaM Ca2+ sensors. Important functions at MTs are supported by altered MT organization and plant growth in IQD gain-of-function lines. Because IQD proteins share structural hallmarks of scaffold proteins, we propose roles of IQDs in the assembly of macromolecular complexes to orchestrate Ca2+ CaM signaling from membranes to the nucleus. Interestingly, expression of several IQDs is regulated by auxin, which suggests functions of IQDs as hubs in cellular auxin and calcium signaling to regulate plant growth and development.


Assuntos
Padronização Corporal , Cálcio/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/embriologia , Plantas/metabolismo , Transdução de Sinais , Sinalização do Cálcio , Forma Celular , Microtúbulos/metabolismo , Modelos Biológicos , Desenvolvimento Vegetal
19.
Curr Biol ; 26(23): 3202-3208, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27818174

RESUMO

The periodic formation of plant organs such as leaves and flowers gives rise to intricate patterns that have fascinated biologists and mathematicians alike for hundreds of years [1]. The plant hormone auxin plays a central role in establishing these patterns by promoting organ formation at sites where it accumulates due to its polar, cell-to-cell transport [2-6]. Although experimental evidence as well as modeling suggest that feedback from auxin to its transport direction may help specify phyllotactic patterns [7-12], the nature of this feedback remains unclear [13]. Here we reveal that polarization of the auxin efflux carrier PIN-FORMED 1 (PIN1) is regulated by the auxin response transcription factor MONOPTEROS (MP) [14]. We find that in the shoot, cell polarity patterns follow MP expression, which in turn follows auxin distribution patterns. By perturbing MP activity both globally and locally, we show that localized MP activity is necessary for the generation of polarity convergence patterns and that localized MP expression is sufficient to instruct PIN1 polarity directions non-cell autonomously, toward MP-expressing cells. By expressing MP in the epidermis of mp mutants, we further show that although MP activity in a single-cell layer is sufficient to promote polarity convergence patterns, MP in sub-epidermal tissues helps anchor these polarity patterns to the underlying cells. Overall, our findings reveal a patterning module in plants that determines organ position by orienting transport of the hormone auxin toward cells with high levels of MP-mediated auxin signaling. We propose that this feedback process acts broadly to generate periodic plant architectures.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Periodicidade , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Ligação a DNA/genética , Mutação , Fatores de Transcrição/genética
20.
Small GTPases ; 7(4): 257-264, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27739918

RESUMO

The IQSec/BRAG proteins are a subfamily of Arf-nucleotide exchange factors. Since their discovery almost 15 y ago, the BRAGs have been reported to be involved in diverse physiological processes from myoblast fusion, neuronal pathfinding and angiogenesis, to pathophysiological processes including X-linked intellectual disability and tumor metastasis. In this review we will address how, in each of these situations, the BRAGs are thought to regulate the surface levels of adhesive and signaling receptors. While in most cases BRAGs are thought to enhance the endocytosis of these receptors, how they achieve this remains unclear. Similarly, while all 3 BRAG proteins contain calmodulin-binding IQ motifs, little is known about how their activities might be regulated by calcium. These are some of the questions that are likely to form the basis of future research.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mioblastos/fisiologia , Neovascularização Fisiológica , Neurônios/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/metabolismo , Endocitose , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA