Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Biol Chem ; 298(7): 102095, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660018

RESUMO

Ascl2 has been shown to be involved in tumorigenesis in colorectal cancer (CRC), although its epigenetic regulatory mechanism is largely unknown. Here, we found that methylation of the Ascl2 promoter (bp -1670 ∼ -1139) was significantly increased compared to the other regions of the Ascl2 locus in CRC cells and was associated with elevated Ascl2 mRNA expression. Furthermore, we found that promoter methylation was predictive of CRC patient survival after analyzing DNA methylation data, RNA-Seq data, and clinical data of 410 CRC patient samples from the MethHC database, the MEXPRESS database, and the Cbioportal website. Using the established TET methylcytosine dioxygenase 2 (TET2) knockdown and ectopic TET2 catalytic domain-expression cell models, we performed glucosylated hydroxymethyl-sensitive quatitative PCR (qPCR), real-time PCR, and Western blot assays to further confirm that hypermethylation of the Ascl2 promoter, and elevated Ascl2 expression in CRC cells was partly due to the decreased expression of TET2. Furthermore, BCLAF1 was identified as a TET2 interactor in CRC cells by LC-MS/MS, coimmunoprecipitation, immunofluorescence colocalization, and proximity ligation assays. Subsequently, we found the TET2-BCLAF1 complex bound to multiple elements around CCGG sites at the Ascl2 promoter and further restrained its hypermethylation by inducing its hydroxymethylation using chromatin immunoprecipitation-qPCR and glucosylated hydroxymethyl-qPCR assays. Finally, we demonstrate that TET2-modulated Ascl2-targeted stem gene expression in CRC cells was independent of Wnt signaling. Taken together, our data suggest an additional option for inhibiting Ascl2 expression in CRC cells through TET2-BCLAF1-mediated promoter methylation, Ascl2-dependent self-renewal of CRC progenitor cells, and TET2-BCLAF1-related CRC progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Colorretais , Metilação de DNA , Dioxigenases , Proteínas Repressoras , Proteínas Supressoras de Tumor , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Espectrometria de Massas em Tandem , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Anim Genet ; 54(2): 189-198, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36632647

RESUMO

ALAS1 is a member of the α-oxoamine synthase family, which is the first rate-limiting enzyme for heme synthesis and is important for maintaining intracellular heme levels. In the ovary, ALAS1 is associated with the regulation of ovulation-related mitochondrial P450 cytochromes, steroid metabolism, and steroid hormone production. However, there are few studies on the relationship between ALAS1 and reproductive traits in goats. In this study, a mutation located in the promoter region of ALAS1 (g.48791372C>A) was found to be significantly (p < 0.05) associated with the kidding number of Yunshang black goats. Specifically, the mean kidding number in the first three litters and the kidding numbers of all three litters were significantly (p < 0.05) higher in individuals with the CA genotype or AA genotype than in those with the CC genotype. To further investigate the regulatory mechanism of ALAS1, the expression of ALAS1 in goat ovarian tissues with different genotypes was verified by real-time quantitative PCR. The results showed that the expression of ALAS1 was significantly higher in the ovaries of individuals with AA genotype than those with AC and CC genotypes (p < 0.01), and the expression trend of transcription factor ASCL2 was consistent with ALAS1. Additionally, the ALAS1 g.48791372C>A mutation created a new binding site for the transcription factor ASCL2. The luciferase activity assay indicated that the mutation increased the promoter activity of ALAS1. Overexpression of the transcription factor ASCL2 induced increased expression of ALAS1 in goat granulosa cells (p < 0.05). The opposite trend was shown for the inhibition of ASCL2 expression. The results of real-time quantitative PCR, EdU and Cell Counting Kit-8 assays indicated that the transcription factor ASCL2 increased the proliferation of goat granulosa cells by mediating the expression of ALAS1. In conclusion, the transcription factor ASCL2 positively regulated the transcriptional activity and expression levels of ALAS1, altering granulosa cell proliferation and the kidding number in goats.


Assuntos
5-Aminolevulinato Sintetase , Cabras , Fatores de Transcrição , Animais , Feminino , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Proliferação de Células , Cabras/genética , Cabras/metabolismo , Heme , Fatores de Transcrição/metabolismo
3.
World J Surg Oncol ; 20(1): 266, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008864

RESUMO

BACKGROUND: To investigate the role of achaete-scute complex-like 2 (ASCL2) in stomach adenocarcinoma (STAD), we analyze whether ASCL2 suppression could retard cancer development and further observe the relevance between ASCL2 and inflammation via Toll-like receptor 4 (TLR4) activation in STAD, both in vitro and in vivo. METHODS: Proliferation, development, inflammation, and apoptosis in STAD are observed using sh-ASCL2 lentivirus via TLR4 activation in vitro and in vivo. The relationship between ASCL2 and inflammation is analyzed. Western blotting of ASCL2 with the target protein of immune-associated cells is performed. The prognosis of STAD and associated ASCL2 mutation are analyzed. RESULTS: The ASCL2 level in STAD tumor tissues is increased, compared to normal tissues, and brings a worse prognosis. The ASCL2 shows a negative correlation with inflammation, and TLR4 reveals a positive correlation with gastric cancer. ASCL2 expression is high in MGC803 cells. Sh-ASCL2 could reduce STAD development by decreasing proliferation, tumor volume, and biomarker levels and increasing apoptosis in vitro and in vivo. The inflammatory role of ASCL2 is regulated through TLR4 activation. ASCL2 levels may be related to CNTNAP3, CLIP1, C9orf84, ARIH2, and IL1R2 mutations; positively correlated with M2 macrophage and T follicular helper cell levels; negatively correlated with neutrophil, dendritic cell, monocyte, CD8 T cell, and M1 macrophage levels; and involved in STAD prognosis. CONCLUSIONS: The ASCL2 may adjust inflammation in STAD through TLR4 activation and may be associated with related immune cells. ASCL2 is possibly an upstream target factor of the TLR4 signaling pathway.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Inflamação , Neoplasias Gástricas/genética , Receptor 4 Toll-Like/genética , Ubiquitina-Proteína Ligases
4.
BMC Biol ; 18(1): 151, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109217

RESUMO

BACKGROUND: Wnt signaling is a critical determinant for the maintenance and differentiation of stem/progenitor cells, including trophoblast stem cells during placental development. Hyperactivation of Wnt signaling has been shown to be associated with human trophoblast diseases. However, little is known about the impact and underlying mechanisms of excessive Wnt signaling during placental trophoblast development. RESULTS: In the present work, we observed that two inhibitors of Wnt signaling, secreted frizzled-related proteins 1 and 5 (Sfrp1 and Sfrp5), are highly expressed in the extraembryonic trophoblast suggesting possible roles in early placental development. Sfrp1 and Sfrp5 double knockout mice exhibited disturbed trophoblast differentiation in the placental ectoplacental cone (EPC), which contains the precursors of trophoblast giant cells (TGCs) and spongiotrophoblast cells. In addition, we employed mouse models expressing a truncated ß-catenin with exon 3 deletion globally and trophoblast-specifically, as well as trophoblast stem cell lines, and unraveled that hyperactivation of canonical Wnt pathway exhausted the trophoblast precursor cells in the EPC, resulting in the overabundance of giant cells at the expense of spongiotrophoblast cells. Further examination uncovered that hyperactivation of canonical Wnt pathway disturbed trophoblast differentiation in the EPC via repressing Ascl2 expression. CONCLUSIONS: Our investigations provide new insights that the homeostasis of canonical Wnt-ß-catenin signaling is essential for EPC trophoblast differentiation during placental development, which is of high clinical relevance, since aberrant Wnt signaling is often associated with trophoblast-related diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Proteínas de Membrana/genética , Trofoblastos/metabolismo , Via de Sinalização Wnt/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout
5.
Development ; 144(2): 235-247, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27993983

RESUMO

Myogenic regulatory factors (MRFs), including Myf5, MyoD (Myod1) and Myog, are muscle-specific transcription factors that orchestrate myogenesis. Although MRFs are essential for myogenic commitment and differentiation, timely repression of their activity is necessary for the self-renewal and maintenance of muscle stem cells (satellite cells). Here, we define Ascl2 as a novel inhibitor of MRFs. During mouse development, Ascl2 is transiently detected in a subpopulation of Pax7+ MyoD+ progenitors (myoblasts) that become Pax7+ MyoD- satellite cells prior to birth, but is not detectable in postnatal satellite cells. Ascl2 knockout in embryonic myoblasts decreases both the number of Pax7+ cells and the proportion of Pax7+ MyoD- cells. Conversely, overexpression of Ascl2 inhibits the proliferation and differentiation of cultured myoblasts and impairs the regeneration of injured muscles. Ascl2 competes with MRFs for binding to E-boxes in the promoters of muscle genes, without activating gene transcription. Ascl2 also forms heterodimers with classical E-proteins to sequester their transcriptional activity on MRF genes. Accordingly, MyoD or Myog expression rescues myogenic differentiation despite Ascl2 overexpression. Ascl2 expression is regulated by Notch signaling, a key governor of satellite cell self-renewal. These data demonstrate that Ascl2 inhibits myogenic differentiation by targeting MRFs and facilitates the generation of postnatal satellite cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Desenvolvimento Muscular/genética , Fatores de Regulação Miogênica/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fatores de Regulação Miogênica/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Transdução de Sinais/genética , Ativação Transcricional/genética
6.
Biochem Biophys Res Commun ; 510(3): 435-441, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30722992

RESUMO

Inflammatory bowel disease (IBD) has been well-documented as a chronic gastrointestinal autoimmune disease, but its etiology remains to be elusive. Ascl2 (achaete-scute complex homologue 2), identified as a homologue of the Drosophila achaete-scute gene, has been shown to play an essential for the pathogenesis of autoimmune diseases and cancers. However, whether it is associated with the pathogenesis of IBD remains unclear. Here, we demonstrated that Ascl2 was greatly down-regulated in human IBD and experimental colitis. Interestingly, CD4+ T cell expression of Ascl2 was regulated by intestinal microbiota. Moreover, we revealed that Ascl2 inhibited the differentiation of Th17 cells and restrained their pathogenicity through facilitating IL-10 production. We further showed that Blimp-1 might be involved in the Ascl2-inducing IL-10 expression in CD4+ T cells under Th17 differentiating condition. Notably, lentivirus-mediated overexpression of Ascl2 remarkably alleviated the severity of 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced colitis in mice, with decreased level of colonic IL-17A. Our findings demonstrated an unappreciated mechanism whereby Ascl2 negatively modulates pathogenic Th17 cell differentiation via promoting IL-10 production, and alleviates intestinal inflammation. Thus, Ascl2 may serve as a novel therapeutic target of IBD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Interleucina-10/biossíntese , Células Th17/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Colite/induzido quimicamente , Colite/imunologia , Microbioma Gastrointestinal , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Células Th17/metabolismo
7.
Zygote ; 27(1): 49-53, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30714556

RESUMO

SummaryIn eutherian mammals, the placenta plays a critical role in embryo development by supplying nutrients and hormones and mediating interaction with the mother. To establish the fine connection between mother and embryo, the placenta needs to be formed normally, but the mechanism of placental differentiation is not fully understood. We previously revealed that mouse prolyl oligopeptidase (POP) plays a role in trophoblast stem cell (TSC) differentiation into two placental cell types, spongiotrophoblasts (SpT) and trophoblast giant cells. Here, we focused on SpT differentiation and attempted to elucidate a molecular mechanism. For Ascl2, Arnt, and Egfr genes that are indispensable for SpT formation, we found that a POP-specific inhibitor, SUAM-14746, significantly decreased Ascl2 expression, which was consistent with a significant decrease in expression of Flt1, a gene downstream of Ascl2. Although this downregulation was unlikely to be mediated by the PI3K-Akt pathway, our results indicated that POP controls TSC differentiation into SpT by regulating the Ascl2 gene.


Assuntos
Placenta/citologia , Serina Endopeptidases/genética , Trofoblastos/citologia , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Receptores ErbB/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Gravidez , Prolina/análogos & derivados , Prolina/farmacologia , Prolil Oligopeptidases , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Tiazolidinas/farmacologia , Trofoblastos/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
8.
Dev Biol ; 418(1): 55-65, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542691

RESUMO

Imprinted genes are expressed primarily from one parental allele by virtue of a germ line epigenetic process. Achaete-scute complex homolog 2 (Ascl2 aka Mash2) is a maternally expressed imprinted gene that plays a key role in placental and intestinal development. Loss-of-function of Ascl2 results in an expansion of the parietal trophoblast giant cell (P-TGC) lineage, an almost complete loss of Trophoblast specific protein alpha (Tpbpa) positive cells in the ectoplacental cone and embryonic failure by E10.5. Tpbpa expression marks the progenitors of some P-TGCs, two additional trophoblast giant cell lineages (spiral artery and canal), the spongiotrophoblast and the glycogen cell lineage. Using a transgenic model, here we show that elevated expression of Ascl2 reduced the number of P-TGC cells by 40%. Elevated Ascl2 also resulted in a marked loss of the spongiotrophoblast and a substantial mislocalisation of glycogen cells into the labyrinth. In addition, Ascl2-Tg placenta contained considerably more placental glycogen than wild type. Glycogen cells are normally located within the junctional zone in close contact with spongiotrophoblast cells, before migrating through the P-TGC layer into the maternal decidua late in gestation where their stores of glycogen are released. The failure of glycogen cells to release their stores of glycogen may explain both the inappropriate accumulation of glycogen and fetal growth restriction observed late in gestation in this model. In addition, using in a genetic cross we provide evidence that Ascl2 requires the activity of a second maternally expressed imprinted gene, Pleckstrin homology-like domain, family a, member 2 (Phlda2) to limit the expansion of the spongiotrophoblast. This "belts and braces" approach demonstrates the importance of genomic imprinting in regulating the size of the placental endocrine compartment for optimal placental development and fetal growth.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Impressão Genômica/genética , Placenta/embriologia , Placentação/fisiologia , Trofoblastos/citologia , Animais , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Dosagem de Genes/genética , Células Gigantes/citologia , Glicogênio/metabolismo , Intestinos/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Placentação/genética , Gravidez , Proteínas da Gravidez/metabolismo
9.
J Pathol ; 236(4): 467-78, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25866254

RESUMO

Semaphorin-3F (SEMA3F), an axonal repulsant in nerve development, has been shown to inhibit the progression of human colorectal cancer (CRC); however, the underlying mechanism remains elusive. In this study we found a negative correlation between the levels of SEMA3F and CXCR4 in CRC specimens from 85 patients, confirmed by bioinformatics analysis of gene expression in 229 CRC samples from the Cancer Genome Atlas. SEMA3F(high) /CXCR4(low) patients showed the lowest frequency of lymph node and distant metastasis and the longest survival. Mechanistically, SEMA3F inhibited the invasion and metastasis of CRC cells through PI3K-AKT-dependent down-regulation of the ASCL2-CXCR4 axis. Specifically, ASCL2 enhanced the invasion and metastasis of CRC cells in vitro and expression of ASCL2 correlated with distant metastasis, tumour size and poor overall survival in CRC patients. Treatment of CRC cells with the CXCR4 antagonist AMD3100 attenuated SEMA3F knockdown-induced invasion and metastasis of CRC cells in vitro and in vivo. Our study thus demonstrates that SEMA3F functions as a suppressor of CRC metastasis via down-regulating the ASCL2-CXCR4 axis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular , Neoplasias Colorretais/enzimologia , Neoplasias Hepáticas/enzimologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica , Genômica , Células HCT116 , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Metástase Linfática , Masculino , Proteínas de Membrana/genética , Camundongos Nus , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas do Tecido Nervoso/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Estudos Retrospectivos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Carga Tumoral
10.
Biol Open ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38252116

RESUMO

The esophagus is protected from the hostile environment by a stratified epithelium, which renews rapidly. Homeostasis of this epithelium is ensured by a rare population of stem cells in the basal layer: Keratin 15+ (Krt15+) cells. However, little is known about the molecular mechanisms regulating their distinct features, namely self-renewal, potency and epithelial regeneration. Achaete-scute family BHLH transcription factor 2 (ASCL2) is strongly upregulated in Krt15+ stem cells and is known to contribute to stem cell maintenance in other tissues. Herein, we investigated the role of ASCL2 in maintaining homeostasis under normal and stress conditions in the esophageal epithelium. ASCL2 overexpression severely dysregulated cell differentiation and cell fate. Proliferation was also reduced due potentially to a blockage in the G1 phase of the cell cycle or an induction of quiescence. Mass spectrometry analysis confirmed alterations in several proteins associated with differentiation and the cell cycle. In addition, overexpression of ASCL2 enhanced resistance to radiation and chemotherapeutic drugs. Overall, these results denote the role of ASCL2 as a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium.


Assuntos
Epiderme , Diferenciação Celular/genética , Ciclo Celular , Divisão Celular , Epitélio
11.
Gene ; 927: 148739, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955307

RESUMO

Pancreatic adenocarcinoma (PAAD) is a life-threatening cancer. Exploring new diagnosis and treatment targets helps improve its prognosis. tRNA-derived small non-coding RNAs (tsRNAs) are a novel type of gene expression regulators and their dysregulation is closely related to many human cancers. Yet the expression and functions of tsRNAs in PAAD are not well understood. Our study used RNA sequencing to identify tsRNA expression profiles in PAAD cells cultured in no or high glucose media and found tRF-18-8R6546D2 was an uncharacterized tsRNA, which has significantly high expression in PAAD cells and tissues. Clinically, tRF-18-8R6546D2 is linked to poor prognosis in PAAD patients and can be used to distinguish them from healthy populations. Functionally, in vitro and vivo, tRF-18-8R6546D2 over-expression promoted PAAD cell proliferation, migration and invasion, inhibited apoptosis, whereas tRF-18-8R6546D2 knock-down showed opposite effects. Mechanistically, tRF-18-8R6546D2 promoted PAAD malignancy partly by directly silencing ASCL2 and further regulating its downstream genes such as MYC and CASP3. These findings show that tRF-18-8R6546D2 is a novel oncogenic factor and can be a promising diagnostic or prognostic biomarker and therapeutic target for PAAD.


Assuntos
Adenocarcinoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , RNA de Transferência , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Linhagem Celular Tumoral , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/genética , Camundongos , Animais , Movimento Celular/genética , Apoptose/genética , Progressão da Doença , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Prognóstico , Masculino , Feminino , Camundongos Nus
12.
Cancer Med ; 12(1): 412-424, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35670012

RESUMO

BACKGROUND: Drug resistance is an important factor affecting the efficacy of chemotherapy in patients with colon cancer. However, clinical markers for diagnosing drug resistance of tumor cells are not only a few in number, but also low in specificity, and the mechanism of action of tumor cell drug resistance remains unclear. METHODS: Dipeptidase 1 (DPEP1) expression was analyzed using the cancer genome atlas (TCGA) and genotype-Tissue Expression pan-cancer data. Survival analysis was performed using the survival package in R software to assess the prognostic value of DPEP1 expression in colon cancer. Correlation and Venn analyses were adopted to identify key genes. Immunohistochemistry, western blot, qRT-PCR, Co-immunoprecipitation, and dual-luciferase reporter experiments were carried out to explore the underlying associations between DPEP1 and Achaete scute-like 2 (ASCL2). MTT assays were used to evaluate the role of DPEP1 and ASCL2 in colon cancer drug resistance. RESULTS: DPEP1 was highly expressed in colon cancer tissues. DPEP1 expression correlated negatively with disease-specific survival but not with overall survival. Bioinformatics analysis and experiments showed that the expressions of DPEP1 and ASCL2 in colon cancer tissues were markedly positively correlated. Mechanistic research indicated that DPEP1 enhanced the stability of protein ASCL2 by inhibiting its ubiquitination-mediated degradation. In turn, ASCL2 functioned as a transcription factor to activate the transcriptional activity of the DPEP1 gene and boost its expression. Furthermore, DPEP1 also could enhance the expression of colon cancer stem cell markers (LGR5, CD133, and CD44), which strengthened the tolerance of colon cancer cells to chemotherapy drugs. CONCLUSIONS: Our findings reveal that the DPEP1 enhances the stemness of tumor cells by forming a positive feedback loop with ASCL2 to improve resistance to chemotherapy drugs.


Assuntos
Neoplasias do Colo , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Retroalimentação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células-Tronco Neoplásicas/metabolismo , Resistência a Medicamentos
13.
Cancer Cell ; 41(12): 2066-2082.e9, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37995683

RESUMO

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.


Assuntos
Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Células Pequenas/genética , Fatores de Transcrição/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdiferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Carcinoma de Pequenas Células do Pulmão/genética
14.
Cell Rep ; 42(6): 112659, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37327110

RESUMO

p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.


Assuntos
Proteínas Correpressoras , Intestinos , Células-Tronco , Diferenciação Celular , Proliferação de Células , Intestinos/metabolismo , Células-Tronco/fisiologia , Fatores de Transcrição , Proteínas Correpressoras/metabolismo
15.
Am J Transl Res ; 14(4): 2256-2266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559379

RESUMO

Neural stem cells (NSCs) may offer beneficeial and promising adjuncts for treatment of neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and spinal cord injuries. Previous studies showed that LncRNA FER1L4 plays crucial roles in many biological procedures such as invasion, metabolism, apoptosis, and stem cell differentiation. However, the role of FER1L4 in differentiation and growth of NSCs remains unknown. In the present research, we noted that FER1L4 is upregulated in NSCs induced with TNFα. Ectopic expression of FER1L4 suppresses NSCs proliferation and induces NSCs differentiated into neurons and astrocytes. Using Starbase online software, we identified that FER1L4 is one potential target gene of miR-874-3p. Ectopic expression of FER1L4 decreases miR-874-3p expression in NSCs. We identified Ascl2 is one target gene for miR-874-3p. Overexpression of FER1L4 enhances Ascl2 expression in NSCs. Furthermore, we proved that FER1L4 modulates the proliferation and differentiation of NSCs via regulating Ascl2.

16.
Adv Sci (Weinh) ; 9(27): e2105938, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882624

RESUMO

Autophagy is a highly conserved process that is vital for tumor progression and treatment response. Although autophagy is proposed to maintain the stemness phenotype in adult diffuse glioma, the molecular basis of the link between autophagy and stemness is poorly understood, which makes it impossible to effectively screen for the population that will benefit from autophagy-targeted treatment. Here, ATG9B as essential for self-renewal capacity and tumor-propagation potential is identified. Notably, ASCL2 transcriptionally regulates the expression of ATG9B to maintain stemness properties. The ASCL2-ATG9B axis is an independent prognostic biomarker and indicator of autophagic activity. Furthermore, the highly effective blood-brain barrier (BBB)-permeable autophagy inhibitor ROC-325, which can significantly inhibit the progression of ASCL2-ATG9B axisHigh gliomas as a single agent is investigated. These data demonstrate that a new ASCL2-ATG9B signaling axis is crucial for maintaining the stemness phenotype and tumor progression, revealing a potential autophagy inhibition strategy for adult diffuse gliomas.


Assuntos
Autofagia , Glioma , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores , Glioma/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fenótipo
17.
Cureus ; 14(1): e21021, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35154991

RESUMO

Purpose Intestinal stem cell markers play a significant role in esophageal adenocarcinoma carcinogenesis via Barrett's esophagus; however, its utility as a prognostic biomarker has not been established. Methods We analyzed the immunohistochemical expression of intestinal stem cell markers, ASCL2 and LGR5, using whole slides (35 cases) and tissue microarray (TMA; 64 cases). On TMA slides, adjacent normal squamous epithelium, metaplastic glandular epithelium (Barrett's esophagus), and dysplastic glandular epithelium were inserted when applicable. Two pathologists semi-quantitatively scored stained slides independently, and the results were correlated with clinicopathologic factors and outcomes. Results In whole slides, 51% and 57% expressed high ASCL2 and high LGR5; in TMA, 69% and 88% expressed high ASCL2 and high LGR5, respectively. In TMA, high ASCL2 and low LGR5 expression significantly correlated to a higher number of involved lymph nodes (p=0.027 and p=0.0039), and LGR5 expression significantly correlated to the pathological stage (p=0.0032). Kaplan-Meier analysis showed a negative impact of high ASCL2 expression on overall survival (OS; WS p=0.0168, TMA p=0.0276) as well as progression-free survival (PFS; WS p=0.000638, TMA p=0.0466) but not LGR5. Multivariate Cox regression analysis revealed that ASCL2 expression is an independent prognostic factor for esophageal adenocarcinoma (OS; WS p=0.25, TMA p=0.011. PFS; WS p=0.012, TMA p=0.038). Analysis of the TCGA dataset showed that ASCL2 mRNA levels were correlated to nodal status but not overall survival. Conclusion High expression of the intestinal stem cell marker ASCL2 may predict unfavorable outcomes in surgically resected esophageal adenocarcinoma.

18.
J Gastrointest Oncol ; 12(2): 630-638, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012655

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer, according to recently published literature. While the incidence and the mortality of CRC has decreased due to effective cancer screening measures, there has been an increase in the number of young patients diagnosed with colon cancer due to unclear reasons. As a target molecule of the Wnt signaling pathway, Ascl2 is an important marker of CRC stem cells and plays an important role in maintaining the nature of colon cancer stem/precursor cells. However, the role of Ascl2 in autophagy in CRC cells is rarely elucidated. METHODS: In this study, we found that Ascl2 was increased in CRC compared with adjacent tissue. Downregulation of Ascl2 in CRC cells could suppress proliferation and invasion, and induce apoptosis, of CRC cells. Moreover, we found that autophagy-relative protein LC3 increased after Ascl2 knockdown. Furthermore, we treated CRC cells with autophagy inhibitors 3-MA (3-Methyladenine) and CQ (Chloroquine). RESULTS: The results showed that autophagy inhibitors could prevent apoptosis, which was induced by Ascl2 knockdown. Finally, we confirmed that the downregulation of Ascl2 in CRC cells could alleviate the pathological process in vivo by xenograft experiment. CONCLUSIONS: Our findings indicated that si-Ascl2 (small/short interfering) exerted a tumor suppression function in CRC by inducing autophagic cell death, and suggest that Ascl2 targeted therapy represents a novel strategy for CRC treatment.

19.
Evolution ; 75(1): 86-100, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33215684

RESUMO

Hybrid phenotypes that contribute to postzygotic reproductive isolation often exhibit pronounced asymmetry, both between reciprocal crosses and between the sexes in accordance with Haldane's rule. Inviability in mammalian hybrids is associated with parent-of-origin placental growth abnormalities for which misregulation of imprinted gene (IGs) is the leading candidate mechanism. However, direct evidence for the involvement of IGs in hybrid growth dysplasia is limited. We used transcriptome and reduced representation bisulfite sequencing to conduct the first genome-scale assessment of the contribution of IGs to parent-of-origin placental growth dysplasia in the cross between the house mouse (Mus musculus domesticus) and the Algerian mouse (Mus spretus). IGs with transgressive expression and methylation were concentrated in the Kcnq1 cluster, which contains causal genes for prenatal growth abnormalities in mice and humans. Hypermethylation of the cluster's imprinting control region, and consequent misexpression of the genes Phlda2 and Ascl2, is a strong candidate mechanism for transgressive placental undergrowth. Transgressive placental and gene regulatory phenotypes, including expression and methylation in the Kcnq1 cluster, were more extreme in hybrid males. Although consistent with Haldane's rule, male-biased defects are unexpected in rodent placenta because the X-chromosome is effectively hemizygous in both sexes. In search of an explanation, we found evidence of leaky imprinted (paternal) X-chromosome inactivation in hybrid female placenta, an epigenetic disturbance that may buffer females from the effects of X-linked incompatibilities to which males are fully exposed. Sex differences in chromatin structure on the X and sex-biased maternal effects are nonmutually exclusive alternative explanations for adherence to Haldane's rule in hybrid placenta. The results of this study contribute to understanding the genetic basis of hybrid inviability in mammals, and the role of IGs in speciation.


Assuntos
Impressão Genômica , Hibridização Genética , Placentação/genética , Isolamento Reprodutivo , Caracteres Sexuais , Animais , Metilação de DNA , Feminino , Canal de Potássio KCNQ1/genética , Masculino , Camundongos , Gravidez
20.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671373

RESUMO

Novel immunopreventive strategies are emerging that show great promise for conferring long-term protection to individuals at high risk of developing colorectal cancer. The KISIMA vaccine platform utilizes a chimeric protein comprising: (1) a selected tumor antigen; (2) a cell-penetrating peptide to improve antigen delivery and epitope presentation, and (3) a TLR2/4 agonist to serve as a self-adjuvant. This study examines the ability of a KISIMA vaccine against achaete-scute family bHLH transcription factor 2 (Ascl2), an early colon cancer antigen, to reduce colon tumor formation by stimulating an anti-tumor immune response. Vaccine administrations were well-tolerated and led to circulating antibodies and antigen-specific T cells in a mouse model of colorectal cancer. To assess preventive efficacy, the vaccine was administered to mice either alone or in combination with the immune checkpoint inhibitor anti-PD-1. When delivered to animals prior to colon tumor formation, the combination strategy significantly reduced the development of colon microadenomas and adenomas, as compared to vehicle-treated controls. This response was accompanied by an increase in the intraepithelial density of CD3+ T lymphocytes. Together, these data indicate that the KISIMA-Ascl2 vaccine shows great potential to be a safe and potent immunopreventive intervention for individuals at high risk of developing colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA