Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(10): 2661-2675, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822606

RESUMO

The treatment of wastewater is highly challenging due to large fluctuations in flowrates, pollutants, and variable influent water compositions. A sequencing batch reactor (SBR) and modified SBR cycle-step-feed process (SSBR) configuration are studied in this work to effectively treat municipal wastewater while simultaneously removing nitrogen and phosphorus. To control the amount of dissolved oxygen in an SBR, three axiomatic control strategies (proportional integral (PI), fractional proportional integral (FPI), and fuzzy logic controllers) are presented. Relevant control algorithms have been designed using plant data with the models of SBR and SSBR based on ASM2d framework. On comparison, FPI showed a significant reduction in nutrient levels and added an improvement in effluent quality. The overall effluent quality is improved by 0.86% in FPI in comparison with PI controller. The SSBR, which was improved by precisely optimizing nutrient supply and aeration, establishes a delicate equilibrium. This refined method reduces oxygen requirements while reliably sustaining important biological functions. Focusing solely on the FPI controller's performance in terms of total air volume consumption, the step-feed SBR mechanism achieves an excellent 11.04% reduction in consumption.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Fósforo/análise , Purificação da Água/métodos , Nitrogênio/análise , Poluentes Químicos da Água/análise , Oxigênio/análise
2.
J Environ Manage ; 293: 112819, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34034130

RESUMO

An extended activated sludge model (E-ASM2d) was established by including the metabolic processes of double-layer extracellular polymeric substances (EPS) and glycogen-accumulating organisms (GAOs) into the existing ASM2d model for describing and predicting the metabolic processes of the side-stream phosphorus (P) recovery reactor. A sensitivity analysis of model parameters on SPO4(soluble phosphate), XLEPS (loosely-bound EPS), XTEPS (tightly-bound EPS), COD, and SNH4 (soluble ammonia nitrogen) outputs was conducted for identifying influential parameters. The predicted effluent values of COD, ammonia nitrogen (NH4), and P corresponded well with actual measured values and all the model performance coefficient values for COD, NH4, and P were higher than 0.65, implying the E-ASM2d model could accurately simulate the metabolic processes of the side-stream P recovery process under different COD:P ratio conditions. The variations in the mainstream biological P metabolic pathway under different COD:P conditions were investigated by the E-ASM2d model. At COD:P ratios of 30, 20, and 10, the values of fPP,TEPS (fraction of XTEPS in polyphosphate metabolic process) increased from 0.092, 0.094, and 0.096 in the initial phase to 0.107, 0.124, and 0.187 in the side-stream phase, respectively, demonstrating that the fraction of P removal by tightly-bound EPS was improved by the side-stream operation.


Assuntos
Fósforo , Rios , Reatores Biológicos , Redes e Vias Metabólicas , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos
3.
Bioprocess Biosyst Eng ; 43(6): 1093-1104, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166399

RESUMO

A comprehensive model for nitrous oxide (N2O) emissions in an anaerobic/oxygen-limited aerobic (A/OLA) process is proposed here. This paper includes the following main innovations: (i) adding the phosphorus-accumulating organism (XPAO) denitrification pathway to the contribution of N2O emissions; (ii) considering the biological removal of organic matter and phosphorus and predicting the effect of influent phosphorus concentration on N2O emissions via an increase in the influent phosphorus concentration; and (iii) determining the effect of XPAO on N2O production in a simultaneous nitrification, denitrification and phosphorus removal (SNDPR) system by sensitivity analysis. The results suggested that the simulated data matched the measured data well. The predominant pathways of N2O emissions in the process of A/OLA were the ammonium-oxidizing bacterium (XAOB) denitrification pathway and the heterotrophic bacterium (XH) denitrification pathway, while the incomplete hydroxylamine (NH2OH) oxidation pathway and the XPAO denitrification pathway contributed less to N2O emissions. The metabolic activity of XPAO had a significant effect on N2O emissions, and increasing the influent phosphorus concentration was beneficial for reducing the release of N2O. This study is expected to provide a meaningful reference for reducing N2O emissions in wastewater treatment engineering.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos , Modelos Biológicos , Óxido Nitroso/metabolismo , Oxigênio/metabolismo , Aerobiose , Anaerobiose
4.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093066

RESUMO

The activated sludge models (ASMs) commonly used by the International Water Association (IWA) task group are based on chemical oxygen demand (COD) fractionations. However, the proper evaluation of COD fractions, which is crucial for modelling and especially oxygen uptake rate (OUR) predictions, is still under debate. The biodegradation of particulate COD is initiated by the hydrolysis process, which is an integral part of an ASM. This concept has remained in use for over 30 years. The aim of this study was to verify an alternative, more complex, modified (Activated Sludge Model No 2d) ASM2d for modelling the OUR variations and novel procedure for the estimation of a particulate COD fraction through the implementation of the GPS-X software (Hydromantis Environmental Software Solutions, Inc., Hamilton, ON, Canada) in advanced computer simulations. In comparison to the original ASM2d, the modified model more accurately predicted the OUR behavior of real settled wastewater (SWW) samples and SWW after coagulation-flocculation (C-F). The mean absolute relative deviations (MARDs) in OUR were 11.3-29.5% and 18.9-45.8% (original ASM2d) vs. 9.7-15.8% and 11.8-30.3% (modified ASM2d) for the SWW and the C-F samples, respectively. Moreover, the impact of the COD fraction forms and molecules size on the hydrolysis process rate was developed by integrated OUR batch tests in activated sludge modelling.


Assuntos
Modelos Biológicos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Purificação da Água , Análise da Demanda Biológica de Oxigênio , Hidrólise
5.
Artigo em Inglês | MEDLINE | ID: mdl-30938573

RESUMO

A study was conducted to characterize the raw wastewater entering a modern cost effective municipal WWTP in Poland using two approaches; 1) a combination of modeling and carbonaceous oxygen demand (COD) fractionation using respirometric test coupled with model estimation (RT-ME) and 2) flocculation/filtration COD fractionation method combined with BOD measurements (FF-BOD). It was observed that the particulate fractions of COD obtained using FF-BOD method was higher than those estimated by RT-ME approach. Contrary to the above, the values of inert soluble fraction evaluated by FF-BOD method was significantly lower than RT-ME approach (2.4% and 3.9% respectively). Furthermore, the values for low colloidal and particulate fractions as well as soluble inert fractions were different than expected from a typical municipal wastewater. These observations suggest that even at low load (10% of the total wastewater treatment inflow), the industrial wastewater composition can significantly affect the characteristics of municipal wastewater which could also affect the performance and accuracy of respirometric tests. Therefore, in such cases, comparison of the respirometric tests with flocculation/filtration COD/BOD measurements are recommended. Oxygen uptake rate profile with settled wastewater and/or after coagulation-flocculation, however, could still be recommended as a "rapid" control method for monitoring/optimising modern cost-effective wastewater treatment plants.


Assuntos
Análise da Demanda Biológica de Oxigênio , Esgotos/química , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio/métodos , Análise da Demanda Biológica de Oxigênio/normas , Calibragem , Compostos Inorgânicos de Carbono/química , Fracionamento Químico/métodos , Cidades , Análise Custo-Benefício , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Filtração , Floculação , Humanos , Oxigênio/química , Polônia , Purificação da Água/economia , Purificação da Água/métodos , Purificação da Água/normas
6.
Chemosphere ; 335: 139169, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295682

RESUMO

The discovery of comammox Nitrospira, a complete ammonia-oxidizing microorganism belonging to the genus Nitrospira, has brought new insights into the nitrification process in wastewater treatment plants (WWTPs). The applicability of Activated Sludge Model No. 2 d with one-step nitrification (ASM2d-OSN) or two-step nitrification (ASM2d-TSN) for the simulation of the biological nutrient removal (BNR) processes of a full-scale WWTP in the presence of comammox Nitrospira was studied. Microbial analysis and kinetic parameter measurements showed comammox Nitrospira was enriched in the BNR system operated under low dissolved oxygen (DO) and long sludge retention time (SRT). The relative abundance of Nitrospira under the conditions of stage I (DO = 0.5 mg/L, SRT = 60 d) was about twice of that under stage II conditions (DO = 4.0 mg/L, SRT = 26 d), and the copy number of the comammox amoA gene for stage I was 33 times higher than that for stage II. Compared to the ASM2d-OSN model, the ASM2d-TSN model simulated the performance of the WWTP under stage I conditions better, and the Theil inequality coefficient values of all the tested water quality parameters were lower than using ASM2d-OSN. These results indicate that an ASM2d model with two-step nitrification is a better choice for the simulation of WWTPs with the presence of comammox.


Assuntos
Betaproteobacteria , Nitrificação , Amônia , Esgotos , Oxirredução , Bactérias/genética , Oxigênio , Filogenia , Archaea
7.
Sci Total Environ ; 772: 144961, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33581531

RESUMO

In order to deeply investigate the influences of side-stream phosphorus (P) recovery operation on mainstream biological P removal system, an improved activated sludge model no. 2 (ASM2d) was established to illuminate the metabolic processes of P in a side-stream P recovery reactor. The improved ASM2d (named D-EPS-ASM2d) was established by extending of the P metabolic processes of double-layer extracellular polymeric substances (EPS) into conventional ASM2d model. The predicted effluent concentrations of COD, NH4, and TP by the D-EPS-ASM2d had good fits with measured values in the side-stream P recovery process. Comparing with conventional ASM2d, the likelihood values of D-EPS-ASM2d related to COD, NH4, and TP effluents were increased from 0.694, 0.837 and 0.762 to 0.868, 0.904 and 0.920, respectively, implying the simulation performances of D-EPS-ASM2d on nutrient removal processes were significantly improved. Besides, the calibrated values of fPP,TEPS was 0.09, 0.102 and 0.123 as side-stream volume (SSV) increasing from 0.3 to 0.9, implying the fraction of P removal by tightly-bound EPS was enhanced with the increase of SSV.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Fósforo , Reatores Biológicos , Simulação por Computador , Rios , Esgotos
8.
Water Environ Res ; 92(12): 2072-2085, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32497349

RESUMO

A systematic comparison framework for selecting the best retrofitting alternative for a water resource recovery facility (WRRF) is proposed in this work. The procedure is applied comparing different possible plant configurations to retrofit an existent anoxic/oxic (A/O) WRRF (Manresa, Spain) aiming to include enhanced biological phosphorus removal (EBPR). The framework for comparison was built on system analysis using a calibrated IWA ASM2d model. A multicriteria set of performance variables, as the operational and capital expenditures (OPEX and CAPEX, respectively) and robustness tests for measuring how fast the plant configuration refuses external disturbances (like ammonium and phosphate peak loads), were used for comparison. Starting from the existent WRRF, four plant configurations were tested: single A2 /O (only one anoxic reactor converted to anaerobic), double A2 /O (two anoxic reactors converted to anaerobic), BARDENPHO, and UCT. The double A2 /O plant configuration was the most economical and reliable alternative for improving the existent Manresa WRRF capacity and implementing EBPR, since the effluent quality increased 3.8% compared to the current plant configuration. In addition, the double A2 /O CAPEX was close to €165,000 which was at the same order of the single A2 /O and lower than the BARDENPHO and UCT alternatives. PRACTITIONER POINTS: Four configurations including EBPR were evaluated for retrofitting an A/O WRRF. A new multicriteria comparison framework was used to select the best configuration. Up to 13 criteria related to effluent quality, robustness and costs were included. A single function based on the combination of all the criteria was also evaluated.


Assuntos
Fósforo , Recursos Hídricos , Reatores Biológicos , Fosfatos , Esgotos , Espanha , Eliminação de Resíduos Líquidos
9.
Chemosphere ; 234: 893-901, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31252361

RESUMO

Biological phosphorus removal (BPR) is an economical and sustainable processes for the removal of phosphorus (P) from wastewater, achieved by recirculating activated sludge through anaerobic and aerobic (An/Ae) processes. However, few studies have systematically analyzed the optimal hydraulic retention times (HRTs) in anaerobic and aerobic reactions, or whether these are the most appropriate control strategies. In this study, a novel optimization methodology using an improved Q-learning (QL) algorithm was developed, to optimize An/Ae HRTs in a BPR system. A framework for QL-based BPR control strategies was established and the improved Q function, Qt+1(st,st+1)=Qt(st,st+1)+k·[R(st,st+1)+γ·maxatQt(st,st+1)-Qt(st,st+1)] was derived. Based on the improved Q function and the state transition matrices obtained under different HRT step-lengths, the optimum combinations of HRTs in An/Ae processes in any BPR system could be obtained, in terms of the ordered pair combinations of the . Model verification was performed by applying six different influent chemical oxygen demand (COD) concentrations, varying from 150 to 600 mg L-1 and influent P concentrations, varying from 12 to 30 mg L-1. Superior and stable effluent qualities were observed with the optimal control strategies. This indicates that the proposed novel QL-based BPR model performed properly and the derived Q functions successfully realized real-time modelling, with stable optimal control strategies under fluctuant influent loads during wastewater treatment processes.


Assuntos
Algoritmos , Aprendizado de Máquina , Fósforo/isolamento & purificação , Esgotos/microbiologia , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Metabolismo , Modelos Biológicos , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação
10.
Artigo em Inglês | MEDLINE | ID: mdl-30544899

RESUMO

The biodegradation of particulate substrates starts by a hydrolytic stage. Hydrolysis is a slow reaction and usually becomes the rate limiting step of the organic substrates biodegradation. The objective of this work was to evaluate a novel hydrolysis concept based on a modification of the activated sludge model (ASM2d) and to compare it with the original ASM2d model. The hydrolysis concept was developed in order to accurately predict the use of internal carbon sources in enhanced biological nutrient removal (BNR) processes at a full scale facility located in northern Poland. Both hydrolysis concepts were compared based on the accuracy of their predictions for the main processes taking place at a full-scale facility. From the comparison, it was observed that the modified ASM2d model presented similar predictions to those of the original ASM2d model on the behavior of chemical oxygen demand (COD), NH4-N, NO3-N, and PO4-P. However, the modified model proposed in this work yield better predictions of the oxygen uptake rate (OUR) (up to 5.6 and 5.7%) as well as in the phosphate release and uptake rates.


Assuntos
Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Biodegradação Ambiental , Carbono/metabolismo , Hidrólise , Modelos Teóricos , Nitrogênio/metabolismo , Fósforo/metabolismo , Polônia
11.
Environ Sci Pollut Res Int ; 23(10): 10234-46, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26880524

RESUMO

An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.


Assuntos
Biodegradação Ambiental , Esgotos/química , Eliminação de Resíduos Líquidos , Purificação da Água/métodos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA