Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1249637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736084

RESUMO

Background: Schistosomiasis, a disease caused by parasites of the genus Schistosoma, remains a global public health threat. This study aimed to validate the diagnostic performance of a recently developed gold immunochromatographic assay (GICA) for the detection of S. japonicum infection in a rural endemic area of the Philippines. Methods: Human clinical samples were collected from 412 subjects living in Laoang and Palapag municipalities, Northern Samar, the Philippines. The presence of Schistosoma-specific antibodies in serum samples was tested with the SjSAP4-incorporated GICA strips and the results were converted to fully quantitative data by introducing an R value. The performance of the established GICA was further compared with other diagnostic tools, including the Kato-Katz (KK) technique, point-of-care circulating cathodic antigen (POC-CCA), droplet digital (dd) PCR, and enzyme-linked immunosorbent assays (ELISAs). Results: The developed GICA strip was able to detect KK positive individuals with a sensitivity of 83.3% and absolute specificity. When calibrated with the highly sensitive faecal ddPCR assay, the immunochromatographic assay displayed an accuracy of 60.7%. Globally, the GICA assay showed a high concordance with the SjSAP4-ELISA assay. The schistosomiasis positivity rate determined by the GICA test was similar to those obtained with the SjSAP4-ELISA assay and the ddPCR assay performed on serum samples (SR_ddPCR), and was 2.3 times higher than obtained with the KK method. Conclusion: The study further confirms that the developed GICA is a valuable diagnostic tool for detecting light S. japonicum infections and implies that this point-of-care assay is a viable solution for surveying endemic areas of low-intensity schistosomiasis and identifying high-priority endemic areas for targeted interventions.


Assuntos
Esquistossomose Japônica , Humanos , Esquistossomose Japônica/diagnóstico , Imunoensaio , Ensaio de Imunoadsorção Enzimática , Fezes , Ouro
2.
ACS Sens ; 8(12): 4442-4467, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38091479

RESUMO

In recent years, there has been a notable increase in interest surrounding nanozymes due to their ability to imitate the functions and address the limitations of natural enzymes. The scientific community has been greatly intrigued by the study of nanoceria, primarily because of their distinctive physicochemical characteristics, which include a variety of enzyme-like activities, affordability, exceptional stability, and the ability to easily modify their surfaces. Consequently, nanoceria have found extensive use in various biosensing applications. However, the impact of its redox activity on the enzymatic catalytic mechanism remains a subject of debate, as conflicting findings in the literature have presented both pro-oxidant and antioxidant effects. Herein, we creatively propose a seesaw model to clarify the regulatory mechanism on redox balance and survey possible mechanisms of multienzyme mimetic properties of nanoceria. In addition, this review aims to showcase the latest advancements in this field by systematically discussing over 180 research articles elucidating the significance of ceria-based nanozymes in enhancing, downsizing, and enhancing the efficacy of point-of-care (POC) diagnostics. These advancements align with the ASSURED criteria established by the World Health Organization (WHO). Furthermore, this review also examines potential constraints in order to offer readers a concise overview of the emerging role of nanoceria in the advancement of POC diagnostic systems for future biosensing applications.


Assuntos
Cério , Sistemas Automatizados de Assistência Junto ao Leito , Oxirredução , Cério/química , Antioxidantes
3.
Sens Actuators Rep ; 3: 100025, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35047829

RESUMO

As the COVID-19 pandemic has profoundly impacted human life, prompt diagnostic tests are becoming an essential part of the social activities. However, the expensive and time-consuming laboratory-based traditional methods do not suffice the enormous needs for massive number of tests, especially in resource-limited settings. Therefore, more affordable, rapid, sensitive and specific field-practical diagnostic devices play an important role in the fight against the disease. In this review, we present the current status and advances in the biosensing technologies for diagnosing COVID-19, ranging from commercial achievements to research developments. Starting from a brief introduction to the disease biomarkers, this review summarizes the working principles of the biosensing technologies, followed by a review of the commercial products and research advances in academia. We recapitulate the literatures with a wide scope of bio/marker detections, embracing nucleic acids, viral proteins, human immune responses, and other potential bio/markers. Further, the challenges and perspectives for their employment in future point-of-care applications are discussed, with an extended appraisal on the practical strategies to enlarge the testing capability without high cost. This critical review provides a comprehensive insight into the diagnostic tools for COVID-19 and will encourage the industry and academia in the field of diagnostic biosensing for future evolvement to large-scale point-of-care screening of COVID-19.

4.
Biosens Bioelectron ; 171: 112721, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091685

RESUMO

We developed an affordable, highly sensitive, and specific paper-based microfluidic platform for fast multiplexed detections of important biomarkers in various body fluids, including urine, saliva, serum, and whole blood. The sensor array consisted of five individual sensing channels with various functionalities that only required a micro liter-sized sample, which was equally split into aliquots by the built-in paper microfluidics. We achieved the individual functionalizations of various bioreceptors by employing the use of wax barriers and 'paper bridges' in an easy and low-cost manner. Pyrene carboxylic acid-modified single-walled carbon nanotubes (PCA/SWNTs) were deposited by quantitative inkjet printing with an optimal 3-dimensional semiconductor density on a paper substrate. Multiple antibodies were immobilized onto the SWNTs surface for highly sensitive and specific field-effect transistor (FET)/chemiresistor (CR) biosensors. We explored the optimal sensing conditions for the paper-based CR biosensor to achieve high sensitivities and specificities towards the target biomarker proteins (human serum albumin (HSA) and human immunoglobulin G (HIgG)) and achieved an ultralow detectable concentration of HSA and HIgG at 1.5 pM. Besides, origami folding was employed to simplify the fabrication process further. The sensing platform described in this work was cost-effective, semi-automated, and user-friendly. It demonstrated the capability of having multiple sensing functions in one paper-based microfluidic sensing platform. It envisioned the potential of a point-of-care device with full-analysis for practical diagnostics in an ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users) fashion for a quick test of targets of interest.


Assuntos
Técnicas Biossensoriais , Líquidos Corporais , Nanotubos de Carbono , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Albumina Sérica Humana
5.
Foods ; 10(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204284

RESUMO

Standard methods for chemical food safety testing in official laboratories rely largely on liquid or gas chromatography coupled with mass spectrometry. Although these methods are considered the gold standard for quantitative confirmatory analysis, they require sampling, transferring the samples to a central laboratory to be tested by highly trained personnel, and the use of expensive equipment. Therefore, there is an increasing demand for portable and handheld devices to provide rapid, efficient, and on-site screening of food contaminants. Recent technological advancements in the field include smartphone-based, microfluidic chip-based, and paper-based devices integrated with electrochemical and optical biosensing platforms. Furthermore, the potential application of portable mass spectrometers in food testing might bring the confirmatory analysis from the laboratory to the field in the future. Although such systems open new promising possibilities for portable food testing, few of these devices are commercially available. To understand why barriers remain, portable food analyzers reported in the literature over the last ten years were reviewed. To this end, the analytical performance of these devices and the extent they match the World Health Organization benchmark for diagnostic tests, i.e., the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end-users (ASSURED) criteria, was evaluated critically. A five-star scoring system was used to assess their potential to be implemented as food safety testing systems. The main findings highlight the need for concentrated efforts towards combining the best features of different technologies, to bridge technological gaps and meet commercialization requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA