Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Mol Cell ; 77(4): 810-824.e8, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31901447

RESUMO

Lipid droplets (LDs) provide a reservoir for triacylglycerol storage and are a central hub for fatty acid trafficking and signaling in cells. Lipolysis promotes mitochondrial biogenesis and oxidative metabolism via a SIRT1/PGC-1α/PPARα-dependent pathway through an unknown mechanism. Herein, we identify that monounsaturated fatty acids (MUFAs) allosterically activate SIRT1 toward select peptide-substrates such as PGC-1α. MUFAs enhance PGC-1α/PPARα signaling and promote oxidative metabolism in cells and animal models in a SIRT1-dependent manner. Moreover, we characterize the LD protein perilipin 5 (PLIN5), which is known to enhance mitochondrial biogenesis and function, to be a fatty-acid-binding protein that preferentially binds LD-derived monounsaturated fatty acids and traffics them to the nucleus following cAMP/PKA-mediated lipolytic stimulation. Thus, these studies identify the first-known endogenous allosteric modulators of SIRT1 and characterize a LD-nuclear signaling axis that underlies the known metabolic benefits of MUFAs and PLIN5.


Assuntos
Ácidos Graxos Monoinsaturados/metabolismo , Gotículas Lipídicas/química , Perilipina-5/metabolismo , Sirtuína 1/metabolismo , Regulação Alostérica , Animais , Transporte Biológico , Linhagem Celular , Células Cultivadas , Dieta , Ácidos Graxos/metabolismo , Lipase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Azeite de Oliva , Perilipina-5/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transcrição Gênica
2.
Genes Dev ; 34(7-8): 495-510, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32139423

RESUMO

Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that ß-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Metabolismo Energético/genética , Lipólise/genética , Proteína Quinase 6 Ativada por Mitógeno/genética , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Obesidade/complicações , Células 3T3 , Tecido Adiposo/enzimologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Proteína Forkhead Box O1/metabolismo , Deleção de Genes , Células HEK293 , Humanos , Hipoglicemiantes/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipase/genética , Lipase/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética
3.
Mol Cell ; 75(4): 807-822.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442424

RESUMO

mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.


Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genética
4.
EMBO J ; 41(17): e109997, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35686465

RESUMO

Lysosome-mediated macroautophagy, including lipophagy, is activated under nutrient deprivation but is repressed after feeding. We show that, unexpectedly, feeding activates intestinal autophagy/lipophagy in a manner dependent on both the orphan nuclear receptor, small heterodimer partner (SHP/NR0B2), and the gut hormone, fibroblast growth factor-15/19 (FGF15/19). Furthermore, postprandial intestinal triglycerides (TGs) and apolipoprotein-B48 (ApoB48), the TG-rich chylomicron marker, were elevated in SHP-knockout and FGF15-knockout mice. Genomic analyses of the mouse intestine indicated that SHP partners with the key lysosomal activator, transcription factor-EB (TFEB) to upregulate the transcription of autophagy/lipolysis network genes after feeding. FGF19 treatment activated lipophagy, reducing TG and ApoB48 levels in HT29 intestinal cells, which was dependent on TFEB. Mechanistically, feeding-induced FGF15/19 signaling increased the nuclear localization of TFEB and SHP via PKC beta/zeta-mediated phosphorylation, leading to increased transcription of the TFEB/SHP target lipophagy genes, Ulk1 and Atgl. Collectively, these results demonstrate that paradoxically after feeding, FGF15/19-activated SHP and TFEB activate gut lipophagy, limiting postprandial TGs. As excess postprandial lipids cause dyslipidemia and obesity, the FGF15/19-SHP-TFEB axis that reduces intestinal TGs via lipophagic activation provides promising therapeutic targets for obesity-associated metabolic disease.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Ingestão de Alimentos , Fatores de Crescimento de Fibroblastos , Trato Gastrointestinal , Receptores Citoplasmáticos e Nucleares , Animais , Apolipoproteína B-48/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Trato Gastrointestinal/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
EMBO Rep ; 24(12): e57440, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37885348

RESUMO

Embryogenesis is highly dependent on maternally loaded materials, particularly those used for energy production. Different environmental conditions and genetic backgrounds shape embryogenesis. The robustness of embryogenesis in response to extrinsic and intrinsic changes remains incompletely understood. By analyzing the levels of two major nutrients, glycogen and neutral lipids, we discovered stage-dependent usage of these two nutrients along with mitochondrial morphology changes during Caenorhabditis elegans embryogenesis. ATGL, the rate-limiting lipase in cellular lipolysis, is expressed and required in the hypodermis to regulate mitochondrial function and support embryogenesis. The embryonic lethality of atgl-1 mutants can be suppressed by reducing sinh-1/age-1-akt signaling, likely through modulating glucose metabolism to maintain sustainable glucose consumption. The embryonic lethality of atgl-1(xd314) is also affected by parental nutrition. Parental glucose and oleic acid supplements promote glycogen storage in atgl-1(xd314) embryos to compensate for the impaired lipolysis. The rescue by parental vitamin B12 supplement is likely through enhancing mitochondrial function in atgl-1 mutants. These findings reveal that metabolic plasticity contributes to the robustness of C. elegans embryogenesis.


Assuntos
Caenorhabditis elegans , Lipólise , Animais , Caenorhabditis elegans/metabolismo , Lipólise/genética , Lipase/genética , Glucose/metabolismo , Glicogênio/metabolismo
6.
Cell Mol Life Sci ; 81(1): 125, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467757

RESUMO

Adipose triglyceride lipase (ATGL) is involved in lipolysis and displays a detrimental pathophysiological role in cardio-metabolic diseases. However, the organo-protective effects of ATGL-induced lipolysis were also suggested. The aim of this work was to characterize the function of lipid droplets (LDs) and ATGL-induced lipolysis in the regulation of endothelial function. ATGL-dependent LDs hydrolysis and cytosolic phospholipase A2 (cPLA2)-derived eicosanoids production were studied in the aorta, endothelial and smooth muscle cells exposed to exogenous oleic acid (OA) or arachidonic acid (AA). Functional effects of ATGL-dependent lipolysis and subsequent activation of cPLA2/PGI2 pathway were also studied in vivo in relation to postprandial endothelial dysfunction.The formation of LDs was invariably associated with elevated production of endogenous AA-derived prostacyclin (PGI2). In the presence of the inhibitor of ATGL or the inhibitor of cytosolic phospholipase A2, the production of eicosanoids was reduced, with a concomitant increase in the number of LDs. OA administration impaired endothelial barrier integrity in vitro that was further impaired if OA was given together with ATGL inhibitor. Importantly, in vivo, olive oil induced postprandial endothelial dysfunction that was significantly deteriorated by ATGL inhibition, cPLA2 inhibition or by prostacyclin (IP) receptor blockade.In summary, vascular LDs formation induced by exogenous AA or OA was associated with ATGL- and cPLA2-dependent PGI2 production from endogenous AA. The inhibition of ATGL resulted in an impairment of endothelial barrier function in vitro. The inhibition of ATGL-cPLA2-PGI2 dependent pathway resulted in the deterioration of endothelial function upon exposure to olive oil in vivo. In conclusion, vascular ATGL-cPLA2-PGI2 dependent pathway activated by lipid overload and linked to LDs formation in endothelium and smooth muscle cells has a vasoprotective role by counterbalancing detrimental effects of lipid overload on endothelial function.


Assuntos
Eicosanoides , Lipólise , Lipólise/fisiologia , Azeite de Oliva , Ácido Araquidônico/metabolismo , Eicosanoides/metabolismo , Prostaglandinas I/metabolismo , Fosfolipases/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(12): e2114739119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35302892

RESUMO

In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages. Lipopolysaccharide (LPS)-mediated activation markedly increased triglyceride accumulation in macrophages. This increase could be attributed to up-regulation of the hypoxia-inducible lipid droplet­associated (HILPDA) protein, which down-regulated adipose triglyceride lipase (ATGL) protein levels, in turn leading to decreased ATGL-mediated triglyceride hydrolysis. The reduction in ATGL-mediated lipolysis attenuated the inflammatory response in macrophages after ex vivo and in vitro activation, and was accompanied by decreased production of prostaglandin-E2 (PGE2) and interleukin-6 (IL-6). Overall, we provide evidence that LPS-mediated activation of macrophages suppresses lipolysis via induction of HILPDA, thereby reducing the availability of proinflammatory lipid precursors and suppressing the production of PGE2 and IL-6.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Humanos , Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Lipídeos , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Triglicerídeos/metabolismo
8.
J Lipid Res ; : 100612, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094772

RESUMO

Stearoyl-CoA desaturase (SCD) is a lipogenic enzyme that catalyzes formation of the first double bond in the carbon chain of saturated fatty acids. Four isoforms of SCD have been identified in mice, the most poorly characterized of which is SCD4, which is cardiac-specific. In the present study, we investigated the role of SCD4 in systemic and cardiac metabolism. We used wildtype (WT) and global SCD4 knockout mice that were fed standard laboratory chow or a high-fat diet (HFD). SCD4 deficiency reduced body adiposity and decreased hyperinsulinemia and hypercholesterolemia in HFD-fed mice. The loss of SCD4 preserved heart morphology in the HFD condition. Lipid accumulation decreased in the myocardium in SCD4-deficient mice and in HL-1 cardiomyocytes with knocked out Scd4 expression. This was associated with an increase in the rate of lipolysis and, more specifically, adipose triglyceride lipase (ATGL) activity. Possible mechanisms of ATGL activation by SCD4 deficiency include lower protein levels of the ATGL inhibitor G0S2 and greater activation by protein kinase A under lipid overload conditions. Moreover, we observed higher intracellular Ca2+ levels in HL-1 cells with silenced Scd4 expression. This may explain the activation of protein kinase A in response to higher Ca2+ levels. Additionally, the loss of SCD4 inhibited mitochondrial enlargement, NADH overactivation, and reactive oxygen species overproduction in the heart in HFD-fed mice. In conclusion, SCD4 deficiency activated lipolysis, resulting in a reduction of cardiac steatosis, prevented the induction of left ventricular hypertrophy, and reduced reactive oxygen species levels in the heart in HFD-fed mice.

9.
J Lipid Res ; 65(1): 100491, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135254

RESUMO

Lipolysis is an essential metabolic process that releases unesterified fatty acids from neutral lipid stores to maintain energy homeostasis in living organisms. Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis and can be coactivated upon interaction with the protein comparative gene identification-58 (CGI-58). The underlying molecular mechanism of ATGL stimulation by CGI-58 is incompletely understood. Based on analysis of evolutionary conservation, we used site directed mutagenesis to study a C-terminally truncated variant and full-length mouse ATGL providing insights in the protein coactivation on a per-residue level. We identified the region from residues N209-N215 in ATGL as essential for coactivation by CGI-58. ATGL variants with amino acids exchanges in this region were still able to hydrolyze triacylglycerol at the basal level and to interact with CGI-58, yet could not be activated by CGI-58. Our studies also demonstrate that full-length mouse ATGL showed higher tolerance to specific single amino acid exchanges in the N209-N215 region upon CGI-58 coactivation compared to C-terminally truncated ATGL variants. The region is either directly involved in protein-protein interaction or essential for conformational changes required in the coactivation process. Three-dimensional models of the ATGL/CGI-58 complex with the artificial intelligence software AlphaFold demonstrated that a large surface area is involved in the protein-protein interaction. Mapping important amino acids for coactivation of both proteins, ATGL and CGI-58, onto the 3D model of the complex locates these essential amino acids at the predicted ATGL/CGI-58 interface thus strongly corroborating the significance of these residues in CGI-58-mediated coactivation of ATGL.


Assuntos
Inteligência Artificial , Lipase , Animais , Camundongos , Lipase/metabolismo , Lipólise/fisiologia , Triglicerídeos/metabolismo , Aminoácidos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo
10.
EMBO Rep ; 23(3): e52669, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132760

RESUMO

The size of lipid droplets varies greatly in vivo and is determined by both intrinsic and extrinsic factors. From an RNAi screen in Drosophila, we found that knocking down subunits of COP9 signalosome (CSN) results in enlarged lipid droplets under high-fat, but not normal, conditions. We identified CG2064, a retinol dehydrogenase (RDH) homolog, as the proteasomal degradation target of CSN in regulating lipid droplet size. RDH/CG2064 interacts with the lipid droplet-resident protein Plin2 and the RDH/CG2064-Plin2 axis acts to reduce the overall level and lipid droplet localization of Bmm/ATGL lipase. This axis is important for larval survival under prolonged starvation. Thus, we discovered an RDH-Plin2 axis modulates lipid droplet size.


Assuntos
Drosophila , Lipase , Gotículas Lipídicas , Perilipina-2 , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Lipase/genética , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Perilipina-2/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372146

RESUMO

Branched esters of palmitic acid and hydroxy stearic acid are antiinflammatory and antidiabetic lipokines that belong to a family of fatty acid (FA) esters of hydroxy fatty acids (HFAs) called FAHFAs. FAHFAs themselves belong to oligomeric FA esters, known as estolides. Glycerol-bound FAHFAs in triacylglycerols (TAGs), named TAG estolides, serve as metabolite reservoir of FAHFAs mobilized by lipases upon demand. Here, we characterized the involvement of two major metabolic lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in TAG estolide and FAHFA degradation. We synthesized a library of 20 TAG estolide isomers with FAHFAs varying in branching position, chain length, saturation grade, and position on the glycerol backbone and developed an in silico mass spectra library of all predicted catabolic intermediates. We found that ATGL alone or coactivated by comparative gene identification-58 efficiently liberated FAHFAs from TAG estolides with a preference for more compact substrates where the estolide branching point is located near the glycerol ester bond. ATGL was further involved in transesterification and remodeling reactions leading to the formation of TAG estolides with alternative acyl compositions. HSL represented a much more potent estolide bond hydrolase for both TAG estolides and free FAHFAs. FAHFA and TAG estolide accumulation in white adipose tissue of mice lacking HSL argued for a functional role of HSL in estolide catabolism in vivo. Our data show that ATGL and HSL participate in the metabolism of estolides and TAG estolides in distinct manners and are likely to affect the lipokine function of FAHFAs.


Assuntos
Lipase/metabolismo , Esterol Esterase/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Ésteres/química , Ácidos Graxos/metabolismo , Feminino , Células HEK293 , Humanos , Lipólise/fisiologia , Metabolismo/fisiologia , Camundongos , Camundongos Knockout , Ácido Palmítico/metabolismo , Ácidos Esteáricos/metabolismo , Triglicerídeos/metabolismo
12.
J Lipid Res ; 64(5): 100358, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934843

RESUMO

Photoreceptor cells express the patatin-like phospholipase domain-containing 2 (PNPLA2) gene that codes for pigment epithelium-derived factor receptor (PEDF-R) (also known as ATGL). PEDF-R exhibits phospholipase activity that mediates the neurotrophic action of its ligand PEDF. Because phospholipids are the most abundant lipid class in the retina, we investigated the role of PEDF-R in photoreceptors by generating CRISPR Pnpla2 knock-out mouse lines in a retinal degeneration-free background. Pnpla2-/- mice had undetectable retinal Pnpla2 gene expression and PEDF-R protein levels as assayed by RT-PCR and immunofluorescence, respectively. The photoreceptors of mice deficient in PEDF-R had deformities as examined by histology and transmission electron microscopy. Pnpla2 knockdown diminished the PLA2 enzymatic activity of PEDF-R in the retina. Lipidomic analyses revealed the accumulation of lysophosphatidyl choline-DHA and lysophosphatidyl ethanolamine-DHA in PEDF-R-deficient retinas, suggesting a possible causal link to photoreceptor dysfunction. Loss of PEDF-R decreased levels of rhodopsin, opsin, PKCα, and synaptophysin relative to controls. Pnpla2-/- photoreceptors had surface-exposed phosphatidylserine, and their nuclei were TUNEL positive and condensed, revealing an apoptotic onset. Paralleling its structural defects, PEDF-R deficiency compromised photoreceptor function in vivo as indicated by the attenuation of photoreceptor a- and b-waves in Pnpla2-/- and Pnpla2+/- mice relative to controls as determined by electroretinography. In conclusion, ablation of PEDF-R in mice caused alteration in phospholipid composition associated with malformation and malperformance of photoreceptors. These findings identify PEDF-R as an important component for photoreceptor structure and function, highlighting its role in phospholipid metabolism for retinal survival and its consequences.


Assuntos
Degeneração Retiniana , Serpinas , Camundongos , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Serpinas/genética , Serpinas/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retina/metabolismo , Fosfolipases/metabolismo
13.
Kidney Int ; 104(5): 956-974, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673285

RESUMO

After acute kidney injury (AKI), renal tubular epithelial cells (RTECs) are pathologically characterized by intracellular lipid droplet (LD) accumulation, which are involved in RTEC injury and kidney fibrosis. However, its pathogenesis remains incompletely understood. The protein, αKlotho, primarily expressed in RTECs, is well known as an anti-aging hormone wielding versatile functions, and its membrane form predominantly acts as a co-receptor for fibroblast growth factor 23. Here, we discovered a connection between membrane αKlotho and intracellular LDs in RTECs. Fluorescent fatty acid (FA) pulse-chase assays showed that membrane αKlotho deficiency in RTECs, as seen in αKlotho homozygous mutated (kl/kl) mice or in mice with ischemia-reperfusion injury (IRI)-induced AKI, inhibited FA mobilization from LDs by impairing adipose triglyceride lipase (ATGL)-mediated lipolysis and lipophagy. This resulted in LD accumulation and FA underutilization. IRI-induced alterations were more striking in αKlotho deficiency. Mechanistically, membrane αKlotho deficiency promoted E3 ligase peroxin2 binding to ubiquitin-conjugating enzyme E2 D2, resulting in ubiquitin-mediated degradation of ATGL which is a common molecular basis for lipolysis and lipophagy. Overexpression of αKlotho rescued FA mobilization by preventing ATGL ubiquitination, thereby lessening LD accumulation and fibrosis after AKI. This suggests that membrane αKlotho is indispensable for the maintenance of lipid homeostasis in RTECs. Thus, our study identified αKlotho as a critical regulator of lipid turnover and homeostasis in AKI, providing a viable strategy for preventing tubular injury and the AKI-to-chronic kidney disease transition.

14.
Fish Shellfish Immunol ; 139: 108863, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37277050

RESUMO

Cholesterol metabolism can be dynamically altered in response to pathogen infection that ensure proper macrophage inflammatory function in mammals. However, it is unclear whether the dynamic between cholesterol accumulation and breakdown could induce or suppress inflammation in aquatic animal. Here, we aimed to investigate the cholesterol metabolic response to LPS stimulation in coelomocytes of Apostichopus japonicus, and to elucidate the mechanism of lipophagy in regulating cholesterol-related inflammation. LPS stimulation significantly increased intracellular cholesterol levels at early time point (12 h), and the increase in cholesterol levels is associated with AjIL-17 upregulation. Excessive cholesterol in coelomocytes of A. japonicus was rapidly converted to cholesteryl esters (CEs) and stored in lipid droplets (LDs) after 12 h of LPS stimulation and prolonged for 18 h. Then, increased colocalization of LDs with lysosomes was observed at late time point of LPS treatment (24 h), accompanied by elevated expression of AjLC3 and decreased expression of Ajp62. At the same time, the expression of AjABCA1 rapidly increased, suggesting lipophagy induction. Moreover, we demonstrated that AjATGL is required for induction of lipophagy. Inducing lipophagy by AjATGL overexpression attenuated cholesterol-induced AjIL-17 expression. Overall, our study provides evidence that cholesterol metabolic response occurs upon LPS stimulation, which is actively involved in regulating the inflammatory response of coelomocytes. AjATGL-mediated lipophagy is responsible for cholesterol hydrolysis, thereby balancing cholesterol-induced inflammation in the coelomocytes of A. japonicus.


Assuntos
Stichopus , Animais , Lipopolissacarídeos/farmacologia , Inflamação/induzido quimicamente , Autofagia , Colesterol , Mamíferos
15.
Cell Biol Toxicol ; 39(5): 2113-2131, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35218467

RESUMO

Persistent myocardial hypertrophy frequently leads to heart failure (HF). Intramyocardial triacylglycerol (TAG) accumulation is closely related with cardiac remodeling and abnormal contractile function. Adipose triglyceride lipase (ATGL), a key enzyme in TAG metabolism, regulates cardiac function. However, its associated molecular pathways have not been fully defined. Here, cardiac hypertrophy and HF were induced in wild-type (WT) or ATGL knockout (KO) mice through transverse aortic constriction (TAC) for up to 4 weeks. TAC in WT mice significantly reduced cardiac function and autophagy while enhancing left ventricular hypertrophy, interstitial fibrosis, inflammatory response, superoxide generation, and cardiomyocyte apoptosis, accompanied with upregulation of the proteasome activity, reduction of PTEN level and activation of AKT-mTOR signaling, and these effects were further aggravated in ATGL KO mice. Interestingly, ATGL KO-mediated cardiac dysfunction and remodeling were markedly reversed by proteasome inhibitor (epoxomicin) or autophagic activator (rapamycin), but accelerated by PTEN inhibitor (VO-OHpic) or autophagy inhibitor 3-MA. Mechanistically, ATGL KO upregulated proteasome expression and activity, which in turn mediates PTEN degradation leading to activation of AKT-mTOR signaling and inhibition of autophagy, thereby enhancing hypertrophic remodeling and HF. In conclusion, ATGL KO contributes to TAC-induced cardiac dysfunction and adverse remodeling probably associated with the proteasome-PTEN-mTOR-autophagy pathway. Therefore, modulation of this pathway may have a therapeutic effect potential for hypertrophic heart disease. TAC-induced downregulation of ATGL results in increased proteasome (ß1i/ß2i/ß5i) activity, which in turn promotes degradation of PTEN and activation of AKT-mTOR signaling and then inhibits autophagy and ATP production, thereby leading to cardiac hypertrophic remodeling and dysfunction. Conversely, blocking proteasome activity or activating autophagy attenuates these effects.


Assuntos
Insuficiência Cardíaca , Complexo de Endopeptidases do Proteassoma , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos Knockout , Autofagia , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL
16.
Cell Mol Life Sci ; 79(6): 317, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622139

RESUMO

Endothelial inflammation is recognized as a critical condition in the development of cardiovascular diseases. TNF-induced inflammation of endothelial cells is linked to the formation of lipid droplets, augmented cortical stiffness, and nanostructural endothelial plasma membrane remodelling, but the insight into the mechanism linking these responses is missing. In the present work, we determined the formation of lipid droplets (LDs), nanomechanical, and nanostructural responses in the model of TNF-activated vascular inflammation in the isolated murine aorta using Raman spectroscopy, fluorescence imaging, atomic force microscopy (AFM), and scanning electron microscopy (SEM). We analysed the possible role of Rac1, a major regulator of cytoskeletal organization, in TNF-induced vascular inflammation. We demonstrated that the formation of LDs, polymerization of F-actin, alterations in cortical stiffness, and nanostructural protuberances in endothelial plasma membrane were mediated by the Rac1. In particular, we revealed a significant role for Rac1 in the regulation of the formation of highly unsaturated LDs formed in response to TNF. Inhibition of Rac1 also downregulated the overexpression of ICAM-1 induced by TNF, supporting the role of Rac1 in vascular inflammation. Altogether, our results demonstrate that LDs formation, an integral component of vascular inflammation, is activated by Rac1 that also regulates nanomechanical and nanostructural alterations linked to vascular inflammation.


Assuntos
Células Endoteliais , Endotélio Vascular , Animais , Aorta , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Camundongos
17.
J Biol Chem ; 296: 100332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33508319

RESUMO

Traditionally, lipolysis has been regarded as an enzymatic activity that liberates fatty acids as metabolic fuel. However, recent work has shown that novel substrates, including a variety of lipid compounds such as fatty acids and their derivatives, release lipolysis products that act as signaling molecules and transcriptional modulators. While these studies have expanded the role of lipolysis, the mechanisms underpinning lipolysis signaling are not fully defined. Here, we uncover a new mechanism regulating glucose uptake, whereby activation of lipolysis, in response to elevated cAMP, leads to the stimulation of thioredoxin-interacting protein (TXNIP) degradation. This, in turn, selectively induces glucose transporter 1 surface localization and glucose uptake in 3T3-L1 adipocytes and increases lactate production. Interestingly, cAMP-induced glucose uptake via degradation of TXNIP is largely dependent upon adipose triglyceride lipase (ATGL) and not hormone-sensitive lipase or monoacylglycerol lipase. Pharmacological inhibition or knockdown of ATGL alone prevents cAMP-dependent TXNIP degradation and thus significantly decreases glucose uptake and lactate secretion. Conversely, overexpression of ATGL amplifies the cAMP response, yielding increased glucose uptake and lactate production. Similarly, knockdown of TXNIP elicits enhanced basal glucose uptake and lactate secretion, and increased cAMP further amplifies this phenotype. Overexpression of TXNIP reduces basal and cAMP-stimulated glucose uptake and lactate secretion. As a proof of concept, we replicated these findings in human primary adipocytes and observed TXNIP degradation and increased glucose uptake and lactate secretion upon elevated cAMP signaling. Taken together, our results suggest a crosstalk between ATGL-mediated lipolysis and glucose uptake.


Assuntos
Proteínas de Transporte/genética , Transportador de Glucose Tipo 1/genética , Glucose/metabolismo , Lipase/genética , Lipólise/genética , Tiorredoxinas/genética , Células 3T3-L1 , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Glucose/genética , Humanos , Ácido Láctico/biossíntese , Ácido Láctico/metabolismo , Camundongos , Proteólise/efeitos dos fármacos , Esterol Esterase/genética
18.
J Biol Chem ; 296: 100274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33428938

RESUMO

The G protein-coupled receptor GPRC6A regulates various physiological processes in response to its interaction with multiple ligands, such as extracellular basic amino acids, divalent cations, testosterone, and the uncarboxylated form of osteocalcin (GluOC). Global ablation of GPRC6A increases the susceptibility of mice to diet-induced obesity and related metabolic disorders. However, given that GPRC6A is expressed in many tissues and responds to a variety of hormonal and nutritional signals, the cellular and molecular mechanisms underlying the development of metabolic disorders in conventional knockout mice have remained unclear. On the basis of our previous observation that long-term oral administration of GluOC markedly reduced adipocyte size and improved glucose tolerance in WT mice, we examined whether GPRC6A signaling in adipose tissue might be responsible for prevention of metabolic disorders. We thus generated adipocyte-specific GPRC6A knockout mice, and we found that these animals manifested increased adipose tissue weight, adipocyte hypertrophy, and adipose tissue inflammation when fed a high-fat and high-sucrose diet compared with control mice. These effects were associated with reduced lipolytic activity because of downregulation of lipolytic enzymes such as adipose triglyceride lipase and hormone-sensitive lipase in adipose tissue of the conditional knockout mice. Given that, among GPR6CA ligands tested, GluOC and ornithine increased the expression of adipose triglyceride lipase in cultured 3T3-L1 adipocytes in a manner dependent on GPRC6A, our results suggest that the constitutive activation of GPRC6A signaling in adipocytes by GluOC or ornithine plays a key role in adipose lipid handling and the prevention of obesity and related metabolic disorders.


Assuntos
Inflamação/genética , Obesidade/genética , Osteocalcina/genética , Receptores Acoplados a Proteínas G/genética , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Teste de Tolerância a Glucose , Humanos , Inflamação/patologia , Insulina/genética , Resistência à Insulina/genética , Lipase/genética , Lipólise/genética , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia
19.
Biochem Biophys Res Commun ; 608: 73-81, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35395550

RESUMO

Aberrant lipid metabolism is a hallmark of malignant cancers. Recent studies have shown that abnormal activation of the lipolysis pathway might contribute to acute myeloid leukemia (AML) progression. However, the molecular mechanism through which lipid metabolism mediates AML progression is unknown. RNA-sequencing was used to screen out the target gene pnpla2/ATGL(adipose triglyceride lipase), which showed differential expression in AML. A comparison was made of ATGL mRNA levels in different AML cell lines by real-time PCR. ATGL expression was blocked using siRNAs, and then ATGL expression, proliferation, apoptosis, and cell cycle progression of si-ATGL AML cell lines and si-control AML cell lines were respectively tested. Online tools were used to analyze the potential target microRNAs of ATGL. The mechanism through which hsa-miR-214-3p regulates ATGL was detected by western blotting, proliferation assays, flow cytometry, and dual-luciferase reporter assays. Our results showed that ATGL was overexpressed in AML cell lines. Moreover, ATGL promoted the growth of AML cells. Additionally, hsa-miR-214-3p could suppress ATGL. Finally, we show that hsa-miR-214-3p regulates ATGL through the hsa-miR-214-3p/ATGL/PPARα pathway. This study showed that hsa-miR-214-3p-regulates aberrant lipolysis by promoting ATGL expression, which causes AML progression through the PPARα pathway.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , PPAR alfa , Aciltransferases/genética , Aciltransferases/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Lipólise/genética , MicroRNAs/genética , MicroRNAs/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
20.
Fish Physiol Biochem ; 48(3): 683-691, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460470

RESUMO

The relationship between endoplasmic reticulum stress (ER stress) and lipolysis in mammals has been widely studied, but it is relatively scarce in fish. The present study used grass carp Ctenopharyngodon idella as a model to investigate the effect of ER stress on lipolysis in adipocytes of fish. We found that ER stress evoked by tunicamycin (TM) treatment significantly induced lipolysis in adipocytes. Subsequently, in order to further investigate whether protein kinase A (PKA) is involved in ER stress-induced lipolysis, we treated adipocytes with PKA activator forskolin and inhibitor H89. The results showed that the mechanism was related to the activation of PKA, especially the catalytic subunit PRKACBa. Notably, we also found that PKA regulates lipolysis by targeting mRNA level and protein and enzyme activities of adipotriglyceride lipase (ATGL). Taken together, our findings suggest that PKA/ATGL signaling pathway is involved in ER stress-mediated lipolysis of grass carp adipocytes. It provides a theoretical basis for further study on the mechanism of lipolysis in fish and other vertebrates.


Assuntos
Carpas , Lipólise , Adipócitos , Animais , Carpas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático , Lipase/metabolismo , Mamíferos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA