Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Appl Environ Microbiol ; 89(7): e0070023, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37347166

RESUMO

Weather affects key aspects of bacterial behavior on plants but has not been extensively investigated as a tool to assess risk of crop contamination with human foodborne pathogens. A novel mechanistic model informed by weather factors and bacterial state was developed to predict population dynamics on leafy vegetables and tested against published data tracking Escherichia coli O157:H7 (EcO157) and Salmonella enterica populations on lettuce and cilantro plants. The model utilizes temperature, radiation, and dew point depression to characterize pathogen growth and decay rates. Additionally, the model incorporates the population level effect of bacterial physiological state dynamics in the phyllosphere in terms of the duration and frequency of specific weather parameters. The model accurately predicted EcO157 and S. enterica population sizes on lettuce and cilantro leaves in the laboratory under various conditions of temperature, relative humidity, light intensity, and cycles of leaf wetness and dryness. Importantly, the model successfully predicted EcO157 population dynamics on 4-week-old romaine lettuce plants under variable weather conditions in nearly all field trials. Prediction of initial EcO157 population decay rates after inoculation of 6-week-old romaine plants in the same field study was better than that of long-term survival. This suggests that future augmentation of the model should consider plant age and species morphology by including additional physical parameters. Our results highlight the potential of a comprehensive weather-based model in predicting contamination risk in the field. Such a modeling approach would additionally be valuable for timing field sampling in quality control to ensure the microbial safety of produce. IMPORTANCE Fruits and vegetables are important sources of foodborne disease. Novel approaches to improve the microbial safety of produce are greatly lacking. Given that bacterial behavior on plant surfaces is highly dependent on weather factors, risk assessment informed by meteorological data may be an effective tool to integrate into strategies to prevent crop contamination. A mathematical model was developed to predict the population trends of pathogenic E. coli and S. enterica, two major causal agents of foodborne disease associated with produce, on leaves. Our model is based on weather parameters and rates of switching between the active (growing) and inactive (nongrowing) bacterial state resulting from prevailing environmental conditions on leaf surfaces. We demonstrate that the model has the ability to accurately predict dynamics of enteric pathogens on leaves and, notably, sizes of populations of pathogenic E. coli over time after inoculation onto the leaves of young lettuce plants in the field.


Assuntos
Escherichia coli O157 , Salmonella enterica , Humanos , Tempo (Meteorologia) , Verduras , Lactuca/microbiologia , Plantas , Folhas de Planta/microbiologia , Modelos Teóricos , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Contaminação de Alimentos/análise
2.
BMC Microbiol ; 23(1): 340, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974095

RESUMO

BACKGROUND: The microbiota in fish external mucus is mainly known for having a role in homeostasis and protection against pathogens, but recent evidence suggests it is also involved in the host-specificity of some ectoparasites. In this study, we investigated the influence of seasonality and environmental factors on both fish external microbiota and monogenean gill ectoparasites abundance and diversity and assessed the level of covariations between monogenean and bacterial communities across seasons. To do so, we assessed skin and gill microbiota of two sparid species, Oblada melanura and Diplodus annularis, over a year and collected their specific monogenean ectoparasites belonging to the Lamellodiscus genus. RESULTS: Our results revealed that diversity and structure of skin and gill mucus microbiota were strongly affected by seasonality, mainly by the variations of temperature, with specific fish-associated bacterial taxa for each season. The diversity and abundance of parasites were also influenced by seasonality, with the abundance of some Lamellodiscus species significantly correlated to temperature. Numerous positive and negative correlations between the abundance of given bacterial genera and Lamellodiscus species were observed throughout the year, suggesting their differential interaction across seasons. CONCLUSIONS: The present study is one of the first to demonstrate the influence of seasonality and related abiotic factors on fish external microbiota over a year. We further identified potential interactions between gill microbiota and parasite occurrence in wild fish populations, improving current knowledge and understanding of the establishment of host-specificity.


Assuntos
Doenças dos Peixes , Microbiota , Parasitos , Perciformes , Trematódeos , Animais , Projetos Piloto , Peixes , Bactérias/genética , Doenças dos Peixes/epidemiologia
3.
J Phycol ; 57(3): 874-885, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33556185

RESUMO

Changes in physico-chemical factors due to natural climate variability and eutrophication could affect the cyanobacterial growth patterns in aquatic systems that may cause environmental health problems. Based on morphological and 16S rRNA gene analysis, three cyanobacterial species isolated for the first time from the Nakdong River water sample in South Korea were identified as Amazoninema brasiliense, Microcystis elabens, and Nododsilinea nodulosa. The variations in temperature, pH, nitrogen, or phosphorus levels significantly impacted the cyanobacterial growth patterns. The optimal temperature range for the growth of isolates was from 25-30°C. A neutral or weak alkaline environment favored growth; however, A. brasiliense resulted in 44.2-87.5% higher biomass (0.75 g · L-1 as dry solids, DS) and growth rate (0.24 · d-1 ) at pH 7 than the other isolates (0.4-0.52 g DS · L-1 , 0.16-0.19 · d-1 ). The increased nitrate-nitrogen (NO3 -N) concentrations significantly (P < 0.05) favored biomass production and growth rate for A. brasiliense and M. elabens, respectively, and the maximum growth rate was observed for A. brasiliense at 3.5 mg NO3 -N · L-1 . The orthophosphate concentration (PO4 -P) from 0.1 to 0.5 mg PO4 -P · L-1 increased the growth of the isolates. These observations suggest that isolate growth rates in water bodies can vary depending on different physico-chemical parameters. This study contributes to the further understanding of the growth of microalgae in natural freshwater bodies under fluctuating environmental conditions and aquatic ecosystem stability.


Assuntos
Cianobactérias , Rios , Ecossistema , Microcystis , RNA Ribossômico 16S , República da Coreia
4.
Pestic Biochem Physiol ; 147: 102-109, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29933978

RESUMO

Myclobutanil is a widely used triazole fungicide, comprising two enantiomers with different fungicidal activities, non-target toxicities, and environmental fates. The enantioselective effects of myclobutanil on fumonisin B (FB) production by Fusarium verticillioides, an important pathogen, have not yet been investigated. In the present study, the fungicidal activities of rac-myclobutanil and its enantiomers on F. verticillioides cultured on maize-based media were studied under different water activity and temperature conditions. The FB levels were measured to assess the enantioselective effects on FB production when F. verticillioides were cultured treated with EC50 and EC90 concentrations (concentrations inhibiting mycelial growth by 50.0% and 90.0%, respectively) of myclobutanil and enantiomers under different conditions. The fungicidal activities of rac-myclobutanil and its enantiomers decreased with increasing temperature and decreasing water activity. Little difference in fungicidal activity was observed between the enantiomers. FB production was significantly influenced by temperature, aw, and fungicides dose. At EC50 concentrations, rac-myclobutantil and its enantiomers were shown to enhance mycotoxin production and enantioselective effects of enantiomers on FB production were observed under certain conditions. This is the first report on the differential effects of myclobutanil enantiomers on the control of F. verticillioides growth and FB production in maize-based media under different conditions.


Assuntos
Fumonisinas/metabolismo , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Nitrilas/farmacologia , Triazóis/farmacologia , Relação Dose-Resposta a Droga , Fungicidas Industriais/química , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Nitrilas/química , Estereoisomerismo , Temperatura , Triazóis/química , Água , Zea mays/microbiologia
5.
Poult Sci ; 94(6): 1145-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25834245

RESUMO

The lesser mealworm beetle, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), is an important insect pest. The insect acts as a disease vector and reservoir, negatively affecting the health of birds and humans, and harming poultry husbandry. Controlling the lesser mealworm is generally based on using synthetic chemical insecticides, which are sometimes ineffective, and is limited due to market concerns regarding the toxicity of chemical residues in food products. In this context, the present study aimed to evaluate the potential for the combination of physical and chemical methods to control A. diaperinus. Bioassays were conducted using poultry bedding and known populations of beetle adults and larvae. The treatments consisted of the isolated application of 400 g/m2 hydrated lime; 20% added moisture (distilled water); temperature increase to 45°C; an insecticide composed of cypermethrin, chlorpyrifos, and citronellal; and a combination of these factors. Beetle mortality was measured at 7 and 10 d of treatment. The hydrated lime and moisture treatments alone did not control A. diaperinus. Raising the temperature of the poultry bedding to 45°C effectively controlled both larvae (90±6%) and adults (90±4%). The use of insecticide provided adequate control of A. diaperinus in the conditions of the bioassay (93±2% and 68±5% for adults and larvae, respectively). The combination of the studied factors led to the total control of larvae and adults after 7 d of treatment.


Assuntos
Besouros/efeitos dos fármacos , Abrigo para Animais , Controle de Insetos/métodos , Inseticidas/farmacologia , Aves Domésticas , Monoterpenos Acíclicos , Aldeídos/farmacologia , Criação de Animais Domésticos , Animais , Clorpirifos/farmacologia , Besouros/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Monoterpenos/farmacologia , Piretrinas/farmacologia
6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 597-605, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646746

RESUMO

We investigated the inter- and intra-species differences of leaf vein traits of three dominant Quercus species, Q. wutaishanica, Q. aliena var. acutiserrata, and Q. variabilis of Niubeiling (subtropical humid climate) and Taohuagou (warm temperate semi-humid climate), located in the eastern and western Qinling Mountains. The nine examined leaf vein traits included primary leaf vein width, secondary leaf vein width, mean fine vein width, primary vein density, fine vein density, vein areole diameter, areole density, 3D fine vein surface area, and fine vein volume. We further elucidated the influencing mechanisms and regulatory pathways of biotic and abiotic factors on leaf vein traits. The results showed that species identity had significant effects on eight out of nine leaf vein traits except 3D fine vein surface area, while habitat had significant effects on primary leaf vein width, secondary leaf vein width, vein areole diameter, fine vein density, and areole density. Altitude had significant effects on primary vein density, mean fine vein width, vein areole diameter, fine vein density and areole density. Habitat, tree species identity, and altitude had significantly interactive effects on primary leaf vein density, 3D fine vein surface area, and fine vein volume. There were significant differences in primary leaf vein width, mean fine vein width, areole density, 3D fine vein surface area, fine vein volume, primary vein density of Q. wutaishanica between the two studied habitats, but the differences were only found in secondary leaf vein width and areole density of Q. aliena var. acutiserrata and Q. variabilis. The examined leaf vein traits were influenced both by biotic and abiotic factors, with varying effect sizes. Among the biotic factors, petiole length, leaf length and width ratio had strong effect on leaf vein traits. Among the abiotic factors, climatic and soil factors had high effect size on vein traits, with the former being higher than the latter. Leaf vein traits were affected directly by biotic factors, but indirectly by abiotic factors (soil and climatic factors) via regulating biotic factors (leaf stoichiometry and leaf phenotypic traits).


Assuntos
Ecossistema , Folhas de Planta , Quercus , Quercus/anatomia & histologia , Folhas de Planta/anatomia & histologia , China , Especificidade da Espécie , Altitude
7.
Bioresour Technol ; 390: 129861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863331

RESUMO

Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.


Assuntos
Antibacterianos , Compostagem , Antibacterianos/farmacologia , Genes Bacterianos/genética , Fermentação , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Esterco/microbiologia
8.
J Hazard Mater ; 448: 130984, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860056

RESUMO

Tetracycline (TC) is an antibiotic that is recently found as an emerging pollutant with low biodegradability. Biodegradation shows great potential for TC dissipation. In this study, two TC-degrading microbial consortia (named SL and SI) were respectively enriched from activated sludge and soil. Bacterial diversity decreased in these finally enriched consortia compared with the original microbiota. Moreover, most ARGs quantified during the acclimation process became less abundant in the finally enriched microbial consortia. Microbial compositions of the two consortia as revealed by 16 S rRNA sequencing were similar to some extent, and the dominant genera Pseudomonas, Sphingobacterium, and Achromobacter were identified as the potential TC degraders. In addition, consortia SL and SI were capable of biodegrading TC (initial 50 mg/L) by 82.92% and 86.83% within 7 days, respectively. They could retain high degradation capabilities under a wide pH range (4-10) and at moderate/high temperatures (25-40 °C). Peptone with concentrations of 4-10 g/L could serve as a desirable primary growth substrate for consortia to remove TC through co-metabolism. A total of 16 possible intermediates including a novel biodegradation product TP245 were detected during TC degradation. Peroxidase genes, tetX-like genes and the enriched genes related to aromatic compound degradation as revealed by metagenomic sequencing were likely responsible for TC biodegradation.


Assuntos
Microbiota , Tetraciclina , Antibacterianos , Consórcios Microbianos , Metagenoma
9.
Water Res ; 245: 120574, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690412

RESUMO

Microplastics (MPs) ubiquitous in environments promote the dissemination of antibiotic resistance genes (ARGs), threatening ecosystem safety and human health. However, quantitative assessments of the health risks of ARGs (HRA) in plastisphere and an in-depth exploration of their driving mechanisms are still lacking. Here, the microbiomes, ARGs, and community assembly processes of five types of MPs in an urbanizing watershed were systematically investigated. By fully considering the abundance, clinical availability, human pathogenicity, human accessibility, and mobility of 660 ARGs in plastisphere, the HRA on MPs were quantified and compared. Polyethylene had the highest HRA among the five MP types, and urbanization further increased its risk index. In addition to abiotic factors, more complex biotic factors have been shown to drive HRA in plastisphere. Specifically, dispersal limitation accounted for the increasing diversity and interaction of bacteria that determined HRA in plastisphere. Further analysis of metabolic functions indicated that a higher HRA was accompanied by decreased normal metabolic functions of plastisphere microbiota due to the higher fitness costs of ARGs. This study advances the quantitative surveillance of HRA in plastisphere and understanding of its driving mechanisms. This will be helpful for the management of both MPs and ARGs treatments for human health.


Assuntos
Genes Bacterianos , Microbiota , Humanos , Plásticos , Antibacterianos , Bactérias/genética , Microplásticos , Microbiota/genética
10.
Environ Entomol ; 51(3): 633-640, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35390138

RESUMO

Heliothrips haemorrhoidalis is a polyphagous thrips species that has been reported as a potential pest in strawberry cultivation in Brazil. Since it has only recently emerged as a pest species in production areas, understanding seasonal trends in the species' activity is particularly important for designing management strategies. Therefore, this study aims to investigate the influence of climate factors (temperature and relative humidity) and six strawberry cultivars ('Albion', 'Aromas', 'Camino Real', 'Monterey', 'Portola', and 'San Andreas') on the population dynamics of H. haemorrhoidalis during the 2018-2019 and 2019-2020 growing seasons in southern Brazil. The greatest peak in thrips populations in the cultivars assessed occurred between January and March (summer) in both growing seasons. The relationship between the incidence of H. haemorrhoidalis and temperature was observed to be negative during the autumn, spring, and summer months but positive during winter. Relative humidity levels above 70% had a negative influence on the abundance of insects. Populations of H. haemorrhoidalis varied between the cultivars as follows: 'Aromas' > 'Monterey' > 'San Andreas' > 'Albion' > 'Camino Real' > 'Portola'. Cross-sections of strawberry leaves showed that 'Monterey' had the highest density of nonglandular trichomes/mm2 (7.26), while 'Portola' cultivar, the greatest predominance of glandular trichomes/mm2 (12.67), which may have contributed to the incidence of H. haemorrhoidalis. The demographic information presented on H. haemorrhoidalis in strawberry cultivars provides a starting point to better understand the insect's population dynamics. These results also indicate that climatic conditions are a limiting factor for the development of H. haemorrhoidalis.


Assuntos
Fragaria , Tisanópteros , Animais , Brasil , Insetos , Dinâmica Populacional
11.
Food Res Int ; 162(Pt A): 111915, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461181

RESUMO

The regulation of microbial communities is an important strategy for fermentation management. Dynamic microbiota during the Baijiu fermentation is shaped by a variety of abiotic factors. Therefore, this study aims to investigate the effects of the microbiota of the fermentation starter Daqu on the microbial assembly and the interaction of microbiota succession and abiotic factors during the second round (Ercha) of light-flavor Baijiu fermentation. The results revealed that Streptomyces, Bacillus, Lactobacillus, and Staphylococcus were the dominant bacterial genera in the initial fermentation, while Lactobacillus was dominant during the middle and later stages. Pichia and Saccharomycopsis were the dominant fungal genera during the whole fermentation process. A total of 54 volatile compounds were identified during the fermentation, among which 15 compounds, mainly including ethyl acetate, diethyl azelate, ethyl 2-hydroxyisocaproate, 3-furaldehyde, and ethylidene diacetate, were identified as important flavor metabolites. The SourceTracker software revealed that Daqu contributed 52.3 % of the bacterial community and 38.6 % of the fungal community to the fermentation. Ethanol, moisture, and pH were the major factors regulating the succession of dominant bacteria and fungi during the fermentation. The microbial succession and co-occurrence pattern driven by abiotic factors played a crucial role in shaping flavor profiles. These results provide guidance for controlling the fermentation process by optimizing operational parameters or bioaugmentation with specific microbes.


Assuntos
Microbiota , Micobioma , Saccharomycopsis , Fermentação , Lactobacillus
12.
Int J Food Microbiol ; 373: 109700, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35580409

RESUMO

The development of brown rot in stone fruit caused by the necrotrophic fungus Monilinia spp. is influenced by many abiotic factors, such as temperature, humidity, and light. Specifically, filamentous fungi perceive light as a signal for ecophysiological and adaptive responses. We have explored how specific light wavelengths affect the in vitro development, the regulation of putative development genes and the virulence of the main species of Monilinia (M. laxa, M. fructicola and M. fructigena). After subjecting Monilinia spp. to different light wavelengths (white, black, blue, red, far-red) for 7 days, several differences in their phenotype were observed among light conditions, but also among species. These species of Monilinia exhibited a different phenotypic plasticity in response to light regarding pigmentation, growth, and specially conidiation of colonies. In this sense, we observed that the conidial production was higher in M. laxa than M. fructicola, while M. fructigena showed an inability to produce conidia under the tested conditions. Growth rate among species was significantly lower in M. fructicola under red light wavelength while among light conditions it was increased under far-red light wavelength for M. laxa and under black light for M. fructicola; in contrast, no statistical differences were observed for M. fructigena. Gene expression analysis of 13 genes involved in fungal development of Monilinia spp. revealed a significant difference among the three species of Monilinia, and especially depended on light wavelengths. Among them, a high expression of OPT1, RGS2, RGS3 and SPP1 genes was observed in M. laxa, and LTF1 and STE12 in M. fructicola under black light. In contrast, a high expression of REG1 and C6TF1 genes occurred in both M. fructicola and M. laxa subject to red and far-red light wavelength, respectively. When nectarines were artificially infected with M. laxa and M. fructicola subjected to black light, the virulence was clearly reduced, but not in M. fructigena. Overall, results presented herein demonstrate that light wavelengths are a key abiotic factor for the biology of Monilinia spp., specially modulating its capacity to form conidia, and thus, influencing its spreading and the onset of the disease on nectarines during postharvest.


Assuntos
Ascomicetos , Frutas , Adaptação Fisiológica , Frutas/microbiologia , Esporos Fúngicos , Virulência/genética
13.
Neotrop Entomol ; 50(4): 605-614, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33876392

RESUMO

Environmental variables may markedly influence egg parasitoid performance and must be considered when choosing the best release strategy. Thus, this study aimed to investigate the effects of light, temperature, soil moisture, and precipitation on the emergence and parasitism of parasitoid releases of unprotected and encapsulated pupae. The presence of light favored the parasitism of Trichogramma pretiosum Riley, 1879, and Telenomus remus (Nixon, 1937) but did not impact the parasitism of Telenomus podisi (Ashmead, 1893). The release strategy adopted (release of encapsulated or unprotected pupae) also impacted the results. On one hand, card capsules gave protection against rainfall, limited to 10 mm regarding Tr. pretiosum, while on the other hand, card capsules led to a reduction in the number of captured adults for Te. podisi at 25°C and 30°C. Therefore, Tr. pretiosum, Te. remus, and Te. podisi can be released using both encapsulated and unprotected pupae, with advantages and disadvantages for each strategy, depending on each studied environmental variable. In addition, parasitoid pupae should be released so that the majority emerge during daylight, especially for Te. remus and Tr. pretiosum, since parasitism was greatly reduced in dark environments. Telenomus podisi is not affected by this variable as it demonstrated similar parasitism in light and dark environments.


Assuntos
Himenópteros , Animais , Himenópteros/parasitologia , Luz , Pupa , Chuva , Temperatura
14.
Phytochemistry ; 192: 112931, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34478991

RESUMO

The cylindrical conflorescences of the Banksia spinulosa Sm complex have several different colour types, i.e., black, red, maroon, lemon, and yellow. It is unknown if colour variation is due to extrinsic factors, importantly soil pH. Recent morphological observations have indicated that style colour are not contiguous, so follow-up chemical and soil analysis was conducted to further characterize the colour difference with respect to putative taxa and abiotic factors. Conflorescences of all known colours were sampled from across the eastern Australian distribution of B. spinulosa, and the respective soils were sampled and analysed for pH and total nitrogen. Regression analyses of this data demonstrated that pH and nitrogen gave nil and limited predictability for style colour respectively, i.e., only the taxa with black styles demonstrated a correlation, which was to a soil with slightly higher nitrogen content (p < 0.05). Furthermore, differences of pH were more often between taxa with conflorescences of the same colour. For chemical characterisation, the coloured styles were removed from conflorescences, extracted, and analysed by liquid chromatography-mass spectrometry (HPLC-MS/MS-DAD). Ten anthocyanin and twelve flavonol monoglycosides were identified by mass spectral fragmentation patterns (MS1 and MS2) and retention times. The data demonstrates that style colour differences are caused by the concentration of anthocyanins and their specific chemistry. It remains to be determined if the differences of anthocyanin expression are caused by other abiotic factors, or if it is intrinsic to the respective taxon.


Assuntos
Antocianinas , Proteaceae , Austrália , Cor , Flavonóis , Concentração de Íons de Hidrogênio , Solo , Espectrometria de Massas em Tandem
15.
Mar Environ Res ; 170: 105361, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022419

RESUMO

Differences in the initial configuration of ecological communities may lead to contrasting trajectories when facing environmental changes. Here, we propose to uncover the determinism of benthic communities by carrying out a detailed investigation of their response to small-scale modification of environmental conditions, including physical, chemical, and geological factors. At ten locations (confounding site and depth) in Northern Taiwan, communities were delineated using a morpho-functional classification of the organisms. A k-means clustering was used to identify k homogenous groups among transects. Their environmental determinism was examined by combining this result with 16 environmental variables of transect conditions into a regression tree framework. Biotic and abiotic data were further analyzed with a Multivariate Regression Tree (MRT) to ascertain the hierarchical environmental determinism. The classifications produced by both approaches were compared using the Adjusted Rand index (ARI) to assess the predictive power of unsupervised clustering on its missing explanatory components (abiotic variables). k-means and MRT produced five clusters, respectively, with a similarity of 0.82 in ARI. Wave motion, followed by substrate types resolved most of the variance, while chemical factors in this study were uniform throughout the region. Comparable structures for both methods (clustering groups) demonstrated that the delineated clusters matched with contrasting environmental conditions which could be explained by the existence of various benthic communities. Further consideration of these different communities and their environmental context will be important in determining their trajectories under global changes and may help in the interpretation of community modifications with changing environmental conditions.


Assuntos
Antozoários , Recifes de Corais , Animais , Análise por Conglomerados , Ecossistema , Taiwan
16.
Insects ; 11(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272569

RESUMO

African citrus psyllid (Trioza erytreae (Del Guercio)) is a vector insect of the bacterium Candidatus Liberibacter africanus, the putative causal agent of Huanglongbing, the most devastating citrus disease in the world. The insect was found on the island of Madeira in 1994 and in mainland Portugal in 2015. Present in the north and center of the country, it is a threat to Algarve, the main citrus-producing region. Trioza erytreae eggs and first instar nymphs are sensitive to the combination of high temperatures and low relative humidity. Daily maximum air temperature and minimum relative humidity data from 18 weather stations were used to calculate the water vapor pressure deficit (vpd) from 2004 to 2018 at various locations. Based on the mean vpd and the number of unfavorable days (vpd < 34.5 and vpd < 56 mbar) of two time periods (February to May and June to September), less favorable zones for T. erytreae were identified. The zones with thermal and water conditions like those observed in the Castelo Branco and Portalegre (Center), Beja (Alentejo), Alte, and Norinha (Algarve) stations showed climatic restrictions to the development of eggs and first instar nymphs of African citrus psyllid. Effective control measures, such as the introduction and mass release of Tamarixia dryi (Waterson), a specific parasitoid, and chemical control are necessary in favorable periods for T. erytreae development, such as in spring and in areas with limited or no climate restrictions.

17.
Food Res Int ; 137: 109559, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233180

RESUMO

Microbial communities in fermented food are shaped by a myriad of abiotic factors. The respective roles of abiotic factors in shaping the dynamic bacterial community of paocai during aging remain unclear. In the present study, 100 paocai samples (pH: 2.95-5.23; NaCl content: 0.13-15.41%; total acid: 6.61-18.33 mg/mL; total sugars: 7.96-487.90 µg/mL; total viable count: 3.55-8.99 LogCFU/mL; aging time: 5 day-15 year) were analyzed through high-throughput sequencing and the results revealed five dominant bacterial genera across different samples, including Lactobacillus, Pediococcus, Leuconostoc, Lactococcus and unclassified genera. Both NaCl and total acid (TA) were the major factors regulating bacterial community divergence in paocai. Based on these results, the microbial communities were reconstructed by manipulating the TA and NaCl contents in vitro to validate the effectiveness of these factors in shaping microbial communities during paocai fermentation. Results showed that roles of abiotic factors differentiated during fermentation. At the early stage, salt was the first abiotic filter, mainly working through promoting the abundance of Lactococcus and Leuconostoc. As the TA content increased, the selective role of salt weakened while acid became the dominant at the later stage, as evidenced by the increased abundance of Lactobacillus and Pediococcus following the increase of TA content.


Assuntos
Microbiota , Sais , Alimentos Fermentados , Lactobacillus , Cloreto de Sódio
18.
Ying Yong Sheng Tai Xue Bao ; 31(4): 1378-1388, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32530214

RESUMO

Non-structural carbohydrates (NSC) are essential substances for the tree growth and metabolism, and play an important role in environmental adaptation of trees. At temporal scale, NSC contents in trees have limited inter-annual variation, which could be attributed to the strategy of tree growth and carbon storage. Different factors influence NSC contents of trees in various climatic regions, which change substantially at the seasonal scale. At spatial scale, the variations of NSC content in trees show an insignificantly decreasing trend with the decreases of latitude at global and continental scales, which are mainly related to the hydrothermal gradients. The trend at regional scale is opposite because of the decrease of hydrothermal gradients and lower sample frequency. More sophisticated relations exist between the variations of NSC content in trees and altitudes, which are caused by species-specific characteristics and the variations of micro-habitat conditions. The variations of NSC content in trees at multiple spatial-temporal scales are generally determined by both biotic and abiotic factors, which are mainly dependent on the tradeoff among photosynthate production, respiratory depletion, and tree growth. Furthermore, the methods used for the determination of NSC content are different, which results in great uncertainties in comparing conclusions from different studies. The methods used for sample collection and measurement of NSC should be improved and unified to enhance the comparison among different studies. The NSC contents of trees in different age classes should be measured with all organs collected at multiple spatial-temporal scales. The underlying mechanisms, significance of NSC storage, transformation and allocation on tree growth and survival should be further discussed.


Assuntos
Metabolismo dos Carboidratos , Árvores , Carboidratos , Carbono , Estações do Ano
19.
J Med Entomol ; 56(4): 1013-1018, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30882152

RESUMO

The aim of this study was to investigate whether temperature, rainfall, and humidity influence the annual distribution of Culicoides Latreille 1809, species abundance and richness in rural areas on São Luís Island in the state of Maranhão, Brazil. Biting midges were collected in housing for domestic animals in the peridomestic areas of 10 homes. A CDC light trap was installed in each peridomestic area from 6:00 p.m. to 6:00 a.m. once a month for 12 mo. In total, 23,633 individuals belonging to 26 Culicoides species were captured. The most abundant species were Culicoides diabolicus Hoffman, 1925 (27.43%), C. ignacioi Forattini, 1957 (25.9%), C. flavivenulus Costa Lima, 1937 (15.53%), C. insignis Lutz, 1913 (10.66%), C. filariferus Hoffman, 1939 (6.21%), C. boliviensis Spinelli & Wirth, 1984 (6.07%), C. foxi Ortíz, 1950 (2.83%), and C. leopoldoi Ortíz, 1951 (2.54%). Species richness and abundance were greater during the rainy season (24 species; 88% of the individuals) than during the dry season (18 species; 12% of individuals). However, persistent rain on the days the midges were collected or in the preceding 24 h adversely affected abundance. Mean monthly maximum temperature and rainfall on the day of the collection adversely affected Culicoides abundance and richness.


Assuntos
Biodiversidade , Dípteros , Tempo (Meteorologia) , Animais , Brasil , Fatores de Tempo , Clima Tropical
20.
J Econ Entomol ; 111(1): 112-119, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29272433

RESUMO

The tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is a serious threat to tomato production in the world. Due to serious issues with insecticide resistance, there is a dire need for alternative control methods. Entomopathogenic nematodes (EPN) have potential for the biological control of T. absoluta. In the laboratory, we examined the effect of temperature, soil type, and exposure time on the efficacy of the EPN species Steinernema carpocapsae (Nematoda: Steinernematidae) and Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae) against last-instar T. absoluta larvae. Both species caused high mortality in loamy sand (89%) and coco peat (93%) but not in sandy loam (17%). H. bacteriophora caused 92-96% mortality at 19, 25, and 31°C; S. carpocapsae caused 89-91% mortality at 25 and 31°C but only 76% at 19°C. Both species caused similar mortality levels after 65-min exposure; thereafter, mortality increased only with S. carpocapsae reaching high levels even at a low concentration. Both species infected larvae within leaf galleries. When applied to whole large tomato plants in the greenhouse, both species provided similar control levels (48-51%) at high pest densities. Both species could be incorporated as an effective alternative to synthetic insecticides into T. absoluta management programs in greenhouse tomato production.


Assuntos
Mariposas/parasitologia , Controle Biológico de Vetores , Rabditídios/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/parasitologia , Mariposas/crescimento & desenvolvimento , Solo/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA