Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Neurosci ; 43(7): 1178-1190, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36623874

RESUMO

The accessory olfactory system (AOS) is critical for the development and expression of social behavior. The first dedicated circuit in the AOS, the accessory olfactory bulb (AOB), exhibits cellular and network plasticity in male and female mice after social experience. In the AOB, interneurons called internal granule cells (IGCs) express the plasticity-associated immediate-early gene Arc following intermale aggression or mating. Here, we sought to better understand how Arc-expressing IGCs shape AOB information processing and social behavior in the context of territorial aggression. We used "ArcTRAP" (Arc-CreERT2) transgenic mice to selectively and permanently label Arc-expressing IGCs following male-male resident-intruder interactions. Using whole-cell patch-clamp electrophysiology, we found that Arc-expressing IGCs display increased intrinsic excitability for several days after a single resident-intruder interaction. Further, we found that Arc-expressing IGCs maintain this increased excitability across repeated resident-intruder interactions, during which resident mice increase or "ramp" their aggression. We tested the hypothesis that Arc-expressing IGCs participate in ramping aggression. Using a combination of ArcTRAP mice and chemogenetics (Cre-dependent hM4D(Gi)-mCherry AAV injections), we found that disruption of Arc-expressing IGC activity during repeated resident-intruder interactions abolishes the ramping aggression exhibited by resident male mice. This work shows that Arc-expressing AOB IGC ensembles are activated by specific chemosensory environments, and play an integral role in the establishment and expression of sex-typical social behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.SIGNIFICANCE STATEMENT The accessory olfactory system plays a vital role in rodent chemosensory social behavior. We studied experience-dependent plasticity in the accessory olfactory bulb and found that internal granule cells expressing the immediate-early gene Arc after the resident-intruder paradigm increase their excitability for several days. We investigated the roles of these Arc-expressing internal granule cells on chemosensory social behavior by chemogenetically manipulating their excitability during repeated social interactions. We found that inhibiting these cells eliminated intermale aggressive ramping behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.


Assuntos
Interneurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Interneurônios/fisiologia , Neurônios , Comportamento Social , Agressão , Camundongos Transgênicos , Mamíferos
2.
J Neurosci ; 43(50): 8700-8722, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37903594

RESUMO

Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Sinais (Psicologia)
3.
J Anat ; 245(1): 109-136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366249

RESUMO

Wolves, akin to their fellow canids, extensively employ chemical signals for various aspects of communication, including territory maintenance, reproductive synchronisation and social hierarchy signalling. Pheromone-mediated chemical communication operates unconsciously among individuals, serving as an innate sensory modality that regulates both their physiology and behaviour. Despite its crucial role in the life of the wolf, there is a lacuna in comprehensive research on the neuroanatomical and physiological underpinnings of chemical communication within this species. This study investigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing potential alterations brought about by dog domestication. Our findings demonstrate the presence of a fully functional VNS, vital for pheromone-mediated communication, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf and the domestic dog are discernible, notable microscopic differences emerge. These distinctions include the presence of neuronal clusters associated with the sensory epithelium of the vomeronasal organ (VNO) and a heightened degree of differentiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal the expression of the two primary families of vomeronasal receptors (V1R and V2R) within the VNO. However, only the V1R family is expressed in the AOB. These findings not only yield profound insights into the VNS of the wolf but also hint at how domestication might have altered neural configurations that underpin species-specific behaviours. This understanding holds implications for the development of innovative strategies, such as the application of semiochemicals for wolf population management, aligning with contemporary conservation goals.


Assuntos
Órgão Vomeronasal , Lobos , Animais , Órgão Vomeronasal/fisiologia , Lobos/fisiologia , Masculino , Feromônios/metabolismo , Feminino , Bulbo Olfatório/fisiologia , Bulbo Olfatório/anatomia & histologia , Cães , Imuno-Histoquímica
4.
Horm Behav ; 162: 105527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492348

RESUMO

Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.


Assuntos
Bulbo Olfatório , Prolactina , Comportamento Sexual Animal , Animais , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/fisiologia , Feminino , Prolactina/metabolismo , Prolactina/farmacologia , Camundongos , Masculino , Comportamento Sexual Animal/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Receptores da Prolactina/metabolismo , Maturidade Sexual/fisiologia , Comportamento Social , Feromônios/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo
5.
BMC Biol ; 19(1): 133, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182994

RESUMO

BACKGROUND: For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. RESULTS: First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. CONCLUSIONS: Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions.


Assuntos
Bulbo Olfatório , Animais , Sinais (Psicologia) , Masculino , Camundongos , Células Receptoras Sensoriais , Olfato , Comportamento Estereotipado , Órgão Vomeronasal
6.
J Neurosci ; 40(21): 4203-4218, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312886

RESUMO

The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity.SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos
7.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492099

RESUMO

Glomeruli are neuropil-rich regions of the main or accessory olfactory bulbs (AOB) where the axons of olfactory or vomeronasal neurons and dendrites of mitral/tufted cells form synaptic connections. In the main olfactory system, olfactory sensory neurons (OSNs) expressing the same receptor innervate 1 or 2 glomeruli. However, in the accessory olfactory system, vomeronasal sensory neurons (VSNs) expressing the same receptor can innervate up to 30 different glomeruli in the AOB. Genetic mutation disrupting genes with a role in defining the identity/diversity of olfactory and vomeronasal neurons can alter the number and size of glomeruli. Interestingly, 2 cell surface molecules, Kirrel2 and Kirrel3, have been indicated as playing a critical role in the organization of axons into glomeruli in the AOB. Being able to quantify differences in glomeruli features, such as number, size, or immunoreactivity for specific markers, is an important experimental approach to validate the role of specific genes in controlling neuronal connectivity and circuit formation in either control or mutant animals. Since the manual recognition and quantification of glomeruli on digital images is a challenging and time-consuming task, we generated a program in Python able to identify glomeruli in digital images and quantify their properties, such as size, number, and pixel intensity. Validation of our program indicates that our script is a fast and suitable tool for high-throughput quantification of glomerular features of mouse lines with different genetic makeup.


Assuntos
Neurônios Receptores Olfatórios , Órgão Vomeronasal , Animais , Axônios , Proteínas de Membrana , Camundongos , Bulbo Olfatório , Coloração e Rotulagem
8.
Gen Comp Endocrinol ; 301: 113652, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33122037

RESUMO

The onset of puberty is associated with the psychophysiological maturation of the adolescent to an adult capable of reproduction when olfactory signals play an important role. This period begins with the secretion of the gonadotropin-releasing hormone (GnRH) from GnRH neurons within the hypothalamus. This is regulated by kisspeptin neurons that express high levels of transmembrane prolactin receptors (PRLR) that bind to and are activated by prolactin (PRL). The elevated levels of serum PRL found during lactation, or caused by chronic PRL infusion, decreases the secretion of gonadotropins and kisspeptin and compromised the estrous cyclicity and the ovulation. In the present work, we aimed to evaluate the effects of either increased or decreased PRL circulating levels within the peripubertal murine brain by administration of PRL or treatment with cabergoline (Cab) respectively. We showed that either treatment delayed the onset of puberty in females, but not in males. This was associated with the augmentation of the PRL receptor (Prlr) mRNA expression in the arcuate nucleus and decreased Kiss1 expression in the anteroventral periventricular zone. Then, during adulthood, we assessed the activation of the mitral and granular cells of the main (MOB) and accessory olfactory bulb (AOB) by cFos immunoreactivity (ir) after the exposure to soiled bedding of the opposite sex. In the MOB, the PRL treatment promoted an increased cFos-ir of the mitral cells of males and females. In the granular cells of male of either treatment an augmented activation was observed. In the AOB, an impaired cFos-ir was observed in PRL and Cab treated females after exposure to male soiled bedding. However, in males, only Cab impaired its activation. No effects were observed in the AOB-mitral cells. In conclusion, our results demonstrate that PRL contributes to pubertal development and maturation of the MOB-AOB during the murine juvenile period in a sex-dependent way.


Assuntos
Maturidade Sexual , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Córtex Olfatório , Prolactina , Puberdade
9.
J Anat ; 236(4): 612-621, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797375

RESUMO

In mammals, the accessory olfactory or vomeronasal system exhibits a wide variety of anatomical arrangements. In caviomorph rodents, the accessory olfactory bulb (AOB) exhibits a dichotomic conformation, in which two subdomains, the anterior (aAOB) and the posterior (pAOB), can be readily distinguished. Interestingly, different species of this group exhibit bias of different sign between the AOB subdomains (aAOB larger than pAOB or vice versa). Such species-specific biases have been related with contrasting differences in the habitat of the different species (e.g. arid vs. humid environments). Aiming to deepen these observations, we performed a morphometric comparison of the AOB subdomains between two sister species of octodontid rodents, Octodon lunatus and Octodon degus. These species are interesting for comparative purposes, as they inhabit similar landscapes but exhibit contrasting social habits. Previous reports have shown that O. degus, a highly social species, exhibits a greatly asymmetric AOB, in which the aAOB has twice the size of the pAOB and features more and larger glomeruli in its glomerular layer (GL). We found that the same as in O. degus, the far less social O. lunatus also exhibits a bias, albeit less pronounced, to a larger aAOB. In both species, this bias was also evident for the mitral/tufted cells number. But unlike in O. degus, in O. lunatus this bias was not present at the GL. In comparison with O. degus, in O. lunatus the aAOB GL was significantly reduced in volume, while the pAOB GL displayed a similar volume. We conclude that these sister species exhibit a very sharp difference in the anatomical conformation of the AOB, namely, the relative size of the GL of the aAOB subdomain, which is larger in O. degus than in O. lunatus. We discuss these results in the context of the differences in the lifestyle of these species, highlighting the differences in social behaviour as a possible factor driving to distinct AOB morphometries.


Assuntos
Comportamento Animal/fisiologia , Lateralidade Funcional/fisiologia , Bulbo Olfatório/anatomia & histologia , Comportamento Social , Animais , Octodon , Bulbo Olfatório/fisiologia
10.
J Neurosci ; 38(21): 4957-4976, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29712784

RESUMO

The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time.SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic analysis of temporal coding in the vomeronasal system (VNS), a chemosensory system devoted to socially relevant cues. Compared with the main olfactory system, timescales of VNS function are inherently slower and variable. Using various analyses of real and simulated data, we show that the consideration of response times relative to stimulus uptake can aid the decoding of stimulus information from neuronal activity. However, response properties of accessory olfactory bulb neurons favor decoding schemes that do not rely on the precise timing of stimulus uptake. Such schemes are consistent with the variable nature of VNS stimulus uptake.


Assuntos
Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Simulação por Computador , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Caracteres Sexuais , Especificidade da Espécie , Máquina de Vetores de Suporte , Urina/química , Órgão Vomeronasal/citologia
11.
BMC Evol Biol ; 19(Suppl 1): 51, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813903

RESUMO

BACKGROUND: The most effective learning occurs during sensitive periods. Olfactory plasticity to main social olfactory cues is limited to a critical period to a large degree. The objective was to evaluate the influence of early olfactory experience on the behavioral and neuronal responses of males to con- and heterospecific odors of receptive females in two species, M. musculus (subspecies musculus, wagneri) and M. spicilegus, and thus to determine the potential role of epigenetic contribution in the formation of precopulatory isolation. RESULTS: Males were reciprocally cross-fostered shortly after the birth and were tested for response to con- and heterospecific urine odors of estrus females using two-choice tests at 70-85 days of age. Neuronal activity of non- and cross-fostered males was evaluated at 90-110 days of age in the MOB and AOB to con- and heterospecific female odor using fMRI (MEMRI). Non-cross-fostered males of three taxa demonstrated a strong preference for odor of conspecific females compared to odor of heterospecific ones. Spicilegus-nursed musculus preferred odor of heterospecific females. Wagneri-nursed spicilegus and spicilegus-nursed wagneri did not demonstrate significant choice of con - or heterospecific female odor. The level of MRI signal obtained from the evaluation of manganese accumulation in AOB neurons was significantly higher when the odor of conspecific estrus females was exposed, compared to urine exposure of heterospecific females. The response pattern changed to the opposite in males raised by heterospecific females. Response patterns of neuronal activity in the MOB to con- and heterospecific female odors were different in cross-fostered and control males. CONCLUSION: The maternal environment, including odor, had a greater effect on the level of MRI signal in the AOB than the genetic relationships of the recipient and the donor of the odor stimulus. Behavioral and neuronal responses to con- and heterospecific odors changed in closely related Mus taxa as a result of early experience. We demonstrated the importance of early learning in mate choice in adulthood in mice and the possibility of epigenetic contribution in the formation of precopulatory reproductive isolation.


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Epigênese Genética/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Odorantes , Animais , Sinais (Psicologia) , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Fatores de Tempo
12.
Mol Ecol ; 28(16): 3656-3668, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332871

RESUMO

The vomeronasal system (VNS) serves crucial functions for detecting olfactory clues often related to social and sexual behaviour. Intriguingly, two of the main components of the VNS, the vomeronasal organ (VNO) and the accessory olfactory bulb, are regressed in aquatic mammals, several bats and primates, likely due to adaptations to different ecological niches. To detect genomic changes that are associated with the convergent reduction of the VNS, we performed the first systematic screen for convergently inactivated protein-coding genes associated with convergent VNS reduction, considering 106 mammalian genomes. Extending previous studies, our results support that Trpc2, a cation channel that is important for calcium signalling in the VNO, is a predictive molecular marker for the presence of a VNS. Our screen also detected the convergent inactivation of the calcium-binding protein S100z, the aldehyde oxidase Aox2 that is involved in odorant degradation, and the uncharacterized Mslnl gene that is expressed in the VNO and olfactory epithelium. Furthermore, we found that Trpc2 and S100z or Aox2 are also inactivated in otters and Phocid seals for which no morphological data about the VNS are available yet. This predicts a VNS reduction in these semi-aquatic mammals. By examining the genomes of 115 species in total, our study provides a detailed picture of how the convergent reduction of the VNS coincides with gene inactivation in placental mammals. These inactivated genes provide experimental targets for studying the evolution and biological significance of the olfactory system under different environmental conditions.


Assuntos
Sinalização do Cálcio , Inativação Gênica , Mamíferos/genética , Mamíferos/fisiologia , Órgão Vomeronasal/fisiologia , Aldeído Oxidase/genética , Animais , Evolução Biológica , Análise Mutacional de DNA , Bulbo Olfatório , Mucosa Olfatória , Proteínas S100/genética , Canais de Cátion TRPC/genética
13.
J Neurosci ; 37(30): 7240-7252, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28659282

RESUMO

Chemosensory information processing in the mouse accessory olfactory system guides the expression of social behavior. After salient chemosensory encounters, the accessory olfactory bulb (AOB) experiences changes in the balance of excitation and inhibition at reciprocal synapses between mitral cells (MCs) and local interneurons. The mechanisms underlying these changes remain controversial. Moreover, it remains unclear whether MC-interneuron plasticity is unique to specific behaviors, such as mating, or whether it is a more general feature of the AOB circuit. Here, we describe targeted electrophysiological studies of AOB inhibitory internal granule cells (IGCs), many of which upregulate the immediate-early gene Arc after male-male social experience. Following the resident-intruder paradigm, Arc-expressing IGCs in acute AOB slices from resident males displayed stronger excitation than nonexpressing neighbors when sensory inputs were stimulated. The increased excitability of Arc-expressing IGCs was not correlated with changes in the strength or number of excitatory synapses with MCs but was instead associated with increased intrinsic excitability and decreased HCN channel-mediated IH currents. Consistent with increased inhibition by IGCs, MCs responded to sensory input stimulation with decreased depolarization and spiking following resident-intruder encounters. These results reveal that nonmating behaviors drive AOB inhibitory plasticity and indicate that increased MC inhibition involves intrinsic excitability changes in Arc-expressing interneurons.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is a site of experience-dependent plasticity between excitatory mitral cells (MCs) and inhibitory internal granule cells (IGCs), but the physiological mechanisms and behavioral conditions driving this plasticity remain unclear. Here, we report studies of AOB neuronal plasticity following male-male social chemosensory encounters. We show that the plasticity-associated immediate-early gene Arc is selectively expressed in IGCs from resident males following the resident-intruder assay. After behavior, Arc-expressing IGCs are more strongly excited by sensory input stimulation and MC activation is suppressed. Arc-expressing IGCs do not show increased excitatory synaptic drive but instead show increased intrinsic excitability. These data indicate that MC-IGC plasticity is induced after male-male social chemosensory encounters, resulting in enhanced MC suppression by Arc-expressing IGCs.


Assuntos
Agressão/fisiologia , Interneurônios/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/fisiologia , Comportamento Social , Animais , Comportamento Animal/fisiologia , Proteínas do Citoesqueleto/metabolismo , Relações Interpessoais , Masculino , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica/fisiologia
14.
Cereb Cortex ; 27(5): 2841-2856, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27178193

RESUMO

A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Células-Tronco/fisiologia , Tálamo/citologia , Tálamo/metabolismo , Animais , Movimento Celular , Células Cultivadas , Embrião de Mamíferos , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Gravidez , Receptores de Glutamato Metabotrópico/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
15.
J Neurophysiol ; 117(3): 1342-1351, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28053247

RESUMO

Norepinephrine (NE) release has been linked to experience-dependent plasticity in many model systems and brain regions. Among these is the rodent accessory olfactory system (AOS), which is crucial for detecting and processing socially relevant environmental cues. The accessory olfactory bulb (AOB), the first site of chemosensory information processing in the AOS, receives dense centrifugal innervation by noradrenergic fibers originating in the locus coeruleus. Although NE release has been linked to behavioral plasticity through its actions in the AOB, the impacts of noradrenergic modulation on AOB information processing have not been thoroughly studied. We made extracellular single-unit recordings of AOB principal neurons in ex vivo preparations of the early AOS taken from adult male mice. We analyzed the impacts of bath-applied NE (10 µM) on spontaneous and stimulus-driven activity. In the presence of NE, we observed overall suppression of stimulus-driven neuronal activity with limited impact on spontaneous activity. NE-associated response suppression in the AOB came in two forms: one that was strong and immediate (21%) and one other that involved gradual, stimulus-dependent monotonic response suppression (47%). NE-associated changes in spontaneous activity were more modest, with an overall increase in spontaneous spike frequency observed in 25% of neurons. Neurons with increased spontaneous activity demonstrated a net decrease in chemosensory discriminability. These results reveal that noradrenergic signaling in the AOB causes cell-specific changes in chemosensory tuning, even among similar projection neurons.NEW & NOTEWORTHY Norepinephrine (NE) is released throughout the brain in many behavioral contexts, but its impacts on information processing are not well understood. We studied the impact of NE on chemosensory tuning in the mouse accessory olfactory bulb (AOB). Electrophysiological recordings from AOB neurons in ex vivo preparations revealed that NE, on balance, inhibited mitral cell responses to chemosensory cues. However, NE's effects were heterogeneous, indicating that NE signaling reshapes AOB output in a cell- and stimulus-specific manner.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Neurônios/efeitos dos fármacos , Norepinefrina/farmacologia , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Discriminação Psicológica , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Norepinefrina/metabolismo , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Urina
16.
Brain Behav Evol ; 90(3): 224-231, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28850945

RESUMO

The olfactory system of mammals comprises a main olfactory system that detects hundreds of odorants and a vomeronasal system that detects specific chemicals such as pheromones. The main (MOB) and accessory (AOB) olfactory bulbs are the respective primary centers of the main olfactory and vomeronasal systems. Most mammals including artiodactyls possess a large MOB and a comparatively small AOB, whereas most cetaceans lack olfactory bulbs. The common hippopotamus (Hippopotamus amphibius) is semiaquatic and belongs to the order Cetartiodactyla, family Hippopotamidae, which seems to be the closest extant family to cetaceans. The present study evaluates the significance of the olfactory system in the hippopotamus by histologically analyzing the MOB and AOB of a male common hippopotamus. The MOB comprised six layers (olfactory nerve, glomerular, external plexiform, mitral cell, internal plexiform, and granule cell), and the AOB comprised vomeronasal nerve, glomerular, plexiform, and granule cell layers. The MOB contained mitral cells and tufted cells, and the AOB possessed mitral/tufted cells. These histological features of the MOB and the AOB were similar to those in most artiodactyls. All glomeruli in the AOB were positive for anti-Gαi2, but weakly positive for anti-Gαo, suggesting that the hippopotamus vomeronasal system expresses vomeronasal type 1 receptors with a high affinity for volatile compounds. These findings suggest that the olfactory system of the hippopotamus is as well developed as that of other artiodactyl species and that the hippopotamus might depend on its olfactory system for terrestrial social communication.


Assuntos
Artiodáctilos/anatomia & histologia , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/citologia , Animais , Masculino , Neurônios , Nervo Olfatório/fisiologia , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia
17.
J Neurosci ; 35(30): 10773-85, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224860

RESUMO

Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input-output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT: State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic modulation differentially regulates two parallel circuits that process chemosensory information, the accessory and main olfactory bulb (AOB and MOB, respectively). These circuits consist of remarkably similar synaptic arrangement and neuronal types, yet cholinergic regulation produced strikingly opposing effects in output and intrinsic neurons. Despite these differences, the chemogenetic reduction of cholinergic activity in freely behaving animals disrupted odor discrimination of simple odors, and the investigation of social odors associated with behaviors signaled by the Vomeronasal system.


Assuntos
Acetilcolina/metabolismo , Bulbo Olfatório/metabolismo , Condutos Olfatórios/metabolismo , Percepção Olfatória/fisiologia , Animais , Colinérgicos/farmacologia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Bulbo Olfatório/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Percepção Olfatória/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores Muscarínicos/fisiologia
18.
Chem Senses ; 40(9): 641-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26377346

RESUMO

Inbreeding avoidance is essential to providing offspring with genetic diversity. Females' mate choice is more crucial than males' for successful reproduction because of the high cost of producing gametes and limited chances to mate. However, the mechanism of female inbreeding avoidance is still unclear. To elucidate the mechanism underlying inbreeding avoidance by females, we conducted Y-maze behavioral assays using BALB/c and C57BL/6 female mice. In both strains, the avoidance of male urine from the same strain was lower in the low estrogen phase than in the high estrogen phase. The estrous cycle-dependent avoidance was completely prevented by vomeronasal organ (VNO) removal. To assess the regulation of the vomeronasal system by estrogen, the neural excitability was evaluated by immunohistochemistry of the immediate early gene products. Although estrogen did not affect neural excitability in the VNO, estrogen enhanced the neural excitability of the mitral cell layer in the AOB induced by urine from the cognate males. These results suggest that female mice avoid odor from genetically similar males in an estrogen-dependent manner via the vomeronasal system and the excitability of the mitral cells in the AOB is presumed to be regulated by estrogen.


Assuntos
Odorantes , Órgão Vomeronasal/metabolismo , Animais , Comportamento Animal/fisiologia , Estradiol/administração & dosagem , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Bulbo Olfatório/metabolismo , Feromônios/urina , Proteínas Proto-Oncogênicas c-fos/metabolismo
19.
Eur J Neurosci ; 39(1): 141-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24188795

RESUMO

Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex.


Assuntos
Tonsila do Cerebelo/fisiologia , Órgão Vomeronasal/fisiologia , Vias Aferentes/anatomia & histologia , Vias Aferentes/fisiologia , Tonsila do Cerebelo/anatomia & histologia , Animais , Vias Eferentes/anatomia & histologia , Vias Eferentes/fisiologia , Córtex Entorrinal/anatomia & histologia , Córtex Entorrinal/fisiologia , Feminino , Camundongos , Órgão Vomeronasal/anatomia & histologia
20.
Horm Behav ; 64(4): 624-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23994571

RESUMO

The present study analyzes the interaction between prenatal stress and mother's behavior on brain, hormonal, and behavioral development of male offspring in rats. It extends to males our previous findings, in females, that maternal care can alter behavioral dimorphism that becomes evident in the neonates when they mature. Experiment 1 compares the maternal behavior of foster mothers toward cross-fostered pups versus mothers rearing their own litters. Experiment 2 ascertains the induced "maternal" behavior of the male pups, derived from Experiment 1 when they reached maturity. The most striking effect was that the males non-exposed to the stress as fetuses and raised by stressed foster mothers showed the highest levels of "maternal" behavior of all the groups (i.e., induction of maternal behavior and retrieving behavior), not differing from the control, unstressed, female groups. Furthermore, those males showed significantly fewer olfactory bulb mitral cells than the control males that were non-stressed as fetuses and raised by their own non-stressed mothers. They also presented the lowest levels of plasma testosterone of all the male groups. The present findings provide evidence that prenatal environmental stress can "demasculinize" the behavior, brain anatomy and hormone secretion in the male fetuses expressed when they reach maturity. Moreover, the nature of the maternal care received by neonates can affect the behavior and physiology that they express at maturity.


Assuntos
Comportamento Materno/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Diferenciação Sexual/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Gravidez , Complicações na Gravidez/psicologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Wistar/crescimento & desenvolvimento , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA