Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2312930121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315860

RESUMO

Emerging contaminants (EC) distributed on surfaces in the environment can be oxidized by gas phase species (top-down) or by oxidants generated by the underlying substrate (bottom-up). One class of EC is the neonicotinoid (NN) pesticides that are widely distributed in air, water, and on plant and soil surfaces as well as on airborne dust and building materials. This study investigates the OH oxidation of the systemic NN pesticide acetamiprid (ACM) at room temperature. ACM on particles and as thin films on solid substrates were oxidized by OH radicals either from the gas phase or from an underlying TiO2 or NaNO2 substrate, and for comparison, in the aqueous phase. The site of OH attack is both the secondary >CH2 group as well as the primary -CH3 group attached to the tertiary amine nitrogen, with the latter dominating. In the case of top-down oxidation of ACM by gas phase OH radicals, addition to the -CN group also occurs. Major products are carbonyls and alcohols, but in the presence of sufficient water, their hydrolyzed products dominate. Kinetics measurements show ACM is more reactive toward gas phase OH radicals than other NN nitroguanidines, with an atmospheric lifetime of a few days. Bottom-up oxidation of ACM on TiO2 exposed to sunlight outdoors (temperatures were above 30 °C) was also shown to occur and is likely to be competitive with top-down oxidation. These findings highlight the different potential oxidation processes for EC and provide key data for assessing their environmental fates and toxicologies.

2.
Anal Bioanal Chem ; 416(5): 1105-1115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189917

RESUMO

Acetamiprid (ACE) is a highly effective broad-spectrum insecticide, and its widespread use is potentially harmful to human health and environmental safety. In this study, magnetic Fe3O4/carbon (Fe3O4/C), a derivative of metal-organic framework MIL-101 (Fe), was synthesized by a two-step calcination method. And a fluorescent sensing strategy was developed for the efficient and sensitive detection of ACE using Fe3O4/C and multiple complementary single-stranded DNA (ssDNA). By using aptamer with multiple complementary ssDNA, the immunity of interference of the aptasensor was improved, and the aptasensor showed high selectivity and sensitivity. When ACE was present, the aptamer (Apt) combined with ACE. The complementary strand of Apt (Cs1) combined with two short complementary strands of Cs1, fluorophore 6-carboxyfluorescein-labeled complementary strand (Cs2-FAM) and the other strand Cs3. The three strands formed a double-stranded structure, and fluorescence would not be quenched by Fe3O4/C. In the absence of ACE, Cs2-FAM would be in a single-chain state and would be adsorbed by Fe3O4/C, and the fluorescence of FAM would be quenched by Fe3O4/C via photoelectron transfer. This aptasensor sensitively detected ACE over a linear concentration range of 10-1000 nM with a limit of detection of 3.41 nM. The recoveries of ACE spiked in cabbage and celery samples ranged from 89.49% to 110.76% with high accuracy.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , DNA de Cadeia Simples , Verduras , Neonicotinoides , Fluorescência , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Limite de Detecção
3.
Environ Res ; 252(Pt 2): 118893, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604485

RESUMO

Pesticides can have harmful impacts on the environment and living organisms. Thus, removing them from polluted water is crucial. In this study, a bionanocomposite of carboxymethyl tragacanth-grafted-poly(3-aminophenol)/zinc oxide@iron oxide (CMT-g-P3AP/ZnO@Fe3O4) synthesized by in situ copolymerization as an efficient adsorbent to eliminate the acetamiprid pesticide from polluted water. The CMT-g-P3AP/ZnO@Fe3O4 magnetic nanocomposite was analyzed utilizing various techniques including FTIR, EDX, FESEM, XRD, BET, CHNSO, and TGA. The results displayed that the resulting nanocomposite with maximum adsorption capacity (Qmax) successfully removed the acetamiprid pesticide from polluted water under optimal conditions such as pH of 7.00, 5.00 mg of adsorbent, 20.0 min duration, and 400 mg/L acetamiprid concentration. According to the linear Langmuir isotherm, the Qmax of the biosorbent was 833 mg/g. The experimental adsorption data fitted well with Temkin's nonlinear isotherm model. The adsorption kinetic data were closely related to the Weber-Morris intraparticle diffusion nonlinear model. After three repetitive cycles, CMT-g-P3AP/ZnO@Fe3O4 can be outstandingly renewed and recycled without significant reduction in its adsorption efficacy, as evidenced by the adsorption-desorption experiments. In addition, the CMT-g-P3AP/ZnO@Fe3O4 displayed the good antibacterial activity against E. coli and S. aureus.


Assuntos
Antibacterianos , Neonicotinoides , Poluentes Químicos da Água , Óxido de Zinco , Poluentes Químicos da Água/química , Óxido de Zinco/química , Adsorção , Antibacterianos/química , Neonicotinoides/química , Tragacanto/química , Nanocompostos/química , Purificação da Água/métodos , Praguicidas/química
4.
BMC Vet Res ; 20(1): 256, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867202

RESUMO

Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.


Assuntos
Cinnamomum zeylanicum , Emulsões , Inseticidas , Fígado , Simulação de Acoplamento Molecular , Neonicotinoides , Animais , Neonicotinoides/farmacologia , Cinnamomum zeylanicum/química , Inseticidas/toxicidade , Ratos , Emulsões/química , Emulsões/farmacologia , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Rim/efeitos dos fármacos , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Antioxidantes/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/patologia , Ratos Sprague-Dawley
5.
Biomed Chromatogr ; : e5962, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014970

RESUMO

Residue behaviour and dietary risk assessment of cyantraniliprole, flubendiamide and acetamiprid in broccoli were carried out using the QuEChERS (quick, easy, cheap, effective, rugged and safe) technique coupled with LC-MS/MS. The QuEChERS technique was validated on parameters such as linearity, accuracy, precision, robustness, matrix effects, limit of quantification (LOQ), specificity, retention time and ion ratio as per SANTE (Directorate General for Health and Food Safety) guidelines to attest to the specificity, accuracy and precision of the analytical method in estimating insecticide residues in and on broccoli heads and cropped soil. The LOQ of the method for all three insecticides was 0.01 mg/kg. The initial deposits of cyantraniliprole, flubendiamide and acetamiprid reduced to half of its concentration in 1.873-2.354, 1.975-2.484 and 1.371-1.620 days, respectively. No residues were detected in broccoli-cropped soil at harvest time (30 days after last spray). The proposed maximum residue limits (MRLs) of 1.5, 0.5-0.9 and 2.0-3 mg/kg for cyantraniliprole, flubendiamide and acetamiprid were calculated using the Organisation for Economic Co-operation and Development MRL calculator. The acute and chronic dietary risk assessment of the tested insecticides identified no appreciable dietary risk to the Indian population from the consumption of broccoli heads. The findings of no dietary risk highlight the importance of informed pesticide usage in broccoli and the proposed MRL derived from this study offers crucial guidelines for the regulatory authorities, ensuring the safety of broccoli consumption.

6.
Ecotoxicol Environ Saf ; 280: 116585, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875821

RESUMO

Neonicotinoids form a class of insecticides that are chemically related to nicotine and are widely used in crop protection. They have adverse effects on the neuronal nicotinic acetylcholine receptors (nAChRs). One of the neonicotinoids approved for control of the invasive pest Drosophila suzukii is acetamiprid. Despite concerns regarding its genotoxicity and data indicating the presence of small amounts of this substance in fruits intended for consumption, effects of its low doses on nerve cells are yet to be investigated. To determine whether the neurotoxic effects are species-specific and vary depending on the insecticide present in diet, multigenerational cultures of Drosophila melanogaster and D. suzukii were prepared, in this study, in media supplemented with different concentrations (below the LC50) of acetamiprid and nicotine. Acetamiprid, analogous to nicotine, caused damage to the DNA of neuroblasts in both species, at sublethal concentrations, along with a decrease in mobility, which remained at a similar level over subsequent generations. D. suzukii was found to be more sensitive to nicotine and acetamiprid, due to which the genotoxic effects were stronger even at lower doses of toxins. The results collectively indicated that even low concentrations of acetamiprid affect the stem cells of developing fly brain, and that long-term response to the tested insecticides is species-specific.


Assuntos
Dano ao DNA , Drosophila melanogaster , Inseticidas , Neonicotinoides , Nicotina , Animais , Neonicotinoides/toxicidade , Nicotina/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/toxicidade , Drosophila/efeitos dos fármacos , Especificidade da Espécie , Mutagênicos/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino
7.
Mikrochim Acta ; 191(5): 289, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683210

RESUMO

As a common chlorinated nicotinic pesticide with high insecticidal activity, acetamiprid has been widely used for pest control. However, the irrational use of acetamiprid will pollute the environment and thus affect human health. Therefore, it is crucial to develop a simple, highly sensitive, and rapid method for acetamiprid residue detection. In this study, the capture probe (Fe3O4@Pt-Aptamer) was connected with the signal probe (Au@DTNB@Ag CS-cDNA) to form an assembly with multiple SERS-enhanced effects. Combined with magnetic separation technology, a SERS sensor with high sensitivity and stability was constructed to detect acetamiprid residue. Based on the optimal conditions, the SERS intensity measured at 1333 cm-1 is in relation to the concentration of acetamiprid in the range 2.25 × 10-9-2.25 × 10-5 M, and the calculated limit of detection (LOD) was 2.87 × 10-10 M. There was no cross-reactivity with thiacloprid, clothianidin, nitenpyram, imidacloprid, and chlorpyrifos, indicating that this method has good sensitivity and specificity. Finally, the method was applied to the detection of acetamiprid in cucumber samples, and the average recoveries were 94.19-103.58%, with RSD < 2.32%. The sensor can be used to analyse real samples with fast detection speed, high sensitivity, and high selectivity.


Assuntos
Aptâmeros de Nucleotídeos , Ouro , Limite de Detecção , Nanopartículas Metálicas , Neonicotinoides , Prata , Análise Espectral Raman , Neonicotinoides/análise , Aptâmeros de Nucleotídeos/química , Ouro/química , Prata/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Platina/química , Inseticidas/análise , Cucumis sativus/química
8.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891887

RESUMO

With projections suggesting an increase in the global use of neonicotinoids, contemporary farmers can get caught on the "pesticide treadmill", thus creating ecosystem side effects. The aim of this study was to investigate the sorption/desorption behavior of acetamiprid, imidacloprid, and thiacloprid that controls their availability to other fate-determining processes and thus could be useful in leveling the risk these insecticides or their structural analogues pose to the environment, animals, and human health. Sorption/desorption isotherms in four soils with different organic matter (OC) content were modelled by nonlinear equilibrium models: Freundlich's, Langmuir's, and Temkin's. Sorption/desorption parameters obtained by Freundlich's model were correlated to soil physico-chemical characteristics. Even though the OC content had the dominant role in the sorption of the three insecticides, the role of its nature as well as the chemical structure of neonicotinoids cannot be discarded. Insecticides sorbed in the glassy OC phase will be poorly available unlike those in the rubbery regions. Imidacloprid will fill the sorption sites equally in the rubbery and glassy phases irrespective of its concentration. The sorption of thiacloprid at low concentrations and acetamiprid at high concentrations is controlled by hydrophilic aromatic structures, "trapping" the insecticides in the pores of the glassy phase of OC.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Tiazinas , Neonicotinoides/química , Inseticidas/química , Nitrocompostos/química , Tiazinas/química , Adsorção , Solo/química , Poluentes do Solo/química , Piridinas/química , Imidazóis/química
9.
Biomed Chromatogr ; 37(11): e5728, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37700621

RESUMO

Acetamiprid and pyridaben are highly efficient insecticides widely used to protect leafy vegetables against various pests, such as Phyllotreta striolata, but analyses of their residual behaviors applied in mixtures in cabbage fields are primarily lacking. Herein, field trials were performed by spraying 50% acetamiprid-pyridaben wettable powder (50% WP) once at a dose of 150 g of active ingredient per hectare in 12 representative provinces of China under Good Agricultural Practices. The residues of acetamiprid and pyridaben were detected using modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) and liquid chromatography-tandem mass spectrometry, together with an assessment of their dietary risks. The average recoveries of the two insecticides were 84.6-104%, and the relative standard deviations were 0.898-10.1%. The residual concentrations of acetamiprid and pyridaben at the preharvest interval of 7 days were <0.364 and 0.972 mg/kg, respectively, and less than their maximum residue limits in cabbage (0.5 mg/kg for acetamiprid and 2 mg/kg for pyridaben) in China. The chronic and acute risk values of acetamiprid and pyridaben were 0.0787-33.3%, implying acceptable health hazards to Chinese consumers. In conclusion, applying 50% WP in cabbage fields under Good Agricultural Practices is acceptable. These results provide essential data for using mixtures of acetamiprid and pyridaben in cabbage fields.


Assuntos
Brassica , Inseticidas , Resíduos de Praguicidas , Brassica/química , Inseticidas/análise , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Medição de Risco
10.
Ecotoxicol Environ Saf ; 254: 114716, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870311

RESUMO

Acetamiprid is a neonicotinoid insecticide used in crop protection worldwide. Such widespread application can pose risks to pollinator insects, particularly to honeybees (Apis mellifera); therefore, the evaluation of the harmful effects of acetamiprid is necessary. Recent studies report behavior and gene expression dysfunction in honeybees, related to acetamiprid contamination. However, most studies do not consider potential metabolism disorders. To examine the effects of sublethal acetamiprid doses on the hemolymph metabolism of honeybees, worker bee larvae(2 days old) were fed with sucrose water containing different concentrations of acetamiprid (0, 5, and 25 mg/L) until capped (6 days old). The hemolymph (200 µL) of freshly capped larvae was collected for liquid chromatography-mass spectrometry (LC-MS). Overall, increasing acetamiprid exposure induced greater metabolic variations in worker bee larvae(treated groups compared to untreated). In the positive ion mode, 36 common differential metabolites in the acetamiprid-treated groups were screened from the identified differential metabolites. Of these, 19 metabolites were upregulated, and 17 were downregulated. 10 common differential metabolites were screened in the negative ion mode. 3 metabolites were upregulated, and 7 metabolites were downregulated. These common metabolites included traumatic acid, indole etc. These commonly differentiated metabolites were classified as compounds with biological roles, lipids, and phytochemical compounds, and others. The metabolic pathways of common differentiated metabolites with significant differences (P < 0.05) included the metabolism of tryptophan, purines, phenylalanine, etc. As the concentration of acetamiprid increased, the content of traumatic acid increased, the content of tryptophan metabolite l-kynurenine and indole decreased, and the content of lipids also decreased. Our results revealed that the damage to honeybee larvae increased when the acetamiprid solution formulations residue in their food had a concentration higher than 5 mg/L, causing metabolic disorders in various substances in larvae. Analysis of these metabolic processes can provide a theoretical basis for further research on the metabolism of acetamiprid-treated honeybees and elucidate the detoxification mechanisms.


Assuntos
Inseticidas , Triptofano , Abelhas , Animais , Larva , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Lipídeos
11.
Ecotoxicol Environ Saf ; 262: 115203, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37406606

RESUMO

Evaluating the sublethal effects of insecticide is crucial for protecting and utilizing natural enemies. In this study, we determined the sublethal effects of acetamiprid and afidopyropen on Harmonia axyridis (Pallas) and explored the potential molecular mechanisms underlying these effects through transcriptomics analysis. The results showed that sublethal concentrations of acetamiprid significantly reduced the adult fecundity and longevity of F0H. axyridis and decreased the survival time and survival rate of the F1 generation. Sublethal concentrations of afidopyropen prolonged the developmental time of 4th instar larvae in the F0 generation. Additionally, acetamiprid and afidopyropen treatments significantly decreased the predation of H. axyridis. Furthermore, transcriptome sequencing analysis revealed that several P450 and UGT genes expressed differently when H. axyridis were exposed to sublethal concentrations of acetamiprid and afidopyropen, suggesting that the differential expression of detoxifying genes might be involved in the response and detoxification metabolism of acetamiprid and afidopyropen in H. axyridis. Our findings demonstrate that sublethal concentrations of acetamiprid adversely influences the development and predation of H. axyridis, while afidopyropen has limited effects on H. axyridis. These results are helpful for protecting and utilizing natural enemies and guiding the scientific use of pesticides in the field.

12.
Folia Biol (Praha) ; 69(1): 6-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962026

RESUMO

DNA methylation, one of the most studied epigenetic mechanisms, when present in the promoter region of genes, causes inhibition of gene expression, and conversely, hypomethylation of these regions enables gene expression. DNA methylation is susceptible to nutritional and environmental influences, and undesirable alterations in methylation patterns manifested in changes in the expression of relevant genes can lead to pathological consequences. In the present work, we studied the methylation status of the bovine GSTP1 gene under the influence of pesticide Mospilan 20SP alone and in combination with pesticide Orius 25EW in in vitro proliferating bovine lymphocytes. We employed methylation-specific PCR, and when studying the effect of pesticide combinations, we also used its real-time version followed by a melting procedure. Our results showed that Mospilan 20SP alone at 5, 25, 50, and 100 µg.ml-1 and 5, 10, 25, and 50 µg.ml-1 for the last 4 and 24 hours of culture with in vitro proliferating bovine lymphocytes, respectively, did not induce methylation of the bovine GSTP1 gene. The same results were revealed when studying the effect of the combination of the pesticides added to the lymphocyte cultures for the last 24 hours of cultivation in the following amounts: 1.25, 2.5, 5, 10, and 25 µg.ml-1 of Mospilan 20SP and 1.5, 3, 6, 15, and 30 µg.ml-1 of Orius 25EW. We have also revealed that the less laborious real-time MSP followed by a melting procedure may replace MSP for studying the methylation status of the GSTP1 gene.


Assuntos
Glutationa S-Transferase pi , Praguicidas , Bovinos , Animais , Glutationa S-Transferase pi/genética , Praguicidas/farmacologia , Regiões Promotoras Genéticas/genética , Metilação de DNA/genética , Epigênese Genética
13.
Mikrochim Acta ; 190(6): 239, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231283

RESUMO

A simple and effective graphene oxide-magnetic relaxation switch (GO-MRS) sensor that combines graphene oxide (GO) and aptamer-modified poly-L-lysine(PLL)-Fe3O4 nanoparticles (Fe3O4@PLL-Apt NPs) was designed for the detection of acetamiprid (ACE). In this sensor, Fe3O4@PLL-Apt NPs acted as a relaxation signal probe and GO facilitated the generation of relaxation signal changes (dispersion/aggregation shift), while the aptamer is a molecular component that recognizes ACE. This GO-assisted magnetic signal probe improves the stability of magnetic nanoparticles in solution and enhances their sensitivity to small molecules while avoiding cross-reactions. Under optimal conditions, the sensor exhibits a wide working range (10-80 nM) and low detection limit (8.43 nM). The spiked recoveries ranged from 96.54 to 103.17%, with a relative standard deviation (RSD) of less than 2.3%. In addition, the performance of the GO-MRS sensor matched that of the standard method (liquid chromatography-mass spectrometry (LC-MS)), indicating that the GO-MRS sensor is suitable for the detection of ACE in vegetables.


Assuntos
Aptâmeros de Nucleotídeos , Inseticidas , Nanopartículas de Magnetita , Óxidos/química , Polilisina , Verduras/química , Nanopartículas de Magnetita/química , Aptâmeros de Nucleotídeos/química , Fenômenos Magnéticos
14.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047521

RESUMO

In January 2023, the derogation loophole was closed on "emergency authorisations" for the use of three out of five neonicotinoids in all EU states. In this study, we analysed the sorption/desorption behaviour and kinetic parameters of acetamiprid and thiacloprid, the two neonicotinoids that are still approved for use, either regularly or under emergency authorisations in the EU, and widely used worldwide. Sorption and desorption curves in four soils with different organic matter content were analysed using four kinetic models, namely, Lagergren's pseudo first-order model, two-site model (TSM), Weber-Morris intraparticle diffusion model and Elovich's model. Kinetic parameters were correlated to soil physico-chemical characteristics. To determine the mutual influence of soil characteristics and sorption/desorption parameters in the analysed soils, a factor analysis based on principal component analysis (PCA) was performed. Even though the two insecticides are very similar in size and chemical structure, the results showed different sorption/desorption kinetics. The model that best fits the experimental data was TSM. Thiacloprid showed a more rapid sorption compared to acetamiprid, and, in all soils, a higher proportion sorbed at equilibrium. Intra-particle diffusion seemed to be a relevant process in acetamiprid sorption, but not for thiacloprid. Desorption results showed that acetamiprid is more easily and more thoroughly desorbed than thiacloprid, in all soils. The kinetic behaviour differences stem from variations in molecular structure, causing disparate water solubility, lipophilicity, and acid-base properties.


Assuntos
Poluentes do Solo , Adsorção , Neonicotinoides , Solo/química , Cinética
15.
J Environ Manage ; 344: 118523, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393869

RESUMO

Acetamiprid is a potential threat to human health, aquatic life, soil microorganisms and beneficial insects as a recalcitrant pollutant in wastewater treatment plant effluents. In this work, the synthesized α-Fe2O3-pillared bentonite (FPB) was used to degrade acetamiprid in the photo-Fenton process with the assistance of L-cysteine (L-cys) existing in natural aquatic environment. The kinetic constant k of acetamiprid degradation by FPB/L-cys in the photo-Fenton process was far more than that in the Fenton process of FPB/L-cys lacking light and the photo-Fenton process of FPB without L-cys. The positive linear correlation between k and ≡Fe(II) content indicated the synergy of L-cys and visible light accelerated the cycle of Fe(III) to Fe(II) in FPB/L-cys during the degradation of acetamiprid by elevating the visible light response of FPB, and promoting the interfacial electron transfer from the active sites of FPB to hydrogen peroxide and photo-generated electron transfer from conduction band of α-Fe2O3 to the active sites of FPB. The boosting •OH and 1O2 were predominantly responsible for acetamiprid degradation. Acetamiprid could be efficiently degraded into less toxic small molecules in the photo-Fenton process via C-N bond breaking, hydroxylation, demethylation, ketonization, dechlorination, and ring cleavage.


Assuntos
Bentonita , Ferro , Humanos , Ferro/química , Cisteína , Luz , Compostos Ferrosos , Peróxido de Hidrogênio/química , Catálise
16.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375324

RESUMO

A new adsorbent material was prepared by coating an activated carbon with hydrothermal carbon obtained from sucrose. The material obtained has different properties from the sum of the properties of the activated carbon and the hydrothermal carbon, which shows that a new material was obtained. It has a high specific surface area (1051.9 m2 g-1) and is slightly more acidic than the starting activated carbon (p.z.c.-point of zero charge 8.71 vs. 9.09). The adsorptive properties of a commercial carbon (Norit RX-3 Extra) were improved over a wide pH and temperature range. The capacity values of the monolayer according to Langmuir's model reached 588 mg g-1 for the commercial product and 769 mg g-1 for the new adsorbent.

17.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894625

RESUMO

The constant influx of pesticides into soils is a key environmental issue in terms of their potential retention in the soil, thus reducing their negative impact on the environment. Soil organic matter (SOM) is an important factor influencing the environmental fate of these substances. Therefore, the aim of this research was to assess the chemical behavior of pesticides (flufenacet, pendimethalin, α-cypermethrin, metazachlor, acetamiprid) toward stable soil humin fractions (HNs) as a main factor affecting the formation of non-extractable residues of agrochemicals in soil. This research was conducted as a batch experiment according to OECD Guideline 106. For this purpose, HNs were isolated from eight soils with different physicochemical properties (clay content = 16-47%, pHKCl = 5.6-7.7, TOC = 13.3-49.7 g·kg-1, TN = 1.06-2.90 g·kg-1, TOC/TN = 11.4-13.7) to reflect the various processes of their formation. The extraction was carried out through the sequential separation of humic acids with 0.1 M NaOH, and then the digestion of the remaining mineral fraction with 10% HF/HCl. The pesticide concentrations were detected using GC-MS/MS. The pesticides were characterized based on the different sorption rates to HNs, according to the overall trend: metazachlor (95% of absorbed compound) > acetamiprid (94% of absorbed compound) > cypermethrin (63% of partitioning compound) > flufenacet (39% of partitioning compound) > pendimethalin (28% of partitioning compound). Cypermethrin and metazachlor exhibited the highest saturation dynamic, while the other agrochemicals were much more slowly attracted by the HNs. The obtained sorption kinetic data were congruous to the pseudo-first-order and pseudo-second-order models related to the surface adsorption and interparticle diffusion isotherm. The conducted research showed that the processes of pesticide sorption, apart from physicochemical phenomena, are also affected by the properties of the pollutants themselves (polarity, KOC) and the soil properties (SOM content, clay content, and pHKCl).

18.
J Environ Sci Health B ; 58(4): 316-326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36942478

RESUMO

The degradation of imidacloprid and acetamiprid in tea infusion by ultraviolet (UV) light irradiation was investigated in this study. Results showed that the influence of UV light irradiation on the quality of tea infusion was controllable and UV light irradiation was effective on the degradation of both pesticides. The maximum removal rates were 75.2% for imidacloprid and 17.6% for acetamiprid after irradiation (650 µW/cm,2 120 min). The degradation of both pesticides followed the first-order kinetics model. Three degradation products were identified for imidacloprid and one for acetamiprid based on liquid chromatography-tandem mass spectrometry analysis. The degradation pathway of imidacloprid involved in the cleavage of C-C bond with the loss of nitro group followed by the hydrogenation, oxidation and hydrolysis, while the degradation of acetamiprid involved in the oxidation at the chlorine atom with the bonding of C atoms at positions 1 and 4 on the pyridine ring. Simultaneously, the toxicity of both pesticides was mitigated by UV light irradiation according to LO2 cell toxicity evaluation. The study provided a low-cost and effective way to reduce imidacloprid and acetamiprid from tea infusion, and it has the potential to be applied to the ready-to drink tea beverage production in industrial scale.


Assuntos
Camellia sinensis , Resíduos de Praguicidas , Praguicidas , Camellia sinensis/química , Raios Ultravioleta , Chá/química , Resíduos de Praguicidas/análise , Neonicotinoides/análise , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos
19.
Vet Med (Praha) ; 68(8): 313-336, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37982123

RESUMO

Neonicotinoids are one of the newest groups of systemic pesticides, effective on a wide range of invertebrate pests. The success of neonicotinoids can be assessed according to the amount used, for example, in the Czech Republic, which now accounts for 1/3 of the insecticide market. The European Union (EU) has a relatively interesting attitude towards neonicotinoids. Three neonicotinoid substances (imidacloprid, clothianidin and thiamethoxam) were severely restricted in 2013. In 2019, imidacloprid and clothianidin were banned, while thiamethoxam and thiacloprid were banned in 2020. In 2022, another substance, sulfoxaflor, was banned. Therefore, only two neonicotinoid substances (acetamiprid and flupyradifurone) are approved for outdoor use in the EU. Neonicotinoids enter aquatic ecosystems in many ways. In European rivers, neonicotinoids usually occur in nanograms per litre. Due to the low toxicity of neonicotinoids to standard test species, they were not expected to significantly impact the aquatic ecosystem until later studies showed that aquatic invertebrates, especially insects, are much more sensitive to neonicotinoids. In addition to the lethal effects, many studies point to sublethal impacts - reduced reproductive capacity, initiation of downstream drift of organisms, reduced ability to eat, or a change in feeding strategies. Neonicotinoids can affect individuals, populations, and entire ecosystems.

20.
Bull Environ Contam Toxicol ; 110(5): 93, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160455

RESUMO

Acetamiprid is a broad-spectrum insecticide, belonging to the neonicotinoid compounds group, which has been extensively applied throughout the globe. Recently, indiscriminate use of these compounds was reported to cause fatal impacts on non-targeted soil organisms. Hence, the present study aimed to examine the impact of acetamiprid on Indian indigenous earthworm, Perionyx excavatus. Acute toxicity revealed an LC50 concentration of 0.25 µg/cm2 for filter paper test/72 h and 400 µg/kg for artificial soil test/14 days. Oxidative stress (ROS) and various biomarkers including superoxide dismutase, catalase, glutathione S-transferase, malondialdehyde content and DNA damage were measured. The results of the biomarker responses confirmed the acetamiprid exposure can cause toxicity to P. excavatus. In addition, cell density (20 × 102 cell mL/mg) and cell viability (40%) were significantly (p < 0.05) reduced. Further, the ecotoxicological assessment made through this study can be utilized as good evidence to toxicity of neonicotinoids to non-targeted indigenous organisms.


Assuntos
Inseticidas , Oligoquetos , Animais , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Sobrevivência Celular , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA