RESUMO
Cells build fatty acids in tightly regulated assembly lines, or fatty acid synthases (FASs), in which ß-ketoacyl-acyl carrier protein (ACP) synthases (KSs) catalyze sequential carbon-carbon bond forming reactions that generate acyl-ACPs of varying lengths-precursors for a diverse set of lipids and oleochemicals. To date, most efforts to control fatty acid synthesis in engineered microbes have focused on modifying termination enzymes such as acyl-ACP thioesterases, which release free fatty acids from acyl-ACPs. Changes to the substrate specificity of KSs provide an alternative-and, perhaps, more generalizable-approach that focuses on controlling the acyl-ACPs available for downstream products. This study combines mutants of FabF and FabB, the two elongating KSs of the E. coli FAS, with in vitro and in vivo analyses to explore the use of KS mutants to control fatty acid synthesis. In vitro, single amino acid substitutions in the gating loop and acyl binding pocket of FabF shifted the product profiles of reconstituted FASs toward short chains and showed that KS mutants, alone, can cause large shifts in average length (i.e., 6.5-13.5). FabB, which is essential for unsaturated fatty acid synthesis, blunted this effect in vivo, but exogenously added cis-vaccenic acid (C18:1) enabled sufficient transcriptional repression of FabB to restore it. Strikingly, a single mutant of FabB afforded titers of octanoic acid as high as those generated by an engineered thioesterase. Findings indicate that fatty acid synthesis must be decoupled from microbial growth to resolve the influence of KS mutants on fatty acid profiles but show that these mutants offer a versatile approach for tuning FAS outputs.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Ácidos Graxos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Graxos Voláteis/metabolismoRESUMO
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.