Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(6): 2914-2922, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31974308

RESUMO

The epidermis-specific lipid acylceramide plays a pivotal role in the formation of the permeability barrier in the skin; abrogation of its synthesis causes the skin disorder ichthyosis. However, the acylceramide synthetic pathway has not yet been fully elucidated: Namely, the acyl-CoA synthetase (ACS) involved in this pathway remains to be identified. Here, we hypothesized it to be encoded by FATP4/ACSVL4, the causative gene of ichthyosis prematurity syndrome (IPS). In vitro experiments revealed that FATP4 exhibits ACS activity toward an ω-hydroxy fatty acid (FA), an intermediate of the acylceramide synthetic pathway. Fatp4 knockout (KO) mice exhibited severe skin barrier dysfunction and morphological abnormalities in the epidermis. The total amount of acylceramide in Fatp4 KO mice was reduced to ∼10% of wild-type mice. Decreased levels and shortening of chain lengths were observed in the saturated, nonacylated ceramides. FA levels were not decreased in the epidermis of Fatp4 KO mice. The expression levels of the FA elongase Elovl1 were reduced in Fatp4 KO epidermis, partly accounting for the reduction and shortening of saturated, nonacylated ceramides. A decrease in acylceramide levels was also observed in human keratinocytes with FATP4 knockdown. From these results, we conclude that skin barrier dysfunction observed in IPS patients and Fatp4 KO mice is caused mainly by reduced acylceramide production. Our findings further elucidate the molecular mechanism governing acylceramide synthesis and IPS pathology.


Assuntos
Ceramidas/metabolismo , Epiderme/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ictiose/metabolismo , Doenças do Prematuro/metabolismo , Animais , Ceramidas/química , Proteínas de Transporte de Ácido Graxo/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Humanos , Ictiose/genética , Doenças do Prematuro/genética , Masculino , Camundongos Knockout , Permeabilidade , Pele/metabolismo
2.
Skin Pharmacol Physiol ; 36(5): 225-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035548

RESUMO

BACKGROUND: Linoleate-containing acylglucosylceramide (GLC-CER[EOx], where x = sphingosine [S], dihydrosphingosine [dS], phytosphingosine (P), or 6-hydroxysphingosine [H]) in the viable epidermis serve as the precursors to the linoleate-containing acylceramides (CER[EOx]) in the stratum corneum (SC) and the corneocyte lipid envelope (CLE), both of which are essential for the barrier function of the skin. SUMMARY: CLE formation and envelope maturation take place across the SC. Hypoxic conditions in the epidermis and anaerobic glycolysis with the production of lactic acid are important in proper SC barrier formation. KEY MESSAGE: CLE formation takes place across the SC. Its formation from linoleate-containing GLC-CER[EOx] requires lipoxygenase action, but anaerobic conditions leading to lactate production and hypoxia-inducible factors are essential for proper barrier formation. A number of unanswered questions are raised regarding formation of the CLE and the epidermal permeability barrier.


Assuntos
Ceramidas , Ácido Linoleico , Epiderme , Células Epidérmicas , Ácidos Linoleicos , Permeabilidade
3.
J Lipid Res ; 63(12): 100308, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332686

RESUMO

Self-healing collodion baby (SHCB), also called "self-improving collodion baby", is a rare mild variant of autosomal recessive congenital ichthyosis and is defined as a collodion baby who shows the nearly complete resolution of scaling within the first 3 months to 1 year of life. However, during the neonatal period, it is not easy to distinguish SHCB from other inflammatory forms of autosomal recessive congenital ichthyosis, such as congenital ichthyosiform erythroderma. Here, we report a case study of two Japanese SHCB patients with compound heterozygous mutations, c.235G>T (p.(Glu79∗))/ c.1189C>T (p.(Arg397Cys)) and c.1295A>G (p.(Tyr432Cys))/ c.1138delG (p.(Asp380Thrfs∗3)), in CYP4F22, which encodes cytochrome P450, family 4, subfamily F, polypeptide 22 (CYP4F22). Immunohistochemically, inflammation with the strong expression of IL-17C, IL-36γ, and TNF-α was seen in the skin at birth. CYP4F22 is an ultra-long-chain FA ω-hydroxylase responsible for ω-O-acylceramide (acylceramide) production. Among the epidermal ceramides, acylceramide is a key lipid in maintaining the epidermal permeability barrier function. We found that the levels of ceramides with ω-hydroxy FAs including acylceramides and the levels of protein-bound ceramides were much lower in stratum corneum samples obtained by tape stripping from SHCB patients than in those from their unaffected parents and individuals without SHCB. Additionally, our cell-based enzyme assay revealed that two mutants, p.(Glu79∗) and p.(Arg397Cys), had no enzyme activity. Our findings suggest that genetic testing coupled with noninvasive ceramide analyses using tape-stripped stratum corneum samples might be useful for the early and precise diagnosis of congenital ichthyoses, including SHCB.


Assuntos
Ceramidas , Ictiose Lamelar , Lactente , Recém-Nascido , Humanos , Colódio , Ceramidas/metabolismo , Ictiose Lamelar/diagnóstico , Ictiose Lamelar/genética , Testes Genéticos
4.
J Lipid Res ; 62: 100089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34087196

RESUMO

Phospholipidosis, the excessive accumulation of phospholipids within lysosomes, is a pathological response observed following exposure to many drugs across multiple therapeutic groups. A clear mechanistic understanding of the causes and implications of this form of drug toxicity has remained elusive. We previously reported the discovery and characterization of a lysosome-specific phospholipase A2 (PLA2G15) and later reported that amiodarone, a known cause of drug-induced phospholipidosis, inhibits this enzyme. Here, we assayed a library of 163 drugs for inhibition of PLA2G15 to determine whether this phospholipase was the cellular target for therapeutics other than amiodarone that cause phospholipidosis. We observed that 144 compounds inhibited PLA2G15 activity. Thirty-six compounds not previously reported to cause phospholipidosis inhibited PLA2G15 with IC50 values less than 1 mM and were confirmed to cause phospholipidosis in an in vitro assay. Within this group, fosinopril was the most potent inhibitor (IC50 0.18 µM). Additional characterization of the inhibition of PLA2G15 by fosinopril was consistent with interference of PLA2G15 binding to liposomes. PLA2G15 inhibition was more accurate in predicting phospholipidosis compared with in silico models based on pKa and ClogP, measures of protonation, and transport-independent distribution in the lysosome, respectively. In summary, PLA2G15 is a primary target for cationic amphiphilic drugs that cause phospholipidosis, and PLA2G15 inhibition by cationic amphiphilic compounds provides a potentially robust screening platform for potential toxicity during drug development.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfolipases A2/metabolismo , Fosfolipídeos/metabolismo , Animais , Inibidores Enzimáticos/química , Humanos , Lisossomos/enzimologia , Fosfolipases A2/genética
5.
Skin Pharmacol Physiol ; 34(1): 38-50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33567435

RESUMO

Cornified cells of the stratum corneum have a monolayer of an unusual lipid covalently attached to the outer surface. This is referred to as the corneocyte lipid envelope (CLE). It consists of a monolayer of ω-hydroxyceramides covalently attached to the outer surface of the cornified envelope. The CLE is essential for proper barrier function of the skin and is derived from linoleate-rich acylglucosylceramides synthesized in the viable epidermis. Biosynthesis of acylglucosylceramide and its conversion to the cornified envelope is complex. Acylglucosylceramide in the bounding membrane of the lamellar granule is the precursor of the CLE. The acylglucosylceramide in the limiting membrane of the lamellar granule may be oriented with the glucosyl moiety on the inside. Conversion of the acylglucosylceramide to the CLE requires removal of the glucose by action of a glucocerebrosidase. The ester-linked fatty acid may be removed by an as yet unidentified esterase, and the resulting ω-hydroxyceramide may become ester linked to the outer surface of the cornified envelope through action of transglutaminase 1. Prior to removal of ester-linked fatty acids, linoleate is oxidized to an epoxy alcohol through action of 2 lipoxygenases. This can be further oxidized to an epoxy-enone, which can spontaneously attach to the cornified envelope through Schiff's base formation. Mutations of genes coding for enzymes involved in biosynthesis of the CLE result in ichthyosis, often accompanied by neurologic dysfunction. The CLE is recognized as essential for barrier function of skin, but many questions about details of this essentiality remain. What are the relative roles of the 2 mechanisms of lipid attachment? What is the orientation of acylglucosylceramide in the bounding membrane of lamellar granules? Some evidence supports a role for CLE as a scaffold upon which intercellular lamellae unfold, but other evidence does not support this role. There is also controversial evidence for a role in stratum corneum cohesion. Evidence is presented to suggest that covalently bound ω-hydroxyceramides serve as a reservoir for free sphingosine that can serve in communicating with the viable epidermis and act as a potent broad-acting antimicrobial at the skin surface. Many questions remain.


Assuntos
Células Epidérmicas/metabolismo , Glucosilceramidas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Pele/metabolismo , Glicerídeos/metabolismo , Ácido Linoleico/metabolismo
6.
J Lipid Res ; 61(2): 219-228, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857390

RESUMO

Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.


Assuntos
Ceramidas/análise , Lipídeos de Membrana/química , Dermatopatias/metabolismo , Pele/química , Ceramidas/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Pele/metabolismo
7.
J Lipid Res ; 59(7): 1205-1218, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724779

RESUMO

Lysosomal phospholipase A2 (LPLA2) is characterized by broad substrate recognition, peak activity at acidic pH, and the transacylation of lipophilic alcohols, especially N-acetyl-sphingosine. Prior structural analysis of LPLA2 revealed the presence of an atypical acidic residue, Asp13, in the otherwise hydrophobic active site cleft. We hypothesized that Asp13 contributed to the pH profile and/or substrate preference of LPLA2 for unsaturated acyl chains. To test this hypothesis, we substituted Asp13 for alanine, cysteine, or phenylalanine; then, we monitored the formation of 1-O-acyl-N-acetylsphingosine to measure the hydrolysis of sn-1 versus sn-2 acyl groups on a variety of glycerophospholipids. Substitutions with Asp13 yielded significant enzyme activity at neutral pH (7.4) and perturbed the selectivity for mono- and double-unsaturated acyl chains. However, this position played no apparent role in selecting for either the acyl acceptor or the head group of the glycerophospholipid. Our modeling indicates that Asp13 and its substitutions contribute to the pH activity profile of LPLA2 and to acyl chain selectivity by forming part of a hydrophobic track occupied by the scissile acyl chain.


Assuntos
Lisossomos/enzimologia , Fosfolipases A2/metabolismo , Acilação , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Mutação , Fosfolipases A2/química , Fosfolipases A2/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
Proc Natl Acad Sci U S A ; 112(25): 7707-12, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056268

RESUMO

A skin permeability barrier is essential for terrestrial animals, and its impairment causes several cutaneous disorders such as ichthyosis and atopic dermatitis. Although acylceramide is an important lipid for the skin permeability barrier, details of its production have yet to be determined, leaving the molecular mechanism of skin permeability barrier formation unclear. Here we identified the cytochrome P450 gene CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as the long-sought fatty acid ω-hydroxylase gene required for acylceramide production. CYP4F22 has been identified as one of the autosomal recessive congenital ichthyosis-causative genes. Ichthyosis-mutant proteins exhibited reduced enzyme activity, indicating correlation between activity and pathology. Furthermore, lipid analysis of a patient with ichthyosis showed a drastic decrease in acylceramide production. We determined that CYP4F22 was a type I membrane protein that locates in the endoplasmic reticulum (ER), suggesting that the ω-hydroxylation occurs on the cytoplasmic side of the ER. The preferred substrate of the CYP4F22 was fatty acids with a carbon chain length of 28 or more (≥C28). In conclusion, our findings demonstrate that CYP4F22 is an ultra-long-chain fatty acid ω-hydroxylase responsible for acylceramide production and provide important insights into the molecular mechanisms of skin permeability barrier formation. Furthermore, based on the results obtained here, we proposed a detailed reaction series for acylceramide production.


Assuntos
Ceramidas/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Metabolismo dos Lipídeos , Pele/metabolismo , Pré-Escolar , Retículo Endoplasmático/enzimologia , Feminino , Humanos , Permeabilidade , Pele/enzimologia
9.
Biochim Biophys Acta ; 1841(3): 409-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23928127

RESUMO

Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/ß hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Triglicerídeos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Epiderme , Humanos , Eritrodermia Ictiosiforme Congênita/genética , Eritrodermia Ictiosiforme Congênita/metabolismo , Eritrodermia Ictiosiforme Congênita/patologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Camundongos , Camundongos Knockout , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Permeabilidade , Dermatopatias Metabólicas/genética , Dermatopatias Metabólicas/metabolismo , Dermatopatias Metabólicas/patologia , Triglicerídeos/genética
10.
Biochim Biophys Acta ; 1841(3): 441-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23954553

RESUMO

The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-ß-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the "collodion baby" in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.


Assuntos
Epiderme/metabolismo , Glucosilceramidas/metabolismo , Membranas Intracelulares/metabolismo , Metabolismo dos Lipídeos/fisiologia , Animais , Glucosilceramidas/genética , Glicosilação , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Ácido Linoleico/metabolismo , Permeabilidade
11.
Biochim Biophys Acta ; 1841(3): 314-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24076475

RESUMO

Corneocytes in mammalian stratum corneum are surrounded by a monolayer of covalently bound ω-OH-ceramides that form the corneocyte (-bound) lipid envelope (CLE). We review here the structure, composition, and possible functions of this structure, with insights provided by inherited and acquired disorders of lipid metabolism. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.


Assuntos
Epiderme/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Animais , Células Epidérmicas , Humanos
12.
Adv Healthc Mater ; 13(18): e2304109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849130

RESUMO

Lipid vesicles are widely used for drug and gene delivery, but their structural instability reduces in vivo efficacy and requires specialized handling. To address these limitations, strategies like lipid cross-linking and polymer-lipid conjugation are suggested to enhance stability and biological efficacy. However, the in vivo metabolism of these altered lipids remains unclear, necessitating further studies. A new stabilization technique without chemical modification is urgently needed. Here, a bio-mimetic approach for fabricating robust multilamellar lipid vesicles to enhance in vivo delivery and stabilization of protein antigens is presented. This method leverages 1-O-acylceramide, a natural skin lipid, to facilitate the self-assembly of lipid nanovesicles. Incorporating 1-O-acylceramide, anchoring lipid bilayers akin to its role in the stratum corneum, provides excellent stability under environmental stresses, including freeze-thaw cycles. Encapsulating ovalbumin as a model antigen and the adjuvant monophosphoryl lipid A demonstrates the vesicle's potential as a nanovaccine platform. In vitro studies show enhanced immune responses with both unilamellar and multilamellar vesicles, but in vivo analyses highlight the superior efficiency of multilamellar vesicles in inducing higher antibody and cytokine levels. This work suggests ceramide-induced multilamellar lipid vesicles as an effective nanovaccine platform for enhanced antigen delivery and stability.


Assuntos
Ovalbumina , Animais , Camundongos , Ovalbumina/química , Ovalbumina/imunologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Vacinação/métodos , Lipídeo A/química , Lipídeo A/análogos & derivados , Vacinas/química , Vacinas/imunologia , Ceramidas/química , Lipídeos/química , Nanopartículas/química , Feminino , Camundongos Endogâmicos C57BL
13.
J Dermatol Sci ; 113(1): 10-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38158274

RESUMO

BACKGROUND: The epidermis contains many structurally diverse ceramides, which form the skin permeability barrier (skin barrier). Mutations in genes involved in the synthesis of ω-O-acylceramides (acylceramides) and protein-bound ceramides cause ichthyosis. OBJECTIVE: We aimed to elucidate the relationship between the degree of skin barrier impairment and changes in epidermal ceramide profiles caused by mutations in acylceramide synthesis genes. METHODS: Knockout (KO) mice of three genes-fatty acid (FA) ω-hydroxylase Cyp4f39 (human CYP4F22 ortholog), FA elongase Elovl1, and acyl-CoA synthetase Fatp4-were subjected to transepidermal water loss measurement, toluidine blue staining, and epidermal ceramide profiling via liquid chromatography coupled with tandem mass spectrometry. RESULTS: Transepidermal water loss was highest in Cyp4f39 KO mice, followed by Elovl1 KO and Fatp4 KO mice, and Cyp4f39 KO mice also showed the strongest degree of toluidine blue staining. In Cyp4f39 KO, Elovl1 KO, and Fatp4 KO mice, acylceramide levels were 0.6%, 1.6%, and 12%, respectively, of those in wild-type mice. Protein-bound ceramide levels were 0.2%, 30%, and 33%, respectively, of those in wild-type mice. We also observed a near-complete absence of ω-hydroxy ceramides in Cyp4f39 KO mice, reduced total ceramide levels and shortened FA moieties in Elovl1 KO mice, and increased hydroxylated ceramide levels and slightly shortened FA moieties in Fatp4 KO mice. CONCLUSIONS: The degree of reduction in protein-bound ceramide levels is probably related to the severity of skin barrier defects in these three strains. However, reduced acylceramide levels and other changes in ceramide composition unique to each KO strain are also involved.


Assuntos
Ceramidas , Pele , Animais , Humanos , Camundongos , Epiderme , Camundongos Knockout , Cloreto de Tolônio , Água
14.
Cell Rep ; 42(4): 112363, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37054712

RESUMO

The permeability barrier present in the oral cavity is critical for protection from infection. Although lipids have properties suitable for permeability barrier formation, little is known about their role in oral barrier formation. Here, we show the presence of ω-O-acylceramides (acylceramides) and protein-bound ceramides, which are essential for the formation of permeability barriers in the epidermis, in the oral mucosae (buccal and tongue mucosae), esophagus, and stomach in mice. Conditional knockout of the fatty acid elongase Elovl1, which is involved in the synthesis of ≥C24 ceramides including acylceramides and protein-bound ceramides, in the oral mucosae and esophagus causes increased pigment penetration into the mucosal epithelium of the tongue and enhanced aversive responses to capsaicin-containing water. We find acylceramides in the buccal and gingival mucosae and protein-bound ceramides in the gingival mucosa in humans. These results indicate that acylceramides and protein-bound ceramides are important for oral permeability barrier formation.


Assuntos
Ceramidas , Epiderme , Humanos , Camundongos , Animais , Células Epidérmicas , Permeabilidade , Gengiva
15.
J Dermatol Sci ; 107(2): 89-94, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35970721

RESUMO

BACKGROUND: PNPLA1 is a causative gene of autosomal recessive congenital ichthyosis. The transacylase PNPLA1 produces ω-O-acylceramides (acylceramides), lipids essential for the skin barrier function, by catalyzing the transfer of a linoleic acid from triglycerides to ω-hydroxyceramides. OBJECTIVE: We aimed to validate the involvement of PNPLA1 mutations found in ichthyosis patients in the pathogenesis and elucidate the correlation between the effects of these mutations on acylceramide-producing activity and ichthyosis pathology. METHODS: Acylceramide-producing activity of PNPLA1 mutants was investigated using a cell-based assay system, in which wild-type PNPLA1 or each PNPLA1 mutant was co-overexpressed with the enzymes involved in acylceramide synthesis. The effect of each mutation on the ABHD5-dependent lipid droplet localization of PNPLA1 was examined through indirect immunofluorescence microscopy. RESULTS: Of 16 PNPLA1 missense mutations, 15 mutations, except the C216R mutation, resulted in a complete loss of acylceramide-producing activity, while the C216R mutation weakly affected this activity. Intracellular localization of mutants with no activity varied among mutants. Two mutants (S19L and D172N) localized in lipid droplets, and eight mutants (S53L, S53W, A59V, T125N, D129E, R166C, P234S, and P235L) partially localized there. Five mutants (A34P, A34T, S53P, K141E, and P163L) localized throughout the cytosol. CONCLUSION: The PNPLA1 missense mutations examined in this study are responsible for ichthyosis pathology. The weak effect of C216R mutation on acylceramide-producing activity correlates with the mild symptoms of the ichthyosis patient. Sixteen PNPLA1 mutants were classified into four groups based on their acylceramide-producing activity and localization.


Assuntos
Ictiose Lamelar , Ictiose , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Aciltransferases , Ceramidas , Humanos , Ictiose/genética , Ictiose Lamelar/genética , Ácido Linoleico , Lipase/genética , Mutação , Pele , Triglicerídeos
16.
Metabolites ; 13(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36676956

RESUMO

Triacylglycerols (TG) play an important role in skin homeostasis including the synthesis of ω-O-acylceramides (acylCER) required for skin barrier formation by providing linoleic acid (C18:2n6). However, the overall relationships of TG species with various ceramides (CER) including CER-NP, the most abundant CER, ω-O-acylCER, and another acylCER, 1-O-acylCER in human SC, remain unclear. Therefore, we investigated these relationships and their influence on skin health status in healthy Korean adults. Twelve CER subclasses including two ω-O-acylCER and two 1-O-acylCER were identified with CER-NP consisting of approximately half of the total CER. The ω-O-acylCER species exhibited positive relationships with TG 52:4 and TG 54:2 containing C18:2, while interestingly, 1-O-acylCER containing ester-linked C14:0 and C16:0 demonstrated positive relationships with TG 46-50 including C14:0 and C16:0, respectively. In addition, CER-NP and CER-NH showed positive correlations with TG 52-54 containing C18:2 or C18:3. A lipid pattern with higher levels of CER including CER-NP and ω-O-acylCER with TG 54 and TG with 5-6 double bonds was related to good skin health status, especially with acidic skin pH. Collectively, TG with increased chain length and unsaturation seemed to improve CER content, and profiles such as higher acylCER and CER-NP improved skin health status by fortifying skin barrier structure.

17.
Metabolites ; 12(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893253

RESUMO

The stratum corneum of the epidermis acts as a life-sustaining permeability barrier. Unique heterogeneous ceramides, especially ω-O-acylceramides, are key components for the formation of stable lamellar membrane structures in the stratum corneum and are essential for a vital epidermal permeability barrier. Several enzymes involved in acylceramide synthesis have been demonstrated to be associated with ichthyosis. The function of patatin-like phospholipase domain-containing protein 1 (PNPLA1) was a mystery until the finding that PNPLA1 gene mutations were involved in autosomal-recessive congenital ichthyosis (ARCI) patients, both humans and dogs. PNPLA1 plays an essential role in the biosynthesis of acylceramide as a CoA-independent transacylase. PNPLA1 gene mutations cause decreased acylceramide levels and impaired skin barrier function. More and more mutations in PNPLA1 genes have been identified in recent years. Herein, we describe the structural and functional specificity of PNPLA1, highlight its critical roles in acylceramide synthesis and skin barrier maintenance, and summarize the PNPLA1 mutations currently identified in ARCI patients.

18.
J Dermatol Sci ; 107(3): 114-122, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35973883

RESUMO

BACKGROUND: Sjögren-Larsson syndrome (SLS) is a neurocutaneous disorder whose causative gene is the fatty aldehyde dehydrogenase ALDH3A2 and of which ichthyosis is the major skin symptom. The stratum corneum contains a variety of ceramides, among which ω-O-acylceramides (acylceramides) and protein-bound ceramides are essential for skin permeability barrier formation. OBJECTIVES: To determine the ceramide classes/species responsible for SLS pathogenesis and the enzymes that are impaired in SLS. METHODS: Genomic DNA was collected from peripheral blood samples from an SLS patient and her parents, and whole-genome sequencing and Sanger sequencing were performed. Lipids were extracted from stratum corneum samples from the SLS patient and healthy volunteers and subjected to ceramide profiling via liquid chromatography coupled with tandem mass spectrometry. RESULTS: A duplication (c.55_130dup) and a missense mutation (p.Lys447Glu) were found in the patient's ALDH3A2 gene. The patient had reduced levels of all acylceramide classes, with total acylceramide levels at 25 % of healthy controls. Reductions were also observed for several nonacylated ceramides: ceramides with phytosphingosine or 6-hydroxysphingosine in the long-chain base moiety were reduced to 24 % and 41 % of control levels, respectively, and ceramides with an α-hydroxy fatty acid as the fatty acid moiety were reduced to 29 %. The fatty acid moiety was shortened in many nonacylated ceramide classes. CONCLUSION: These results suggest that reduced acylceramide levels are a primary cause of the ichthyosis symptoms of SLS, but reductions in other ceramide classes may also be involved.


Assuntos
Ictiose Lamelar , Ictiose , Síndrome de Sjogren-Larsson , Ceramidas/análise , Epiderme/patologia , Ácidos Graxos , Feminino , Humanos , Ictiose/genética , Ictiose/patologia , Ictiose Lamelar/patologia , Síndrome de Sjogren-Larsson/genética , Síndrome de Sjogren-Larsson/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-34813948

RESUMO

The long-chain acyl-CoA synthase1 (Acsl1) is a major enzyme that converts long-chain fatty acids to acyl-CoAs. The role of Acsl1 in energy metabolism has been elucidated in the adipose tissue, heart, and skeletal muscle. Here, we demonstrate that systemic deficiency of Acsl1 caused severe skin barrier defects, leading to embryonic lethality. Acsl1 mRNA and protein are expressed in the Acsl1+/+ epidermis, which are absent in Acsl1-/- mice. In Acsl1-/- mice, epidermal ceramide [EOS] (Cer[EOS]) containing ω-O-esterified linoleic acid, a lipid essential for the skin barrier, was significantly reduced. Conversely, ω-hydroxy ceramide (Cer[OS]), a precursor of Cer[EOS], was increased. Moreover, the levels of triglyceride (TG) species containing linoleic acids were lower in Acsl1-/- mice, whereas those not containing linoleic acid were comparable to Acsl1+/+ mice. As TG is considered to work as a reservoir of linoleic acid for the biosynthesis of Cer[EOS] from Cer[OS], our results suggest that Acsl1 plays an essential role in ω-O-acylceramide synthesis by providing linoleic acid for ω-O-esterification. Therefore, our findings identified a new biological role of Acsl1 as a regulator of the skin barrier.


Assuntos
Ácido Linoleico
20.
J Dermatol ; 48(4): 447-456, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33492757

RESUMO

The stratum corneum (SC) of the epidermis acts as a skin permeability barrier, and abnormalities in SC formation lead to several skin disorders. Lipids, especially the epidermis-specific ceramide classes ω-O-acylceramides (acylceramides) and protein-bound ceramides, are essential for skin barrier formation. Ceramide synthase 3 (CERS3) is involved in the synthesis of acylceramides and protein-bound ceramides, and CERS3 mutations cause autosomal recessive congenital ichthyosis. In the present study, we measured ceramide synthase activity and performed comprehensive SC ceramide profiling in an ichthyosis patient with compound heterozygous CERS3 mutations: nonsense mutation p.Arg75* and missense mutation p.Arg229His. The activity of p.Arg75* and p.Arg229His mutant CERS3 proteins was reduced to 4% and 56%, respectively, of the wild-type protein. In the patient's SC, acylceramide levels were greatly reduced, but the levels of protein-bound ceramides remained almost unchanged. Non-acylated ceramide levels were also affected in the patient; in particular, the levels of ceramides composed of sphingosine and non-hydroxy or α-hydroxy fatty acid were substantially higher than in healthy controls. These results suggest that a reduction in acylceramide levels alone leads to ichthyosis. Although protein-bound ceramides are synthesized from acylceramides, levels of acylceramides and protein-bound ceramides are not necessarily correlated.


Assuntos
Ictiose Lamelar , Ictiose , Ceramidas , Epiderme , Humanos , Ictiose Lamelar/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA