Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 185(3): 419-446, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120662

RESUMO

Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.


Assuntos
Adaptação Fisiológica , Tecido Adiposo/fisiologia , Doença , Saúde , Adipócitos Brancos/metabolismo , Animais , Humanos , Termogênese
2.
Genes Dev ; 33(19-20): 1367-1380, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488578

RESUMO

Fat storage in adult mammals is a highly regulated process that involves the mobilization of adipocyte progenitor cells (APCs) that differentiate to produce new adipocytes. Here we report a role for the broadly conserved miR-26 family of microRNAs (miR-26a-1, miR-26a-2, and miR-26b) as major regulators of APC differentiation and adipose tissue mass. Deletion of all miR-26-encoding loci in mice resulted in a dramatic expansion of adipose tissue in adult animals fed normal chow. Conversely, transgenic overexpression of miR-26a protected mice from high-fat diet-induced obesity. These effects were attributable to a cell-autonomous function of miR-26 as a potent inhibitor of APC differentiation. miR-26 blocks adipogenesis, at least in part, by repressing expression of Fbxl19, a conserved miR-26 target without a previously known role in adipocyte biology that encodes a component of SCF-type E3 ubiquitin ligase complexes. These findings have therefore revealed a novel pathway that plays a critical role in regulating adipose tissue formation in vivo and suggest new potential therapeutic targets for obesity and related disorders.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , MicroRNAs/metabolismo , Obesidade/genética , Células-Tronco/citologia , Animais , Dieta Hiperlipídica , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , MicroRNAs/genética
3.
Lipids Health Dis ; 23(1): 81, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509584

RESUMO

BACKGROUND: Obesity is associated with extensive white adipose tissue (WAT) expansion and remodeling. Healthy WAT expansion contributes to the maintenance of energy balance in the liver, thereby ameliorating obesity-related hepatic steatosis. Tissue-resident mesenchymal stromal cell populations, including PDGFRß + perivascular cells, are increasingly recognized pivotal as determinants of the manner in which WAT expands. However, the full array of regulatory factors controlling WAT stromal cell functions remains to be fully elucidated. Hypoxia-inducible factors (HIFs) are critical regulators in WAT stromal cell populations such as adipocyte precursor cells (APCs). It is revealed that HIF1α activation within PDGFRß + stromal cells results in the suppression of de novo adipogenesis and the promotion of a pro-fibrogenic cellular program in obese animals. However, the role of HIF2α in PDGFRß + cells remains undetermined in vivo. METHODS: New genetic models were employed in which HIF1α (encoded by the Hif1a gene) and HIF2α (encoded by the Epas1 gene) are selectively inactivated in PDGFRß + cells in an inducible manner using tamoxifen (TAM). With these models, both in vitro and in vivo functional analysis of PDGFRß + cells lacking HIF proteins were performed. Additionally, comprehensive metabolic phenotyping in diet-induced mouse models were performed to investigate the roles of PDGFRß + cell HIF proteins in WAT remodeling, liver energy balance and systemic metabolism. RESULTS: Unlike HIF1α inactivation, the new findings in this study suggest that inducible ablation of HIF2α in PDGFRß + cells does not cause apparent effects on WAT expansion induced by obesogenic diet. The adipogenic ability of PDGFRß + APCs is not significantly altered by genetic HIF2α ablation. Moreover, no difference of key parameters associated with healthy WAT remodeling such as improvements of WAT insulin sensitivity, reduction in metabolic inflammation, as well as changes in liver fat accumulation or systemic glucose metabolism, is detected in PDGFRß + cell Epas1-deficient mice. CONCLUSION: The new findings in this study support that, in contrast to HIF1α, PDGFRß + cell HIF2α appears dispensable for WAT metabolic remodeling and the resulting effects on liver metabolic homeostasis in diet-induced obesity, underscoring the isoform-specific roles of HIFα proteins in the regulation of adipose tissue biology.


Assuntos
Tecido Adiposo Branco , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Obesidade , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
Biochem Biophys Res Commun ; 658: 27-35, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37018886

RESUMO

The beiging of white adipose tissue (WAT) is expected to improve systemic metabolic conditions; however, the regulation and developmental origin of this process remain insufficiently understood. In the present study, the implication of platelet-derived growth factor receptor alpha (PDGFRα) was examined in the beiging of inguinal WAT (ingWAT) of neonatal mice. Using in vivo Nestin expressing cell (Nestin+) lineage tracing and deletion mouse models, we found that, in the mice with Pdgfra gene inactivation in Nestin+ lineage (N-PRα-KO mice), the growth of inguinal WAT (ingWAT) was suppressed during neonatal periods as compared with control wild-type mice. In the ingWAT of N-PRα-KO mice, the beige adipocytes appeared earlier that were accompanied by the increased expressions of both adipogenic and beiging markers compared to control wild-type mice. In the perivascular adipocyte progenitor cell (APC) niche of ingWAT, many PDGFRα+ cells of Nestin+ lineage were recruited in Pdgfra-preserving control mice, but were largely decreased in N-PRα-KO mice. This PDGFRα+ cell depletion was replenished by PDGFRα+ cells of non-Nestin+ lineage, unexpectedly resulting in an increase of total PDGFRα+ cell number in APC niche of N-PRα-KO mice over that of control mice. These represented a potent homeostatic control of PDGFRα+ cells between Nestin+ and non-Nestin+ lineages that was accompanied by the active adipogenesis and beiging as well as small WAT depot. This highly plastic nature of PDGFRα+ cells in APC niche may contribute to the WAT remodeling for the therapeutic purpose against metabolic diseases.


Assuntos
Adipócitos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Camundongos , Animais , Linhagem da Célula , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Adipogenia/genética , Gordura Subcutânea/metabolismo
5.
Biol Chem ; 402(2): 123-132, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33544474

RESUMO

Adipose tissue is an important organ in our body, participating not only in energy metabolism but also immune regulation. It is broadly classified as white (WAT) and brown (BAT) adipose tissues. WAT is highly heterogeneous, composed of adipocytes, various immune, progenitor and stem cells, as well as the stromal vascular populations. The expansion and inflammation of WAT are hallmarks of obesity and play a causal role in the development of metabolic and cardiovascular diseases. The primary event triggering the inflammatory expansion of WAT remains unclear. The present review focuses on the role of adipocyte progenitors (APS), which give rise to specialized adipocytes, in obesity-associated WAT expansion, inflammation and fibrosis.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Inflamação/metabolismo , Animais , Humanos
6.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560163

RESUMO

The formation of adipocytes during embryogenesis has been largely understudied. However, preadipocytes appear to originate from multipotent mesenchymal stromal/stem cells which migrate from the mesoderm to their anatomical localization. Most studies on adipocyte formation (adipogenesis) have used preadipocytes derived from adult stem/stromal cells. Adipogenesis consists of two phases, namely commitment and terminal differentiation. This review discusses the role of signalling pathways, epigenetic modifiers, and transcription factors in preadipocyte commitment and differentiation into mature adipocytes, as well as limitations in our understanding of these processes. To date, a limited number of transcription factors, genes and signalling pathways have been described to regulate preadipocyte commitment. One reason could be that most studies on adipogenesis have used preadipocytes already committed to the adipogenic lineage, which are therefore not suitable for studying preadipocyte commitment. Conversely, over a dozen molecular players including transcription factors, genes, signalling pathways, epigenetic regulators, and microRNAs have been described to be involved in the differentiation of preadipocytes to adipocytes; however, only peroxisome proliferator-activated receptor gamma has proven to be clinically relevant. A detailed understanding of how the molecular players underpinning adipogenesis relate to adipose tissue function could provide new therapeutic approaches for addressing obesity without compromising adipose tissue function.


Assuntos
Adipogenia , Epigênese Genética , Transdução de Sinais , Animais , Diferenciação Celular , Humanos , MicroRNAs/genética , PPAR gama/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
7.
Biomed Environ Sci ; 31(7): 507-514, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30145985

RESUMO

OBJECTIVE: The aim of this study was to investigate the ability of Pref-1+ adipocyte progenitor cells to mobilize into mesenteric lymph nodes (MLNs) and the dynamic expression of related chemokines during the development of rat MLNs. METHODS: Immunohistochemical analyses were used to detect the expression of Pref-1 and related chemokines. Transmission electron microscopy (TEM) was used to observe the changes in ultrastructure of MLNs. RESULTS: Cells containing lipid droplets were found in all rat MLNs at embryonic day (E) 18.5, 2 and 6 weeks (w) after birth, and they were similar to fibroblastic reticular cells (FRCs) or follicular dendritic cells (FDCs) under TEM. Pref-1+ adipocyte progenitor cells were found in all MLNs. The expression level of Pref-1 was significantly increased at 2 w after birth and decreased at 6 w after birth. The tendency of Cxcl12 expression was consistent with that of Pref-1 and was positively correlated with the expression of Pref-1 (P < 0.01; r = 0.897). At E18.5, Cxcl13, and Ccr7 were significantly expressed in the MLN anlage, but the expression level of Ccl21 was low. The expression level of Cxcl13, Ccr7, and Ccl21 in MLN were significantly increased at 2 w after birth (P < 0.05), while the expression of Ccr7 and Ccl21 were significantly decreased at 6 w after birth (P < 0.05). CONCLUSION: Adipocyte progenitor cells are involved in the rat MLNs development through differentiation into FRC and FDC. The expression of the relevant chemokines during the development of MLNs is dynamic and may be related to the maintenance of lymph nodes self-balance state.


Assuntos
Quimiocinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfonodos/metabolismo , Proteínas de Membrana/metabolismo , Mesentério/embriologia , Animais , Quimiocinas/genética , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfonodos/embriologia , Proteínas de Membrana/genética , Gravidez , Ratos
8.
FASEB J ; 29(7): 3065-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25857555

RESUMO

Upon obesity, adipose tissue is excessively expanded and characterized by pathologic processes like hypoxia, fibrosis, and inflammation. Death ligands belonging to the TNF superfamily such as TNF-α are important contributors to these derangements and exert a pronounced influence on the metabolic and cellular homeostasis of adipose tissue. Here, we sought to identify the effect of the death ligand TNF-related apoptosis-inducing ligand (TRAIL) on the adipose tissue precursor cell pool and therefore investigated its influence on preadipocyte proliferation. Treatment of human preadipocytes with TRAIL resulted in a time- and dose-dependent increase in proliferation (EC50 3.4 ng/ml) comparable to IGF-1. Although no apoptosis was observed, TRAIL triggered a rapid cleavage of caspase-8 and -3. Neither inhibition of caspase activity by zVAD.fmk (20 µM) nor ablation of caspase-8 expression by lentivirus-delivered small hairpin RNA (shRNA) abolished the proliferative response. TRAIL triggered a delayed and sustained activation of ERK1/2, leaving Akt, p38, JNK, and NF-κB unaffected. Importantly, inhibition of ERK1/2 activation by PD0325901 (300 nM) or AZD6244 (5 or 10 µM) completely abolished the proliferative response. We thus reveal a hitherto unknown function of TRAIL in regulating adipose tissue homeostasis by promoting the proliferation of tissue-resident precursor cells.


Assuntos
Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Sistema de Sinalização das MAP Quinases , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Benzamidas/farmacologia , Benzimidazóis/farmacologia , Caspase 8/genética , Caspase 8/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Gigantismo/metabolismo , Gigantismo/patologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
9.
Biochim Biophys Acta ; 1842(3): 358-69, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23688783

RESUMO

Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.


Assuntos
Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Branco/crescimento & desenvolvimento , Animais , Distribuição da Gordura Corporal , Diferenciação Celular , Humanos , Camundongos
10.
Biochim Biophys Acta ; 1842(3): 340-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23747579

RESUMO

The obesity epidemic has intensified efforts to understand the mechanisms controlling adipose tissue development. Adipose tissue is generally classified as white adipose tissue (WAT), the major energy storing tissue, or brown adipose tissue (BAT), which mediates non-shivering thermogenesis. It is hypothesized that brite adipocytes (brown in white) may represent a third adipocyte class. The recent realization that brown fat exist in adult humans suggests increasing brown fat energy expenditure could be a therapeutic strategy to combat obesity. To understand adipose tissue development, several groups are tracing the origins of mature adipocytes back to their adult precursor and embryonic ancestors. From these studies emerged a model that brown adipocytes originate from a precursor shared with skeletal muscle that expresses Myf5-Cre, while all white adipocytes originate from a Myf5-negative precursors. While this provided a rational explanation to why BAT is more metabolically favorable than WAT, recent work indicates the situation is more complex because subsets of white adipocytes also arise from Myf5-Cre expressing precursors. Lineage tracing studies further suggest that the vasculature may provide a niche supporting both brown and white adipocyte progenitors; however, the identity of the adipocyte progenitor cell is under debate. Differences in origin between adipocytes could explain metabolic heterogeneity between depots and/or influence body fat patterning particularly in lipodystrophy disorders. Here, we discuss recent insights into adipose tissue origins highlighting lineage-tracing studies in mice, how variations in metabolism or signaling between lineages could affect body fat distribution, and the questions that remain unresolved. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.


Assuntos
Adipócitos/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Distribuição da Gordura Corporal , Linhagem da Célula , Humanos , Camundongos , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Obesidade/patologia , Termogênese/genética
11.
Adipocyte ; 13(1): 2290218, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064408

RESUMO

S-adenosyl-homocysteine-hydrolase (AHCY) plays an important role in the methionine cycle regulating cellular methylation levels. AHCY has been reported to influence proliferation and differentiation processes in different cell types, e.g. in cancer cells and mouse embryonic stem cells. In the development of adipose tissue, both the proliferation and differentiation of adipocyte progenitor cells (APCs) are important processes, which in the context of obesity are often dysregulated. To assess whether AHCY might also be involved in cell proliferation and differentiation of APCs, we investigated the effect of reduced AHCY activity on human and mouse APCs in vitro. We show that the inhibition of AHCY using adenosine dialdehyde (AdOx) and the knockdown of AHCY using gene-specific siRNAs reduced APC proliferation and number. Inhibition of AHCY further reduced APC differentiation into mature adipocytes and the expression of adipogenic differentiation markers. Global DNA methylation profiling in human APCs revealed that inhibition of AHCY is associated with alterations in CpG methylation levels of genes involved in fat cell differentiation and pathways related to cellular growth. Our findings suggest that AHCY is necessary for the maintenance of APC proliferation and differentiation and inhibition of AHCY alters DNA methylation processes leading to a dysregulation of the expression of genes involved in the regulation of these processes.


Assuntos
Adenosil-Homocisteinase , Adipócitos , Tecido Adiposo , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Adipogenia/genética , Diferenciação Celular/genética , Proliferação de Células , Células-Tronco , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo
12.
Dev Cell ; 59(10): 1233-1251.e5, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569546

RESUMO

De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRß)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRß+ pericytes promotes brown adipogenesis by downregulating PDGFRß. Furthermore, inhibition of Notch signaling in PDGFRß+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRß axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.


Assuntos
Adipócitos Marrons , Adipogenia , Diferenciação Celular , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Receptores Notch , Células-Tronco , Animais , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptores Notch/metabolismo , Camundongos , Adipócitos Marrons/metabolismo , Adipócitos Marrons/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Transdução de Sinais , Pericitos/metabolismo , Pericitos/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/citologia , Camundongos Endogâmicos C57BL , Masculino
13.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562727

RESUMO

We previously established the scaffold protein 14-3-3ζ as a critical regulator of adipogenesis and adiposity, but the temporal specificity of its action during adipocyte differentiation remains unclear. To decipher if 14-3-3ζ exerts its regulatory functions on mature adipocytes or on adipose precursor cells (APCs), we generated Adipoq14-3-3ζKO and Pdgfra14-3-3ζKO mouse models. Our findings revealed a pivotal role for 14-3-3ζ in APC differentiation in a sex-dependent manner, whereby male and female Pdgfra14-3-3ζKO mice display impaired or potentiated weight gain, respectively, as well as fat mass. To better understand how 14-3-3ζ regulates the adipogenic transcriptional program in APCs, CRISPR-Cas9 was used to generate TAP-tagged 14-3-3ζ-expressing 3T3-L1 preadipocytes. Using these cells, we examined if the 14-3-3ζ nuclear interactome is enriched with adipogenic regulators during differentiation. Regulators of chromatin remodeling, such as DNMT1 and HDAC1, were enriched in the nuclear interactome of 14-3-3ζ, and their activities were impacted upon 14-3-3ζ depletion. The interactions between 14-3-3ζ and chromatin-modifying enzymes suggested that 14-3-3ζ may control chromatin remodeling during adipogenesis, and this was confirmed by ATAC-seq, which revealed that 14-3-3ζ depletion impacted the accessibility of up to 1,244 chromatin regions corresponding in part to adipogenic genes, promoters, and enhancers during the initial stages of adipogenesis. Moreover, 14-3-3ζ-dependent chromatin accessibility was found to directly correlate with the expression of key adipogenic genes. Altogether, our study establishes 14-3-3ζ as a crucial epigenetic regulator of adipogenesis and highlights the usefulness of deciphering the nuclear 14-3-3ζ interactome to identify novel pro-adipogenic factors and pathways.

14.
Mol Cell Endocrinol ; 573: 111968, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244600

RESUMO

The development of white adipose tissue (WAT) occurs during distinct embryonic and postnatal stages, and it is subsequently maintained throughout life. However, the specific mediators and mechanisms responsible for WAT development during different phases remain unclear. In this study, we investigate the role of the insulin receptor (IR) in regulating adipogenesis and adipocyte function within adipocyte progenitor cells (APCs) during WAT development and homeostasis. We use two in vivo adipose lineage tracking and deletion systems to delete IR either in embryonic APCs or adult APCs, respectively, to explore the specific requirements of IR during WAT development and WAT homeostasis in mice. Our data suggest that IR expression in APCs may not be essential for adult adipocyte differentiation but appears to be crucial for adipose tissue development. We reveal a surprising divergent role of IR in APCs during WAT development and homeostasis.


Assuntos
Adipócitos , Receptor de Insulina , Camundongos , Animais , Receptor de Insulina/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Adipogenia , Células-Tronco
15.
Cell Rep ; 42(5): 112440, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119138

RESUMO

Elucidating the transitional stages that define the pathway stem cells progress through during differentiation advances our understanding of biology and fosters the identification of therapeutic opportunities. However, distinguishing progenitor cells from other cell types and placing them in an epistatic pathway is challenging. This is exemplified in the adipocyte lineage, where the stromal vascular fraction (SVF) from adipose tissue is enriched for progenitor cells but also contains heterogeneous populations of cells. Single-cell RNA sequencing (scRNA-seq) has begun to facilitate the deconvolution of cell types in the SVF, and a hierarchical structure is emerging. Here, we use scRNA-seq to discover a population of CD31- CD45- cells in the SVF that are distinguished by a specific expression profile. Further, we place this population on an epistatic pathway upstream of the previously defined preadipocyte population. Finally, we discover functional properties of this population with broad implications, including revealing physiological mechanisms that regulate adipogenesis.


Assuntos
Tecido Adiposo , Células Estromais , Células Estromais/metabolismo , Tecido Adiposo/metabolismo , Adipócitos , Diferenciação Celular , Células-Tronco
16.
Cell Rep ; 42(6): 112647, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37330908

RESUMO

Dermal adipocyte lineage cells are highly plastic and can undergo reversible differentiation and dedifferentiation in response to various stimuli. Using single-cell RNA sequencing of developing or wounded mouse skin, we classify dermal fibroblasts (dFBs) into distinct non-adipogenic and adipogenic cell states. Cell differentiation trajectory analyses identify IL-1-NF-κB and WNT-ß-catenin as top signaling pathways that positively and negatively associate with adipogenesis, respectively. Upon wounding, activation of adipocyte progenitors and wound-induced adipogenesis are mediated in part by neutrophils through the IL-1R-NF-κB-CREB signaling axis. In contrast, WNT activation, by WNT ligand and/or ablation of Gsk3, inhibits the adipogenic potential of dFBs but promotes lipolysis and dedifferentiation of mature adipocytes, contributing to myofibroblast formation. Finally, sustained WNT activation and inhibition of adipogenesis is seen in human keloids. These data reveal molecular mechanisms underlying the plasticity of dermal adipocyte lineage cells, defining potential therapeutic targets for defective wound healing and scar formation.


Assuntos
Quinase 3 da Glicogênio Sintase , NF-kappa B , Camundongos , Animais , Humanos , NF-kappa B/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Diferenciação Celular/fisiologia , Adipócitos/metabolismo , Via de Sinalização Wnt/fisiologia , Adipogenia/genética , Interleucina-1/metabolismo , beta Catenina/metabolismo
17.
Front Cell Dev Biol ; 10: 1083372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561368

RESUMO

The primary cilium is a cellular sensory organelle found in most cells in our body. This includes adipocyte progenitor cells in our adipose tissue, a complex organ involved in energy storage, endocrine signaling, and thermogenesis. Numerous studies have shown that the primary cilium plays a critical role in directing the cell fate of adipocyte progenitor cells in multiple adipose tissue types. Accordingly, diseases with dysfunctional cilia called ciliopathies have a broad range of clinical manifestations, including obesity and diabetes. This review summarizes our current understanding of how the primary cilium regulates adipocyte progenitor cell fate in multiple contexts and illustrates the importance of the primary cilium in regulating energy storage and adipose tissue function.

18.
J Clin Endocrinol Metab ; 107(2): e836-e851, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34448000

RESUMO

CONTEXT: MSCA1 (mesenchymal stem cell antigen 1) and CD36 (cluster of differentiation 36) have been described as novel adipocyte progenitor markers in adults with a potential relevance for obesity and adipocyte progenitor function. OBJECTIVE: With the early manifestation of obesity in children and formation of adipose tissue (AT) dysfunction, children provide the opportunity to characterize the function of MSCA1 and CD36 during physiological AT accumulation and with obesity and related disease. METHODS: We investigated MSCA1 and CD36 expression in adipocytes and stroma vascular fraction (SVF) cells from 133 children of the Leipzig AT Childhood cohort with regard to AT accumulation and biology. In a subsample we analyzed how MSCA1 and CD36 expression is related to adipose progenitor capacities in vitro (ie, proliferation, differentiation and mitochondrial function). RESULTS: Both MSCA1 and CD36 are differentially expressed in adipocytes and SVF cells of children. MSCA1 expression is positively correlated to obesity-associated AT dysfunction (ie, adipocyte hypertrophy and serum high-sensitivity C-reactive protein), and high SVF MSCA1 expression is associated with increased mitochondrial respiration in vitro. CD36 expression is not associated with AT dysfunction but SVF CD36 expression is downregulated in children with overweight and obesity and shows a positive association with the differentiation capacity of SVF cells ex vivo and in vitro. CONCLUSION: Both MSCA1 and CD36 are associated with obesity-related alterations in AT of children. In particular, CD36 expression predicts adipogenic potential of SVF cells, indicating a potential role in the regulation of adipocyte hyperplasia and hypertrophy with obesity development in children.


Assuntos
Adipogenia , Antígenos de Superfície/metabolismo , Obesidade Infantil/fisiopatologia , Gordura Subcutânea/fisiopatologia , Adipócitos/metabolismo , Adolescente , Antígenos de Superfície/análise , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Fração Vascular Estromal/metabolismo , Gordura Subcutânea/citologia , Gordura Subcutânea/metabolismo
19.
Front Endocrinol (Lausanne) ; 13: 889923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721736

RESUMO

Obesity and its' associated metabolic diseases such as type 2 diabetes and cardiometabolic disorders are significant health problems confronting many countries. A major driver for developing obesity and metabolic dysfunction is the uncontrolled expansion of white adipose tissue (WAT). Specifically, the pathophysiological expansion of visceral WAT is often associated with metabolic dysfunction due to changes in adipokine secretion profiles, reduced vascularization, increased fibrosis, and enrichment of pro-inflammatory immune cells. A critical determinate of body fat distribution and WAT health is the sex steroid estrogen. The bioavailability of estrogen appears to favor metabolically healthy subcutaneous fat over visceral fat growth while protecting against changes in metabolic dysfunction. Our review will focus on the role of estrogen on body fat partitioning, WAT homeostasis, adipogenesis, adipocyte progenitor cell (APC) function, and thermogenesis to control WAT health and systemic metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2/complicações , Estrogênios/metabolismo , Humanos , Obesidade/complicações
20.
JID Innov ; 2(5): 100138, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36017415

RESUMO

Diabetic wounds exhibit chronic inflammation and delayed tissue proliferation or remodeling, mainly owing to prolonged proinflammatory (M1) macrophage activity and defects in transition to prohealing/proremodeling (M2a/M2c; CD206+ and/or CD163+) macrophages. We found that topical treatment with ON101, a plant-based potential therapeutic for diabetic foot ulcers, increased M2c-like (CD163+ and CD206+) cells and suppressed M1-like cells, altering the inflammatory gene profile in a diabetic mouse model compared with that in the controls. An in vitro macrophage-polarizing model revealed that ON101 directly suppressed CD80+ and CD86+ M1-macrophage polarization and M1-associated proinflammatory cytokines at both protein and transcriptional levels. Notably, conditioned medium collected from ON101-treated M1 macrophages reversed the M1-conditioned medium‒mediated suppression of CD206+ macrophages. Furthermore, conditioned medium from ON101-treated adipocyte progenitor cells significantly promoted CD206+ and CD163+ macrophages but strongly inhibited M1-like cells. ON101 treatment also stimulated the expression of GCSF and CXCL3 genes in human adipocyte progenitor cells. Interestingly, treatment with recombinant GCSF protein enhanced both CD206+ and CD163+ M2 markers, whereas CXCL3 treatment only stimulated CD163+ M2 macrophages. Depletion of cutaneous M2 macrophages inhibited ON101-induced diabetic wound healing. Thus, ON101 directly suppressed M1 macrophages and facilitated the GCSF- and CXCL3-mediated transition from M1 to M2 macrophages, lowering inflammation and leading to faster diabetic wound healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA