Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(5): 862-877.e22, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142679

RESUMO

Using untargeted metabolomics (n = 1,162 subjects), the plasma metabolite (m/z = 265.1188) phenylacetylglutamine (PAGln) was discovered and then shown in an independent cohort (n = 4,000 subjects) to be associated with cardiovascular disease (CVD) and incident major adverse cardiovascular events (myocardial infarction, stroke, or death). A gut microbiota-derived metabolite, PAGln, was shown to enhance platelet activation-related phenotypes and thrombosis potential in whole blood, isolated platelets, and animal models of arterial injury. Functional and genetic engineering studies with human commensals, coupled with microbial colonization of germ-free mice, showed the microbial porA gene facilitates dietary phenylalanine conversion into phenylacetic acid, with subsequent host generation of PAGln and phenylacetylglycine (PAGly) fostering platelet responsiveness and thrombosis potential. Both gain- and loss-of-function studies employing genetic and pharmacological tools reveal PAGln mediates cellular events through G-protein coupled receptors, including α2A, α2B, and ß2-adrenergic receptors. PAGln thus represents a new CVD-promoting gut microbiota-dependent metabolite that signals via adrenergic receptors.


Assuntos
Doenças Cardiovasculares/sangue , Microbioma Gastrointestinal/genética , Glutamina/análogos & derivados , Trombose/metabolismo , Animais , Artérias/lesões , Artérias/metabolismo , Artérias/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plaquetas/metabolismo , Plaquetas/microbiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/patologia , Morte Súbita Cardíaca/patologia , Glutamina/sangue , Glutamina/genética , Humanos , Masculino , Metaboloma/genética , Metabolômica/métodos , Camundongos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/microbiologia , Ativação Plaquetária/genética , Receptores Adrenérgicos alfa/sangue , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/sangue , Receptores Adrenérgicos beta/genética , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/microbiologia , Acidente Vascular Cerebral/patologia , Trombose/genética , Trombose/microbiologia , Trombose/patologia
2.
Cell ; 180(1): 64-78.e16, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31923400

RESUMO

Enteric-associated neurons (EANs) are closely associated with immune cells and continuously monitor and modulate homeostatic intestinal functions, including motility and nutrient sensing. Bidirectional interactions between neuronal and immune cells are altered during disease processes such as neurodegeneration or irritable bowel syndrome. We investigated the effects of infection-induced inflammation on intrinsic EANs (iEANs) and the role of intestinal muscularis macrophages (MMs) in this context. Using murine models of enteric infections, we observed long-term gastrointestinal symptoms, including reduced motility and loss of excitatory iEANs, which was mediated by a Nlrp6- and Casp11-dependent mechanism, depended on infection history, and could be reversed by manipulation of the microbiota. MMs responded to luminal infection by upregulating a neuroprotective program via ß2-adrenergic receptor (ß2-AR) signaling and mediated neuronal protection through an arginase 1-polyamine axis. Our results identify a mechanism of neuronal death post-infection and point to a role for tissue-resident MMs in limiting neuronal damage.


Assuntos
Mucosa Intestinal/imunologia , Macrófagos/imunologia , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Animais , Arginase/metabolismo , Caspases Iniciadoras/imunologia , Caspases Iniciadoras/metabolismo , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/metabolismo , Feminino , Gastroenteropatias , Microbioma Gastrointestinal , Infecções , Inflamação/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestinos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Neurônios/fisiologia , Receptores Adrenérgicos beta 2/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
3.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610084

RESUMO

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Assuntos
Tecido Adiposo Marrom/metabolismo , Interleucina-6/metabolismo , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Encéfalo/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Gluconeogênese , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Interleucina-6/sangue , Interleucina-6/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Interleucina-6/metabolismo , Proteína Desacopladora 1/deficiência , Proteína Desacopladora 1/genética
4.
Immunity ; 49(1): 93-106.e7, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958804

RESUMO

There is a growing body of research on the neural control of immunity and inflammation. However, it is not known whether the nervous system can regulate the production of inflammatory myeloid cells from hematopoietic progenitor cells in disease conditions. Myeloid cell numbers in diabetic patients were strongly correlated with plasma concentrations of norepinephrine, suggesting the role of sympathetic neuronal activation in myeloid cell production. The spleens of diabetic patients and mice contained higher numbers of tyrosine hydroxylase (TH)-expressing leukocytes that produced catecholamines. Granulocyte macrophage progenitors (GMPs) expressed the ß2 adrenergic receptor, a target of catecholamines. Ablation of splenic sympathetic neuronal signaling using surgical, chemical, and genetic approaches diminished GMP proliferation and myeloid cell development. Finally, mice lacking TH-producing leukocytes had reduced GMP proliferation, resulting in diminished myelopoiesis. Taken together, our study demonstrates that catecholamines produced by leukocytes and sympathetic nerve termini promote GMP proliferation and myeloid cell development.


Assuntos
Diabetes Mellitus/fisiopatologia , Células Progenitoras de Granulócitos e Macrófagos/citologia , Células Progenitoras de Granulócitos e Macrófagos/metabolismo , Mielopoese , Neuroimunomodulação , Sistema Nervoso Simpático/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus/sangue , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos/enzimologia , Leucócitos/metabolismo , Masculino , Camundongos , Células Mieloides/citologia , Mielopoese/efeitos dos fármacos , Neuroimunomodulação/efeitos dos fármacos , Norepinefrina/sangue , Transdução de Sinais/efeitos dos fármacos , Baço/citologia , Baço/inervação , Baço/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos
5.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37989594

RESUMO

Glutamate spillover from the synapse is tightly regulated by astrocytes, limiting the activation of extrasynaptically located NMDA receptors (NMDAR). The processes of astrocytes are dynamic and can modulate synaptic physiology. Though norepinephrine (NE) and ß-adrenergic receptor (ß-AR) activity can modify astrocyte volume, this has yet to be confirmed outside of sensory cortical areas, nor has the effect of noradrenergic signaling on glutamate spillover and neuronal NMDAR activity been explored. We monitored changes to astrocyte process volume in response to noradrenergic agonists in the medial prefrontal cortex of male and female mice. Both NE and the ß-AR agonist isoproterenol (ISO) increased process volume by ∼20%, significantly higher than changes seen when astrocytes had G-protein signaling blocked by GDPßS. We measured the effect of ß-AR signaling on evoked NMDAR currents. While ISO did not affect single stimulus excitatory currents of Layer 5 pyramidal neurons, ISO reduced NMDAR currents evoked by 10 stimuli at 50 Hz, which elicits glutamate spillover, by 18%. After isolating extrasynaptic NMDARs by blocking synaptic NMDARs with the activity-dependent NMDAR blocker MK-801, ISO similarly reduced extrasynaptic NMDAR currents in response to 10 stimuli by 18%. Finally, blocking ß-AR signaling in the astrocyte network by loading them with GDPßS reversed the ISO effect on 10 stimuli-evoked NMDAR currents. These results demonstrate that astrocyte ß-AR activity reduces extrasynaptic NMDAR recruitment, suggesting that glutamate spillover is reduced.


Assuntos
Astrócitos , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Masculino , Feminino , Receptores de N-Metil-D-Aspartato/metabolismo , Astrócitos/metabolismo , Células Piramidais/fisiologia , Córtex Pré-Frontal/fisiologia , Ácido Glutâmico/fisiologia , Receptores Adrenérgicos beta , Sinapses/fisiologia
6.
Annu Rev Pharmacol Toxicol ; 62: 1-18, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34339291

RESUMO

This review is a somewhat chronological tale of my scientific life, emphasizing the why of the questions we asked in the lab and lessons learned that may be of value to nascent scientists. The reader will come to realize that the flow of my life has been driven by a combined life of the mind and life of the soul, intertwining like the strands of DNA.


Assuntos
Médicos , Humanos
7.
Brain ; 147(4): 1377-1388, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37787503

RESUMO

Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.


Assuntos
Melaninas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Tremor/complicações , Radioisótopos de Carbono/metabolismo , Tomografia por Emissão de Pósitrons , Norepinefrina/metabolismo , Locus Cerúleo/metabolismo , Imageamento por Ressonância Magnética
8.
Proc Natl Acad Sci U S A ; 119(20): e2123511119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35537053

RESUMO

It is known that catecholamines regulate innate immune functions. The underlying mechanisms, however, are not well understood. Here we show that at least 20 members of the human chemokine receptor (CR) family heteromerize with one or more members of the α1-adrenergic receptor (AR) family in recombinant systems and that such heteromeric complexes are detectable in human monocytes and the monocytic leukemia cell line THP-1. Ligand binding to α1-ARs inhibited migration toward agonists of the CR heteromerization partners of α1B/D-ARs with high potency and 50 to 77% efficacy but did not affect migration induced by a noninteracting CR. Incomplete siRNA knockdown of α1B/D-ARs in THP-1 cells partially inhibited migration toward agonists of their CR heteromerization partners. Complete α1B-AR knockout via CRISPR-Cas9 gene editing in THP-1 cells (THP-1_ADRA1BKO) resulted in 82% reduction of α1D-AR expression and did not affect CR expression. Migration of THP-1_ADRA1BKO cells toward agonists of CR heteromerization partners of α1B/D-ARs was reduced by 82 to 95%. Our findings indicate that CR:α1B/D-AR heteromers are essential for normal function of CR heteromerization partners, provide a mechanism underlying neuroendocrine control of leukocyte trafficking, and offer opportunities to modulate leukocyte and/or cancer cell trafficking in disease processes.


Assuntos
Movimento Celular , Leucócitos , Receptores Adrenérgicos alfa 1 , Receptores CXCR4 , Membrana Celular/metabolismo , Humanos , Leucócitos/metabolismo , Neoplasias , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais
9.
Mol Pharmacol ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39443156

RESUMO

The emerging picture of G protein-coupled receptor function suggests that the global signaling response is an integrated sum of a multitude of individual receptor responses, each regulated by their local protein environment. The beta 2 adrenergic receptor (B2AR) has long served as an example receptor in the development of this model. But the mechanism and the identity of the protein-protein interactions that govern the availability of receptors competent for signaling remains incompletely characterized. To address this question, we characterized the interactome of agonist-stimulated B2AR in HEK293 cells using FLAG co-immunoprecipitation coupled to SILAC labeling and mass spectrometry. Our B2AR cross-linked interactome identified 190 high-confidence proteins, including almost all known interacting proteins and six out of seven isoforms of the 14-3-3 family of scaffolding proteins. Inhibiting 14-3-3 proteins with the peptide difopein enhanced isoproterenol-stimulated adrenergic signaling via cAMP approximately three-fold, and increased both miniGs and arrestin recruitment to B2AR more than two fold each, without noticeably changing EC50 with respect to cAMP signaling or effector recruitment upon stimulation. Our results show that 14-3-3 proteins negatively regulate downstream signaling by inhibiting access of B2AR to effector proteins. We propose that 14-3-3 proteins maintain a dynamic pool of B2AR that has reduced signaling efficacy in response to acute agonist stimulation, limiting the amount of signaling-competent receptors at the plasma membrane. Significance Statement This study presents a new interactome of the agonist-stimulated beta 2 adrenergic receptor (B2AR), a paradigmatic GPCR that is both a model system for members of this class and an important signaling protein in respiratory, cardiovascular, and metabolic regulation. We identify 14-3-3 proteins as responsible for restricting B2AR access to signaling effectors and maintaining a receptor population that is insensitive to acute stimulation by agonists.

10.
J Physiol ; 602(16): 4053-4071, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39058701

RESUMO

The present study investigated the impact of central α2-adrenergic mechanisms on sympathetic action potential (AP) discharge, recruitment and latency strategies. We used the microneurographic technique to record muscle sympathetic nerve activity and a continuous wavelet transform to investigate postganglionic sympathetic AP firing during a baseline condition and an infusion of a α2-adrenergic receptor agonist, dexmedetomidine (10 min loading infusion of 0.225 µg kg-1; maintenance infusion of 0.1-0.5 µg kg h-1) in eight healthy individuals (28 ± 7 years, five females). Dexmedetomidine reduced mean pressure (92 ± 7 to 80 ± 8 mmHg, P < 0.001) but did not alter heart rate (61 ± 13 to 60 ± 14 bpm; P = 0.748). Dexmedetomidine reduced sympathetic AP discharge (126 ± 73 to 27 ± 24 AP 100 beats-1, P = 0.003) most strongly for medium-sized APs (normalized cluster 2: 21 ± 10 to 5 ± 5 AP 100 beats-1; P < 0.001). Dexmedetomidine progressively de-recruited sympathetic APs beginning with the largest AP clusters (12 ± 3 to 7 ± 2 clusters, P = 0.002). Despite de-recruiting large AP clusters with shorter latencies, dexmedetomidine reduced AP latency across remaining clusters (1.18 ± 0.12 to 1.13 ± 0.13 s, P = 0.002). A subset of six participants performed a Valsalva manoeuvre (20 s, 40 mmHg) during baseline and the dexmedetomidine infusion. Compared to baseline, AP discharge (Δ 361 ± 292 to Δ 113 ± 155 AP 100 beats-1, P = 0.011) and AP cluster recruitment elicited by the Valsalva manoeuvre were lower during dexmedetomidine (Δ 2 ± 1 to Δ 0 ± 2 AP clusters, P = 0.041). The reduction in sympathetic AP latency elicited by the Valsalva manoeuvre was not affected by dexmedetomidine (Δ -0.09 ± 0.07 to Δ -0.07 ± 0.14 s, P = 0.606). Dexmedetomidine reduced baroreflex gain, most strongly for medium-sized APs (normalized cluster 2: -6.0 ± 5 to -1.6 ± 2 % mmHg-1; P = 0.008). These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans. KEY POINTS: Sympathetic postganglionic neuronal subpopulations innervating the human circulation exhibit complex patterns of discharge, recruitment and latency. However, the central neural mechanisms governing sympathetic postganglionic discharge remain unclear. This microneurographic study investigated the impact of a dexmedetomidine infusion (α2-adrenergic receptor agonist) on muscle sympathetic postganglionic action potential (AP) discharge, recruitment and latency patterns. Dexmedetomidine infusion inhibited the recruitment of large and fast conducting sympathetic APs and attenuated the discharge of medium sized sympathetic APs that fired during resting conditions and the Valsalva manoeuvre. Dexmedetomidine infusion elicited shorter sympathetic AP latencies during resting conditions but did not affect the reductions in latency that occurred during the Valsalva manoeuvre. These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans.


Assuntos
Potenciais de Ação , Agonistas de Receptores Adrenérgicos alfa 2 , Dexmedetomidina , Sistema Nervoso Simpático , Humanos , Dexmedetomidina/farmacologia , Feminino , Adulto , Masculino , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Adulto Jovem , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Pressão Sanguínea/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/fisiologia , Receptores Adrenérgicos alfa 2/metabolismo
11.
J Biol Chem ; 299(6): 104706, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061000

RESUMO

Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating ß-adrenergic receptors (ßARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (∼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such ßAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate-type glutamate receptors. Surprisingly, we found that ßAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate-type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, ß-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for ßAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required ß2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Hipocampo/metabolismo , Sinapses/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Pflugers Arch ; 476(11): 1703-1725, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39136758

RESUMO

Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.


Assuntos
Fármacos Neuroprotetores , Norepinefrina , Humanos , Animais , Norepinefrina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Neuroproteção/fisiologia , Neuroproteção/efeitos dos fármacos
13.
Cell Physiol Biochem ; 58(3): 212-225, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852193

RESUMO

BACKGROUND/AIMS: Adrenaline quickly inhibits the release of histamine from mast cells. Besides ß2-adrenergic receptors, several in vitro studies also indicate the involvement of α-adrenergic receptors in the process of exocytosis. Since exocytosis in mast cells can be detected electrophysiologically by the changes in the membrane capacitance (Cm), its continuous monitoring in the presence of drugs would determine their mast cell-stabilizing properties. METHODS: Employing the whole-cell patch-clamp technique in rat peritoneal mast cells, we examined the effects of adrenaline on the degranulation of mast cells and the increase in the Cm during exocytosis. We also examined the degranulation of mast cells in the presence or absence of α-adrenergic receptor agonists or antagonists. RESULTS: Adrenaline dose-dependently suppressed the GTP-γ-S-induced increase in the Cm and inhibited the degranulation from mast cells, which was almost completely erased in the presence of butoxamine, a ß2-adrenergic receptor antagonist. Among α-adrenergic receptor agonists or antagonists, high dose prazosin, a selective α1-adrenergic receptor antagonist, significantly reduced the ratio of degranulating mast cells and suppressed the increase in the Cm. Additionally, prazosin augmented the inhibitory effects of adrenaline on the degranulation of mast cells. CONCLUSION: This study provided electrophysiological evidence for the first time that adrenaline dose-dependently inhibited the process of exocytosis, confirming its usefulness as a potent mast cell-stabilizer. The pharmacological blockade of α1-adrenergic receptor by prazosin synergistically potentiated such mast cell-stabilizing property of adrenaline, which is primarily mediated by ß2-adrenergic receptors.


Assuntos
Degranulação Celular , Epinefrina , Exocitose , Mastócitos , Prazosina , Animais , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/citologia , Epinefrina/farmacologia , Ratos , Prazosina/farmacologia , Degranulação Celular/efeitos dos fármacos , Masculino , Exocitose/efeitos dos fármacos , Técnicas de Patch-Clamp , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Ratos Wistar
14.
J Pharmacol Exp Ther ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849140

RESUMO

Beta-adrenergic receptors (ß-AR) are expressed on the membranes of various cell types and their activation affects body water balance by modulating renal sodium and water excretion, cardiovascular function and metabolic processes. However, ß-AR-associated body fluid imbalance has not been well characterised. In the present study, we hypothesized that chronic ß-AR stimulation increases electrolyte and water content at the tissue level. We evaluated the effects of isoproterenol, a non-selective ß-AR agonist, on electrolyte and water balance at the tissue level. Continuous isoproterenol administration for 14 days induced cardiac hypertrophy, associated with sodium-driven water retention in the heart, increased the total body sodium, potassium and water contents at the tissue level, and increased the water intake and blood pressure of the mice. There was greater urine output in response to the isoproterenol-induced body water retention. These isoproterenol-induced changes were reduced by propranolol, a non-selective beta-receptor inhibitor. Isoproterenol-treated mice even without excessive water intake had higher total body electrolyte and water contents, and this tissue water retention was associated with lower dry body mass, suggesting that ß-AR stimulation in the absence of excess water intake induces catabolism and water retention. These findings suggest that ß-AR activation induces tissue sodium and potassium retention, leading to body fluid retention, with or without excess water intake. This characterisation of ß-AR-induced electrolyte and fluid abnormalities improves our understanding of the pharmacological effects of ß-AR inhibitors. Significance Statement We have shown that chronic ß-AR stimulation causes cardiac hypertrophy associated with sodium-driven water retention in the heart and increases the accumulation of body sodium, potassium and water at the tissue level. This characterisation of the ß-AR-induced abnormalities in electrolyte and water balance at the tissue level improves our understanding of the roles of ß-AR in physiology and pathophysiology and the pharmacological effects of ß-AR inhibitors.

15.
Eur J Clin Invest ; : e14318, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319943

RESUMO

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia (FM) are comorbid disorders with overlapping symptoms. Research highlights autonomic dysfunction compared to healthy individuals, particularly involving the sympathetic branch. While past reviews focused on neurophysiological assessments, this systematic review summarises biological adrenergic markers, offering deeper insights into the observed sympathetic dysfunction in ME/CFS and FM aiming to identify targetable pathophysiological mechanisms. METHODS: A systematic search was performed on PubMed, Web of Science, Embase and Scopus. Studies investigating peripheral biological markers of adrenergic function in patients with ME/CFS or FM compared to healthy controls at baseline were included. Meta-analyses were performed using R statistical software. RESULTS: This meta-analysis of 37 studies, encompassing 543 ME/CFS patients and 651 FM patients, compared with 747 and 447 healthy controls, respectively, revealed elevated adrenaline (SMD = .49 [.31-.67]; Z = 5.29, p < .01) and ß1 adrenergic receptor expression (SMD = .79 [.06-1.52]; Z = 2.13; p = .03) in blood of ME/CFS patients at rest. Additionally, patients with ME/CFS had a greater increase in the expression of α2A adrenergic receptor (AR, SMD = .57 [.18-.97]; Z = 2.85, p < .01), ß2 AR (SMD = .41 [.02-.81]; Z = 2.04; p = .04) and COMT (SMD = .42 [.03-.81]; Z = 2.11; p = .03) after exercise and an increased response of noradrenaline to an orthostatic test (SMD = .11 [-.47 to -.70]; Z = 2.10; p = .04), both found in blood. FM patients showed no significant differences at baseline but exhibited a diminished adrenaline response to exercise (SMD = -.79 [-1.27 to -.30]; Z = -3.14; p < .01). CONCLUSION: This systematic review and meta-analysis revealed adrenergic dysfunction mainly in patients with ME/CFS. Higher baseline adrenaline levels and atypical responses to exercise in ME/CFS indicate that sympathetic dysfunction, underscored by adrenergic abnormalities, is more involved in the pathophysiology of ME/CFS rather than FM.

16.
Clin Exp Pharmacol Physiol ; 51(10): e13915, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39227010

RESUMO

S-Limonene (s-Lim) is a monocyclic monoterpene found in a variety of plants and has been shown to present antioxidant and cardioprotective activity in experimental models of myocardial infarction. The aim of this study was to evaluate the potential mechanism by which s-Lim exerts its antiarrhythmic effect, focusing on the blockade of ß-adrenoceptor (ß-AR) and its effects on various in vivo and in vitro parameters, including electrocardiogram (ECG) measurements, left ventricular developed pressure (LVDP), the ß-adrenergic pathway, sarcomeric shortening and L-type calcium current (ICa,L). In isolated hearts, 10 µM of s-Lim did not alter the ECG profile or LVPD. s-Lim increased the heart rate corrected QT interval (QTc) (10.8%) at 50 µM and reduced heart rate at the concentrations of 30 (12.4%) and 50 µM (16.6%). s-Lim (10 µM) also inhibited the adrenergic response evoked by isoproterenol (ISO) (1 µM) reducing the increased of heart rate, LVDP and ECG changes. In ventricular cardiomyocyte, s-Lim antagonized the effect of dobutamine by preventing the increase of sarcomeric shortening, demonstrating a similar effect to atenolol (blocker ß1-AR). In vivo, s-Lim antagonized the effect of ISO (agonists ß1-AR), presenting a similar effect to propranolol (a non-selective blocker ß-AR). In ventricular cardiomyocyte, s-Lim did not alter the voltage dependence for ICa,L activation or the ICa,L density. In addition, s-Lim did not affect changes in the ECG effect mediated by 5 µM forskolin (an activator of adenylate cyclase). In an in vivo caffeine/ISO-induced arrhythmia model, s-Lim (1 mg/kg) presented antiarrhythmic action verified by a reduced arrhythmia score, heart rate, and occurrence of ventricular premature beats and inappropriate sinus tachycardia. These findings indicate that the antiarrhythmic activity of s-Lim is related to blockade of ß-AR in the heart.


Assuntos
Antiarrítmicos , Limoneno , Ratos Wistar , Receptores Adrenérgicos beta , Transdução de Sinais , Animais , Ratos , Antiarrítmicos/farmacologia , Masculino , Receptores Adrenérgicos beta/metabolismo , Limoneno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Terpenos/farmacologia , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Cicloexenos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Isoproterenol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
17.
Arch Toxicol ; 98(7): 2143-2152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806716

RESUMO

Patulin (PAT) is a food-borne mycotoxin produced by Penicillium and Byssochlamys species. It is widely known for its mutagenic, carcinogenic, and genotoxic effects and has been associated with kidney injury; however, the mechanism of toxicity remains unclear. To address this gap, we conducted a study to explore the changes in α-adrenergic receptor signalling pathways and epigenetic modifications induced by PAT in the kidneys of C57BL/6 mice during acute (1 day) and prolonged (10 days) exposure. The mice (20-22 g) were orally administered PAT (2.5 mg/kg; at 1 and 10 days), and post-treatment, the kidneys were harvested, homogenised and extracted for RNA, DNA, and protein. The relative gene expression of the α-adrenergic receptors (ADRA1, ADRA2A, ADRA2B) and associated signalling pathways (MAPK, MAPK14, ERK, PI3K, and AKT) was assessed by qPCR. The protein expression of ERK1/2 and MAPK was determined by western blot. The impact of PAT on DNA methylation was evaluated by quantifying global DNA methylation; qPCR was used to determine gene expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and demethylase (MBD2). PAT downregulated the expression of ADRA1, ADRA2A, ADRA2B, PI3K, and AKT and upregulated ERK1/2 and MAPK protein expression. Furthermore, PAT induced alterations in DNA methylation patterns by upregulating DNMT1 and MBD2 expressions and downregulating DNMT3A and DNMT3B expressions, resulting in global DNA hypomethylation. In conclusion, PAT disrupts α-1 and α-2 adrenergic receptor signalling pathways and induces epigenetic modifications, that can lead to kidney injury.


Assuntos
Metilação de DNA , Epigênese Genética , Rim , Patulina , Transdução de Sinais , Animais , Masculino , Camundongos , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BL , Patulina/toxicidade , Transdução de Sinais/efeitos dos fármacos
18.
Handb Exp Pharmacol ; 285: 147-184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227198

RESUMO

The concept of G protein-coupled receptors initially arose from studies of the ß-adrenoceptor, adenylyl cyclase, and cAMP signalling pathway. Since then both canonical G protein-coupled receptor signalling pathways and emerging paradigms in receptor signalling have been defined by experiments focused on adrenoceptors. Here, we discuss the evidence for G protein coupling specificity of the nine adrenoceptor subtypes. We summarise the ability of each of the adrenoceptors to activate proximal signalling mediators including cAMP, calcium, mitogen-activated protein kinases, and protein kinase C pathways. Finally, we highlight the importance of precise spatial and temporal control of adrenoceptor signalling that is controlled by the localisation of receptors at intracellular membranes and in larger protein complexes.


Assuntos
Receptores Adrenérgicos , Transdução de Sinais , Humanos , Animais , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos/fisiologia , AMP Cíclico/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088840

RESUMO

A key question in receptor signaling is how specificity is realized, particularly when different receptors trigger the same biochemical pathway(s). A notable case is the two ß-adrenergic receptor (ß-AR) subtypes, ß1 and ß2, in cardiomyocytes. They are both coupled to stimulatory Gs proteins, mediate an increase in cyclic adenosine monophosphate (cAMP), and stimulate cardiac contractility; however, other effects, such as changes in gene transcription leading to cardiac hypertrophy, are prominent only for ß1-AR but not for ß2-AR. Here, we employ highly sensitive fluorescence spectroscopy approaches, in combination with a fluorescent ß-AR antagonist, to determine the presence and dynamics of the endogenous receptors on the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. These techniques allow us to visualize that the ß2-AR is confined to and diffuses within the T-tubular network, as opposed to the ß1-AR, which is found to diffuse both on the outer plasma membrane as well as on the T-tubules. Upon overexpression of the ß2-AR, this compartmentalization is lost, and the receptors are also seen on the cell surface. Such receptor segregation depends on the development of the T-tubular network in adult cardiomyocytes since both the cardiomyoblast cell line H9c2 and the cardiomyocyte-differentiated human-induced pluripotent stem cells express the ß2-AR on the outer plasma membrane. These data support the notion that specific cell surface targeting of receptor subtypes can be the basis for distinct signaling and functional effects.


Assuntos
Membrana Celular/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Imagem Molecular , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Humanos , Camundongos , Camundongos Transgênicos , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética
20.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125627

RESUMO

The autonomic nervous system plays a key role in maintaining body hemostasis through both the sympathetic and parasympathetic nervous systems. Sympathetic overstimulation as a reflex to multiple pathologies, such as septic shock, brain injury, cardiogenic shock, and cardiac arrest, could be harmful and lead to autonomic and immunologic dysfunction. The continuous stimulation of the beta receptors on immune cells has an inhibitory effect on these cells and may lead to immunologic dysfunction through enhancing the production of anti-inflammatory cytokines, such as interleukin-10 (IL-10), and inhibiting the production of pro-inflammatory factors, such as interleukin-1B IL-1B and tissue necrotizing factor-alpha (TNF-alpha). Sympathetic overstimulation-induced autonomic dysfunction may also happen due to adrenergic receptor insensitivity or downregulation. Administering anti-adrenergic medication, such as beta-blockers, is a promising treatment to compensate against the undesired effects of adrenergic surge. Despite many misconceptions about beta-blockers, beta-blockers have shown a promising effect in decreasing mortality in patients with critical illness. In this review, we summarize the recently published articles that have discussed using beta-blockers as a promising treatment to decrease mortality in critically ill patients, such as patients with septic shock, traumatic brain injury, cardiogenic shock, acute decompensated heart failure, and electrical storm. We also discuss the potential pathophysiology of beta-blockers in various types of critical illness. More clinical trials are encouraged to evaluate the safety and effectiveness of beta-blockers in improving mortality among critically ill patients.


Assuntos
Antagonistas Adrenérgicos beta , Sistema Nervoso Autônomo , Estado Terminal , Humanos , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Animais , Choque Séptico/tratamento farmacológico , Choque Séptico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA