RESUMO
Research into the involvement of adrenoceptor subtypes in the cause(s) of psychiatric disorders is particularly challenging. This is partly because of difficulties in developing animal models that recapitulate the human condition but also because no evidence for any causal links has emerged from studies of patients. These, and other obstacles, are outlined in this chapter. Nevertheless, many drugs that are used to treat psychiatric disorders bind to adrenoceptors to some extent. Direct or indirect modulation of the function of specific adrenoceptor subtypes mediates all or part of the therapeutic actions of drugs in various psychiatric disorders. On the other hand, interactions with central or peripheral adrenoceptors can also explain their side effects. This chapter discusses both aspects of the field, focusing on disorders that are prevalent: depression, schizophrenia, anxiety, attention-deficit hyperactivity disorder, binge-eating disorder, and substance use disorder. In so doing, we highlight some unanswered questions that need to be resolved before it will be feasible to explain how changes in the function of any adrenoceptor subtype affect mood and behavior in humans and other animals.
RESUMO
(+)-Cyclazosin [(+)-1] is one of most selective antagonists of the α1B-adrenoceptor subtype (selectivity ratios, α1B/α1Aâ¯=â¯13, α1B/α1Dâ¯=â¯38-39). To improve the selectivity, we synthesized and pharmacologically studied the blocking activity against α1-adrenoceptors of several homochiral analogues of (+)-cyclazosin featuring different substituents on the carbonyl or amine groups, namely (-)-2, (+)-3, (-)-4-(-)-8, (+)-9. Moreover, we studied the activity of some their opposite enantiomers, namely (-)-1, (-)-3, (+)-6, and (-)-9, to evaluate the influence of stereochemistry on selectivity. The benzyloxycarbonyl and methyl (4aS,8aR) analogues (+)-3 and (-)-6 improved in a significant way the α1B selectivity of the progenitor compound: 4 and 14 time vs. the α1D subtype and 35 and 77 times vs. the α1A subtype, respectively. The study confirmed the importance of the hydrophobic cis-octahydroquinoxaline moiety of these molecules for the establishment of interactions with the α1-adrenoceptors as well that of their (4aS,8aR) stereochemistry to grant selectivity for the α1B subtype. Hypotheses on the mode of interaction of these compounds were advanced on the basis of molecular modeling studies performed on compound (+)-3.
Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/química , Quinazolinas/química , Quinoxalinas/química , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/síntese química , Antagonistas de Receptores Adrenérgicos alfa 1/metabolismo , Animais , Aorta/metabolismo , Sítios de Ligação , Cinética , Masculino , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Quinazolinas/síntese química , Quinazolinas/metabolismo , Quinoxalinas/síntese química , Quinoxalinas/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 1/química , Baço/metabolismo , EstereoisomerismoRESUMO
α1-adrenoceptor antagonists can impact upon sexual function and have potential in the treatment of erectile dysfunction. Human erectile tissue contains predominantly α1A-adrenoceptors, and here we examined whether contractions of this tissue are mediated by the functional phenotype, the α1L-adrenoceptor. Functional experiments using subtype selective agonists and antagonists, along with radioligand ([3H]tamsulosin) binding assays, were used to determine the α1-adrenoceptor population. A61603, a α1A-adrenoceptor agonist, was a full agonist with a potency 21-fold greater than that of noradrenaline. The α1A- and α1D-adrenoceptor antagonist tamsulosin antagonized noradrenaline responses with high affinity (pKD = 9.7 ± 0.3), whilst BMY7378 (100 nM) (α1D-adrenoceptor antagonist) failed to antagonize responses. In contrast, relatively low affinity estimates were obtained for both prazosin (pKD = 8.2 ± 0.1) and RS17053 (pKD = 6.9 ± 0.2), antagonists which discriminate between the α1A- and α1L-adrenoceptors. [3H]Tamsulosin bound with high affinity to the receptors of human erectile tissue (pKD = 10.3 ± 0.1) with a receptor density of 28.1 ± 1.4 fmol mg-1 protein. Prazosin displacement of [3H]tamsulosin binding revealed a single homogenous population of binding sites with a relatively low affinity for prazosin (pKi = 8.9). Taken together these data confirm that the receptor mediating contraction in human erectile tissue has the pharmacological properties of the α1L-adrenoceptor.
Assuntos
Contração Muscular/efeitos dos fármacos , Ereção Peniana/efeitos dos fármacos , Ereção Peniana/fisiologia , Pênis/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Humanos , Técnicas In Vitro , Masculino , Norepinefrina/farmacologia , Pênis/metabolismo , Prazosina/farmacologia , Sulfonamidas/farmacologia , TansulosinaRESUMO
α2-Adrenegic receptors (α2Rs) are important presynaptic modulators of central noradrenergic function (auto receptors) and postsynaptic mediators of many of the widespread effects of catecholamines and related drugs. Studies have shown that ruminants (such as goats and cattle) express special α2DR subtypes in addition to α2BR and α2CR. Real-time quantitative PCR and Western blotting were used to investigate the distribution and density of α2R in different nuclei of the goat central nervous system, selected regions of the spinal cord (L4-L6), and in various peripheral tissues. α2-AR subtype-specific antibodies were injected intrathecally and intracerebroventricularly into the tested goats to block the corresponding subtype of receptors. Pain threshold and physiological parameters were evaluated to explore the functional characteristics of α2BR, α2CR and α2DR in goats. Our results suggest that the expression of the mRNAs and proteins of all three α2R subtypes are widely but unevenly distributed in the goat CNS and peripheral tissues. Furthermore, α2DR plays a more important role in α2R-mediated analgesia in goats than α2BR and α2CR, whereas α2CR activation exerts a greater effect on body temperature than α2BR and α2DR.
RESUMO
OBJECTIVE: Previous studies have shown that deep brain stimulation (DBS) can improve the level of consciousness of comatose patients with traumatic brain injuries (TBIs). However, the most suitable targets for DBS are unknown, and the mechanisms underlying recovery remain to be determined. The aim of the present study was to assess the effects of lateral hypothalamic area-DBS (LHA-DBS) in comatose rats with TBIs. METHODS: A total of 55 Sprague-Dawley rats were randomly assigned to 5 groups: the control group, TBI group, stimulated (TBI+LHA-DBS) group, antagonist (TBI+SB334867+LHA-DBS) group, and antagonist control (TBI+saline+LHA-DBS) group. The rats in the control group had undergone a sham operation and anesthesia, without coma induction. Coma was induced using a free-fall drop method. The rats in the stimulated group received bilateral LHA stimulation (frequency, 200 Hz; voltage, 2-4 V; pulse width, 0.1 ms) for 1 hour, with 5-minute intervals between subsequent stimulations, which were applied alternately to the left and right sides of the lateral hypothalamus. The comatose rats in the antagonist group received an intracerebroventricular injection with an orexins receptor type 1 (OX1R) antagonist (SB334867) and then received LHA-DBS. A I-VI consciousness scale and electroencephalography were used to assess the level of consciousness in each group of rats after LHA-DBS. Western blotting and immunofluorescence were used to detect OX1R expression in the LHA and α1-adrenoceptor (α1-AR) subtype and gamma-aminobutyric acid ß receptor (GABABR) expression in the prefrontal cortex. RESULTS: In the TBI, stimulated, antagonist, and antagonist control groups, 5, 10, 6, and 9 rats were awakened. The electroencephalographic readings indicated that the proportion of δ waves was lower in the stimulated group than in the TBI and antagonist groups (P < 0.05). Western blotting and immunofluorescence analysis showed that OX1R expression was greater in the stimulated group than in the TBI group (P < 0.05). The expression of α1-AR was also greater in the stimulated group than in the TBI and antagonist groups (P < 0.05). In contrast, the GABABR levels in the stimulated group were lower than those in the TBI and antagonist groups (P < 0.05). A statistically significant difference was found between the antagonist and antagonist control groups. CONCLUSIONS: Taken together, these results suggest that LHA-DBS promotes the recovery of consciousness in comatose rats with TBIs. Upregulation of α1-AR expression and downregulation of GABABR expression in the prefrontal cortex via the orexins and OX1R pathways might be involved in the wakefulness-promoting effects of LHA-DBS.
Assuntos
Lesões Encefálicas Traumáticas/psicologia , Lesões Encefálicas Traumáticas/cirurgia , Coma/psicologia , Coma/cirurgia , Estimulação Encefálica Profunda/métodos , Região Hipotalâmica Lateral/cirurgia , Orexinas/genética , Receptores Adrenérgicos alfa 1/biossíntese , Receptores de GABA/biossíntese , Transdução de Sinais/genética , Vigília , Anestesia , Animais , Benzoxazóis/farmacologia , Estado de Consciência/efeitos dos fármacos , Ritmo Delta/efeitos dos fármacos , Eletroencefalografia , Feminino , Lateralidade Funcional , Injeções Intraventriculares , Masculino , Naftiridinas/farmacologia , Receptores de Orexina/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ureia/análogos & derivados , Ureia/farmacologiaRESUMO
N-((6,6-diphenyl-1,4-dioxan-2-yl)methyl)-2-(2-methoxyphenoxy)ethan-1-amine (3) is a potent 5-HT1A receptor and α1d-adrenoceptor (α1d-AR) ligand. Analogues 5-10 were rationally designed and prepared to evaluate whether electronic and/or lipophilic properties of substituents in the ortho position of its phenoxy moiety exert any favorable effects on the affinity/activity at 5-HT1A receptor and improve selectivity over α1-ARs. To rationalize the experimental observations and derive information about receptor-ligand interactions of the reported ligands, docking studies, using 5-HT1A and α1d-AR models generated by homology techniques, and a retrospective computational study were performed. The results highlighted that proper substituents in position 2 of the phenoxy moiety of 3 selectively address the ligands toward 5-HT1A receptor with respect to α1-ARs and D2-like receptor subtypes. Methoxymethylenoxy derivative 9 showed the best 5-HT1A selectivity profile and the highest potency at 5-HT1A receptor, behaving as a partial agonist. Finally, 9, tested in light/dark exploration test in mice, significantly reduced anxiety-linked behaviors. Therefore, it may be considered a lead for the design of partial agonists potentially useful in the treatment of disorders in which 5-HT1A receptor is involved.
Assuntos
Aminas/metabolismo , Dioxanos/metabolismo , Etilaminas/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Ansiolíticos/química , Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Estudos Retrospectivos , Relação Estrutura-AtividadeRESUMO
Although increase in heart rate is a crucial determinant for enhancement of cardiac output in the neonate, information on the chronotropic reactivity to catecholamines during postnatal development is scarce. The present study was aimed at investigating the role of ß-adrenoceptor subtypes and catecholamine removal mechanisms in the adrenergic chronotropic response during the early post-natal period. Right atria isolated from immature (0-21 day old) and adult (4-6 month old) rats were used for determination of the responsiveness to agonists and quantitation of the transcripts of proteins involved in ß-adrenergic signaling. The main results were: (a) the maximum response (Rmax) to norepinephrine increased with age, whereas sensitivity decreased; (b) age-dependent differences in sensitivity to norepinephrine were abolished by inhibition of the neuronal norepinephrine transporter; (c) Rmax to isoproterenol was similar in immature and adult atria, and depressed only in the former by ß2-adrenoceptor blockade with ICI118,551; (d) neonatal atria showed greater ß2-adrenoceptor mRNA levels, and more prominent positive chronotropic response to the ß2- and ß3-adrenoceptor agonists zinterol and YM178, respectively (nanomolar range); (e) in atria of immature rats, transcript levels of the extraneuronal monoamine transporter were lower, and its inhibition did not affect sensitivity to isoproterenol; and (f) reactivity to forskolin and 3-isobutyl-1-methylxanthine was not affected by age. The increased ß2- and ß3-adrenoceptor participation in the adrenergic chronotropic response, in addition to weaker catecholamine removal, may compensate for the immature cardiac innervation and the apparently reduced efficiency of ß1-adrenoceptor signaling in the neonate, increasing the responsiveness to endogenous and exogenous ß2-adrenoceptor agonists.
Assuntos
Agonistas Adrenérgicos beta/farmacologia , Função do Átrio Direito/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Norepinefrina/farmacologia , Receptores Adrenérgicos beta/efeitos dos fármacos , Agonistas Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Átrios do Coração/inervação , Átrios do Coração/metabolismo , Masculino , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 1/efeitos dos fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
The selective blockade of α1-adrenoceptors (ARs) is now a well-accepted and widely used treatment for patients presenting with lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH) and bladder outlet obstruction. The sites of action of the currently used α1-AR antagonists when relieving LUTS have not yet been established, but it seems clear that effects on prostatic as well as non-prostatic tissues are important. α1-ARs in the bladder, urethra, and vas deferens, on ganglia and nerve terminals, and in the central nervous system (CNS) may all influence LUTS and the clinical effects of α1-AR antagonists. The relevance of α1-AR subtype selectivity for the clinical usefulness of existing drug therapy has still not been clarified, but it cannot be dismissed that blockading both α1A- and α1D-ARs is necessary for optimal clinical effect. Despite the above uncertainties, there seems to be a consensus that clinically available α1-AR antagonists provide a safe, effective and generally well-tolerated therapy for patients with LUTS.
RESUMO
Naftopidil, which to a certain extent shows an affinity to α1D-adrenoceptor subtype in addition to a high affinity to α1A-adrenoceptor, has been used for the treatment of benign prostatic obstruction and benign prostatic hyperplasia (BPH) associated lower urinary tract symptoms (LUTS). The aim of the present review is to systematically refer to the published studies on this unique agent for BPH. Based on a randomized prazosin-controlled study and another double-blind placebo-controlled study, which verified the dose-dependent effects of naftopidil, the Japanese Ministry of Health, Labor and Welfare approved naftopidil for treating men with BPH in 1996. Several tamsulosin-controlled studies have suggested treatment effects of naftopidil similar to those of tamsulosin and potentially higher efficacy for alleviating storage symptoms by naftopidil. Although well-designed, randomized studies are warranted to confirm the long-term outcomes and effector/target of naftopidil, the α1A-antagonist naftopidil, which also blocks α1D-adrenoceptor, improves voiding symptoms, and may also be useful for the management of men with storage symptoms represented by nocturia, retrieving their quality of life impaired by BPH-associated LUTS.