Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Environ Manage ; 366: 121793, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991342

RESUMO

Acidic nitrification, as a novel process for treating wastewater without sufficient alkalinity, has received increasing attention over the years. In this study, a continuous-flow reactor with aerobic granular sludge was successful operated at low pH (<6.5) performing high-rate acidic nitrification. Volumetric ammonium oxidation rate of 0.4-1.2 kg/(m3·d) were achieved with the specific biomass activities of 5.8-13.9 mg N/(gVSS·h). Stable partial nitritation with nitrite accumulation efficiency over 85% could be maintained at pH above 6 with the aid of residual ammonium, whereas the nitrite accumulation disappeared when pH was below 6. Interestingly, the granule morphology significantly improved during the acidic operation. The increased secretion of extracellular polymeric substances (especially polysaccharides) suggested a self-protective behavior of microbes in the aerobic granules against acidic stress. 16S rRNA gene sequencing analyses indicated that Candidatus Nitrospira defluvii was always the dominant nitrite-oxidizing bacteria, while the dominant ammonia-oxidizing bacteria shifted from Nitrosomonas europaea to Nitrosomonas mobilis. This study, for the first time, demonstrated the improved stability of aerobic granules under acidic conditions, and also highlighted aerobic granules as a useful solution to achieve high-rate acidic nitrification.


Assuntos
Reatores Biológicos , Nitrificação , Esgotos , Concentração de Íons de Hidrogênio , Esgotos/microbiologia , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , RNA Ribossômico 16S , Nitritos/metabolismo , Oxirredução
2.
Biotechnol Bioeng ; 120(2): 444-455, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36303067

RESUMO

Floccules are another major form of microbial aggregates in aerobic granular sludge systems. Previous studies mainly attributed the persistence of floccules to their relatively faster nutrient uptake and higher growth rate over aerobic granules; however, they failed to unravel the underlying mechanism of the long-term coexistence of these two aggregates. In this work, the existence and function of the floccules in an aerobic granule-dominated sequencing batch reactor were investigated from the view of quorum sensing (QS) and quorum quenching (QQ). The results showed that though the floccules were closely associated with the granules in terms of similar community structures (including the QS- and QQ-related ones), they exhibited a relatively higher QQ-related activity but a lower QS-related activity. A compatible proportion of floccules might be helpful to maintain the QS-related activity and keep the granules stable. In addition, the structure difference was demonstrated to diversify the QS- and QQ-related activities of the floccules and the aerobic granules. These findings could broaden our understanding of the interactions between the coexistent floccules and granules in aerobic granule-dominated systems and would be instructive for the development of the aerobic granular sludge process.


Assuntos
Percepção de Quorum , Esgotos , Reatores Biológicos , Transporte Biológico , Aerobiose
3.
J Environ Manage ; 344: 118501, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418913

RESUMO

This study was to develop biogranules using a sequencing batch reactor (SBR) and to evaluate the effect of pineapple wastewater (PW) as a co-substrate for treating real textile wastewater (RTW). The biogranular system cycle was 24 h (2 stages of phase), with an anaerobic phase (17.8 h) followed by an aerobic phase (5.8 h) for every stage of the phase. The concentration of pineapple wastewater was the main factor studied in influencing COD and color removal efficiency. Pineapple wastewater with different concentrations (7, 5, 4, 3, and 0% v/v) makes a total volume of 3 L and causes the OLRs to vary from 2.90 to 0.23 kg COD/m3day. The system achieved 55% of average color removal and 88% of average COD removal at 7%v/v PW concentration during treatment. With the addition of PW, the removal increased significantly. The experiment on the treatment of RTW without any added nutrients proved the importance of co-substrate in dye degradation.


Assuntos
Ananas , Águas Residuárias , Eliminação de Resíduos Líquidos , Resíduos Industriais/análise , Indústria Têxtil , Têxteis , Reatores Biológicos
4.
J Environ Manage ; 334: 117482, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801684

RESUMO

Microbial transformations play a vital role in Se cycle in the environment and decrease the solubility and toxicity of Se oxyanions by converting to elemental selenium (Se0) nanostructures. Aerobic granular sludge (AGS) has attracted interest due to efficient reduction of selenite to biogenic Se0 (Bio-Se0) and retention in bioreactors. Here, selenite removal, biogenesis of Bio-Se0 and entrapment of Bio-Se0 by different size groups of aerobic granules were investigated to optimize biological treatment process for Se-laden wastewaters. Furthermore, a bacterial strain showing high selenite tolerance and reduction was isolated and characterized. Removal of selenite and conversion to Bio-Se0 were achieved by all the size groups of granules ranging from 0.12 mm to 2 mm and above. However, selenite reduction and Bio-Se0 formation were rapid and more efficient with large aerobic granules (≥0.5 mm). The formed Bio-Se0 was majorly associated with the large granules, due to better entrapment capabilities. In contrast, the Bio-Se0 formed by the small granules (≤0.2 mm) was distributed both in the granules and aqueous phase because of ineffective entrapment. Scanning electron microscope and energy dispersive X-ray (SEM-EDX) analysis confirmed formation of Se0 spheres and association with the granules. Efficient selenite reduction and entrapment of Bio-Se0 was related to prevalent anoxic/anaerobic zones in the large granules. A bacterial strain showing efficient SeO32- reduction of up to 15 mM SeO32- under aerobic conditions was identified as Microbacterium azadirachtae. SEM-EDX analysis confirmed the formation and entrapment of Se0 nanospheres (size: 100 ± 5 nm) in the extracellular matrix. The cells immobilized in alginate beads showed effective SeO32- reduction and Bio-Se0 entrapment. Efficient reduction and immobilization of bio-transformed metalloids by large AGS and AGS-borne bacteria implicates prospective use in bioremediation of metal(loid) oxyanions and bio-recovery.


Assuntos
Nanopartículas , Selênio , Selênio/química , Ácido Selenioso , Esgotos , Nanopartículas/química , Biodegradação Ambiental , Bactérias
5.
J Environ Manage ; 341: 118032, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163834

RESUMO

Biogranulation technology is an emerging biological process in treating various wastewater. However, the development of biogranules requires an extended period of time when treating wastewaters with high oil and grease (O&G) content. A study was therefore conducted to assess the formation of biogranules through bioaugmentation with the Serratia marcescens SA30 strain, in treating real anaerobically digested palm oil mill effluent (AD-POME), with O&G of about 4600 mg/L. The biogranules were developed in a lab-scale sequencing batch reactor (SBR) system under alternating anaerobic and aerobic conditions. The experimental data were assessed using the modified mass transfer factor (MMTF) models to understand the mechanisms of biosorption of O&G on the biogranules. The system was run with variable organic loading rates (OLR) of 0.69-9.90 kg/m3d and superficial air velocity (SAV) of 2 cm/s. After 60 days of being bioaugmented with the Serratia marcescens SA30 strain, the flocculent biomass transformed into biogranules with excellent settleability with improved treatment efficiency. The biogranules showed a compact structure and good settling ability with an average diameter of about 2 mm, a sludge volume index at 5 min (SVI5) of 43 mL/g, and a settling velocity (SV) of 81 m/h after 256 days of operation. The average removal efficiencies of O&G increased from 6 to 99.92%, respectively. The application of the MMTF model verified that the resistance to O&G biosorption is controlled via film mass transfer. This research indicates successful bioaugmentation of biogranules using the Serratia marcescens SA30 strain for enhanced biodegradation of O&G and is capable to treat real AD-POME.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Águas Residuárias , Óleo de Palmeira , Esgotos , Hidrocarbonetos
6.
Biodegradation ; 33(1): 45-58, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727273

RESUMO

Partial nitritation is necessary for the implementation of the mainstream anammox (anaerobic ammonium oxidation) process in wastewater treatment plants. However, the difficulty in outcompeting nitrite-oxidizing bacteria (NOB) at mainstream conditions hinders the performance of partial nitritation. The present work aimed to develop a high-rate partial nitritation process for low-ammonium wastewater treatment at low temperatures by seeding aerobic granules. Experimental results suggested that both stratified structure of nitrifiers developed in the granules and sufficient residual ammonium concentration (18-35 mg N L-1) in the bulk liquid contributed to efficient NOB repression. With the hydraulic retention time progressively shortened from 1.0 to 0.17 h, the influent nitrogen loading rate of the partial nitritation process reached 6.8 ± 0.4 kg N m-3 d-1 even at 10-15 °C. The high concentration (7.5 gVSS L-1) and activity (0.48 g N g-1 VSS d-1 at 11 °C) of granular sludge made the reactor possess an overcapacity evaluated by the ratio between the actual ammonium oxidation rate of the granules and their maximum potential. The overcapacity helped the reactor to face the adverse effect of decreasing temperatures. Overall, this work indicated the great potential of applying aerobic granules to achieve high-rate partial nitritation at mainstream conditions. Moreover, anammox bacteria with a relative abundance of 2.8% was also identified in the partial nitritation granules at the end of this study, suggesting that the granules provided a habitable niche for anammox bacteria growth. Note that these results cannot fully relate to the treatment of real domestic/municipal wastewater, they are a source of important information increasing the knowledge about low temperature partial nitrification.


Assuntos
Compostos de Amônio , Esgotos , Bactérias , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Nitritos/análise , Nitrogênio/análise , Oxirredução , Esgotos/microbiologia , Temperatura , Águas Residuárias/microbiologia
7.
J Environ Manage ; 291: 112718, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33962280

RESUMO

Aerobic Granular Sludge (AGS) is a biological treatment technology that has been extensively studied in the last decade. The possibility of resource recovery has always been highlighted in these systems, but real-scale applications are still scarce. Therefore, this paper aimed to present a systematic review of resources recovery such as water, energy, chemicals, raw materials, and nutrients from AGS systems, also analyzing aspects of engineering and economic viability. In the solid phase, sludge application in agriculture is an interesting possibility. However, the biosolids' metal concentration (the granules have high adsorption capacity due to the high concentration of extracellular polymeric substances, EPS) may be an issue. Another possibility is the recovery of Polyhydroxyalkanoates (PHAs) and Alginate-like exopolymers (bio-ALE) in the solid phase, emphasizing the last one, which has already been made in some Wastewater Treatment Plants (WWTPs), named and patented as Kaumera® process. The Operational Expenditure (OPEX) can be reduced by 50% in the WWTP when recovery of ALE is made. The ALE recovery reduced sludge yield by up to 35%, less CO2 emissions, and energy saving. Finally, the discharged sludge can also be evaluated to be used for energetic purposes via anaerobic digestion (AD) or combustion. However, the AD route has faced difficulties due to the low biodegradability of aerobic granules.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias
8.
J Environ Manage ; 256: 109970, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989985

RESUMO

This paper aimed to assess the impact of the cycle type on aerobic granular sludge (AGS) formation, stability and system performance. Six AGS reactors were operated either on A/O cycles (anaerobic followed by oxic phase) or A/O/A cycles (anaerobic, followed by oxic and anoxic phases), changing only the phase time distribution. Reactors with high percentage of aerobic phase (65% of the total cycle time) generated granules with better settleability and resistance, however denitrification was impaired. On the other hand, reactors with long anaerobic or anoxic phases presented excellent nutrients removals, but the granules were fluffy and unstable. The best results in terms of performance and stability were achieved in an A/O/A reactor with short anoxic phase (10% of the total cycle) and medium aerobic phase (55% of the total cycle). Therefore, in AGS reactors, it is indispensable to optimize the cycle, aiming at fast biomass formation, long-term granule stability and high-rate pollutants removal.


Assuntos
Reatores Biológicos , Esgotos , Aerobiose , Biomassa , Desnitrificação , Nitrogênio , Eliminação de Resíduos Líquidos
9.
Artigo em Inglês | MEDLINE | ID: mdl-32275179

RESUMO

Chlorophenols are inhibitory compounds that can be biodegraded by aerobic granules in discontinuous processes. Many industrial wastewaters are characterized by transient pH variation over time. These pH changes could affect the overall granule structure and microbial activity during the chlorophenol biodegradation. The objective of this research was to evaluate the effects of transient pH variation on the specific degradation rate (q), granule integrity coefficient (IC), and size in sequencing batch reactors treating 4-chlorophenol (4-CP). First, aerobic granules were acclimated for efficient 4-CP degradation (>99%). The acclimated granules consisted of 55.7% of the phyla Proteobacteria and 40.6% of Bacteroidetes. The main bacteria belong to the order Sphingobacteriales (24%), as well as Amaricoccus, Acidovorax, Shinella, Rhizobium, and Flavobacterium, some of which are new genera reported in acclimated granules degrading 4-CP. Then, pH changes were applied to the acclimated aerobic granules, observing that acid pHs decreased to a greater extent the specific degradation rate (67% to 99%) than basic pHs (34% to 80%). These pH changes caused the granule disaggregation but with lower effects on the IC. The effects of pH change were mainly on the microbial activity more than the physical characteristics of aerobic granules degrading 4-CP.


Assuntos
Reatores Biológicos/microbiologia , Clorofenóis/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Aerobiose , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Esgotos/química , Sphingobacterium/metabolismo
10.
Appl Microbiol Biotechnol ; 103(21-22): 9181-9189, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31468088

RESUMO

Aerobic granule is widely recognized as a promising biological wastewater treatment technique. Acyl-homoserine lactone (AHL)-mediated quorum sensing and quenching are reported to be involved in the formation of aerobic granules. However, little is known about how environmental factors affect the AHL-producing and AHL-quenching communities and their activities in aerobic granules. Therefore, in this work, the bacterial community of aerobic granules was explored and the impacts of substrate, electron acceptor, sludge concentration, pH, and temperature on the AHL-related communities and activities of aerobic granules were examined. These factors were found to affect the AHL-related activities, and thereby change the AHL level. The AHL-producing activities were observed to be more sensitive to the variation of these factors than the AHL-quenching activities. These findings help to establish the links between environmental factors and AHL-related activities and thus provide useful guides for the operation of aerobic granule systems.


Assuntos
Acil-Butirolactonas/metabolismo , Bactérias/metabolismo , Esgotos/microbiologia , Águas Residuárias/microbiologia , Aerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Percepção de Quorum
11.
Crit Rev Biotechnol ; 38(7): 1077-1088, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29631450

RESUMO

Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.


Assuntos
Reatores Biológicos , Carbono , Nitrogênio , Fósforo , Purificação da Água/métodos , Aerobiose , Carbono/análise , Carbono/isolamento & purificação , Carbono/metabolismo , Nitrogênio/análise , Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/isolamento & purificação , Fósforo/metabolismo , Esgotos
12.
Crit Rev Biotechnol ; 38(6): 801-816, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29400086

RESUMO

Environmental deterioration together with the need for water reuse and the increasingly restrictive legislation of water quality standards have led to a demand for compact, efficient and less energy consuming technologies for wastewater treatment. Aerobic granular sludge and membrane bioreactors (MBRs) are two technologies with several advantages, such as small footprint, high-microbial density and activity, ability to operate at high organic- and nitrogen-loading rates, and tolerance to toxicity. However, they also have some disadvantages. The aerobic granular sludge process generally requires post-treatment in order to fulfill effluent standards and MBRs suffer from fouling of the membranes. Integrating the two technologies could be a way of combining the advantages and addressing the main problems associated with both processes. The use of membranes to separate the aerobic granules from the treated water would ensure high-quality effluents suitable for reuse. Moreover, the use of granular sludge in MBRs has been shown to reduce fouling. Several recent studies have shown that the aerobic granular membrane bioreactor (AGMBR) is a promising hybrid process with many attractive features. However, major challenges that have to be addressed include how to achieve granulation and maintain granular stability during continuous operation of reactors. This paper aims to review the current state of research on AGMBR technology while drawing attention to relevant findings and highlight current limitations.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Incrustação Biológica , Membranas Artificiais , Esgotos
13.
J Environ Manage ; 204(Pt 1): 152-159, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28869824

RESUMO

To study the change of the aerobic granules' microbial community in the present of antibiotics, ampicillin (AMP) was selected as a model component. With acetate as carbon source, different concentrations of AMP (5, 10 and 15 mg L-1) were applied to the inflow intermittently and the results showed that the stability of the aerobic granules was maintained below 10 mg L-1 AMP. Simultaneously, under exposure to 5 and 10 mg L-1 AMP, the COD removal efficiency in the batch reactors remained at 86% and AMP was degraded almost completely with a removal efficiency of 97%. However, the EPS concentration and dehydrogenase activity decreased constantly with increasing AMP dosage. High-throughput sequencing analysis revealed that Proteobacteria was the most prominent phylum in the whole experiment and contributed to the degradation of AMP. The percentages of Azoarcus and Mycoplana increased at 10 mg L-1 AMP. In addition, Hydrogenophaga and Enterococcus played a key role in the microbial metabolism.


Assuntos
Ampicilina , Reatores Biológicos/microbiologia , Carbono/química , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Ampicilina/química , Ampicilina/metabolismo
14.
Appl Microbiol Biotechnol ; 100(1): 447-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26394861

RESUMO

Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage 2 bulking. The chitinolytic activity of Chitinophaga is likely antagonistic towards Auxenochlorella and may have contributed to stage 3 stable granule formation. Rhodanobacter, known to support complete denitrification, were predominant in stage 1 and stage 3 granules. The relative abundance of Rhodanobacter coincided with high protein concentrations in EPS, suggesting a role in microbial aggregation and granule formation.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Clorófitas/crescimento & desenvolvimento , Consórcios Microbianos , Esgotos/microbiologia , Aerobiose , Bactérias/classificação , Bactérias/genética , Clorófitas/classificação , Clorófitas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Polímeros/isolamento & purificação , Polissacarídeos/análise , Proteínas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Tempo , Purificação da Água
15.
J Environ Manage ; 169: 34-45, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26720328

RESUMO

Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions.


Assuntos
Bactérias Aeróbias/metabolismo , Fenóis/metabolismo , Tricloroetileno/metabolismo , Aerobiose , Biodegradação Ambiental , Cinética , Tricloroetileno/química
16.
World J Microbiol Biotechnol ; 32(6): 91, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27116957

RESUMO

This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and Azoarcus-Thauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.


Assuntos
Bactérias Aeróbias/fisiologia , Poluentes Químicos da Água/metabolismo , Aerobiose , Compostos de Amônio/metabolismo , Bactérias Aeróbias/crescimento & desenvolvimento , Bactérias Aeróbias/metabolismo , Biodegradação Ambiental , Biomassa , Carbono/metabolismo , Ativação Enzimática , Hibridização in Situ Fluorescente/métodos , Nitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo , Esgotos/química , Esgotos/microbiologia , Temperatura , Águas Residuárias/microbiologia
17.
World J Microbiol Biotechnol ; 32(4): 66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26931606

RESUMO

Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Águas Residuárias/microbiologia , Bactérias/classificação , Biomassa , Sequenciamento de Nucleotídeos em Larga Escala , Consórcios Microbianos , Análise de Sequência de DNA , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água
18.
Lett Appl Microbiol ; 61(1): 91-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25900745

RESUMO

UNLABELLED: To investigate the response difference between flocculent sludge and granular sludge in unfavourable environmental conditions, 1-h pH shock was exerted to both granular sludge and flocculent sludge with the same biomass concentration and the same population sizes of nitrifying bacteria. It was found that nitrite-oxidizing bacteria (NOB) were more sensitive to pH than ammonia-oxidizing bacteria (AOB). In addition, the deviation of 3 pH units to alkaline from the optimal pH was much more detrimental to AOB and NOB in both flocculent sludge and granular sludge compared with the deviation of 3 pH units to acidic. However, respirometric activities of both AOB and NOB in granular sludge after pH shock at 5 and 11 were much higher than those in the flocculent sludge. The recovery of nitrifying activities by only one batch culture indicated that nitrifying bacteria in granular sludge experienced a much less irreversible loss compared with flocculent sludge. The results in this study showed that compact structure and the big size of granules could play a buffering role to unfavourable conditions which resulted in a much higher resistance and resilience to shock. SIGNIFICANCE AND IMPACT OF THE STUDY: This study aims to provide some guidance to the application of aerobic granular sludge to real wastewater which might experience fluctuated pH. The findings in this study indicate that resistance and resilience of nitrifying bacteria in mature granules to pH shock at steady state is much better than flocculent sludge, suggesting more robust and flexible operation of granular sludge compared with traditional flocculent sludge. In addition, the results in this study underlined a more serious inhibition from free ammonia at high pH than free nitrous acid at low pH as well as the inaccuracy of reported bell-shaped modelling of pH effect on nitrification.


Assuntos
Bactérias/metabolismo , Reatores Biológicos , Esgotos/microbiologia , Amônia/química , Técnicas de Cultura Celular por Lotes , Floculação , Concentração de Íons de Hidrogênio , Nitritos/metabolismo
19.
J Environ Sci (China) ; 26(8): 1615-21, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108717

RESUMO

The present study investigated the relationship between N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) and the physico-chemical properties of aerobic granules. Stable mature granules were observed in SBR2 and SBR3 with average diameters of 0.96, and 1.49 mm, respectively. The sludge densities of aerobic granules in SBR2 and SBR3 were 1.0246, and 1.0201 g/mL, respectively, which were higher than that of flocculent sludge in SBR1 (1.0065 g/mL). The results showed that the activity of AHL-based QS in SBR2 and SBR3 amounted to 2.4- and 2.1-fold induction, however, that in SBR1 with flocculent sludge was 1.6-fold induction. In addition, the results also showed that the activity of AHL-based QS in the three reactors rose in the feast condition, and then dropped with the consumption of substrate. However, the activity of AHL-based QS in these three reactors recovered again in prolonged starvation. Furthermore, the results showed that the enhancement of AHL-based QS favored the extracellular polymeric substance production of microorganisms in activated sludge. Thus, it could be concluded that aerobic granules showed higher AHL-based QS than flocculent sludge, which resulted from the higher sludge density of aerobic granules than flocculent sludge. AHL-based QS was related to the metabolism energy in the feast condition; however, in prolonged starvation, microorganisms would emit more AHL-like molecules to protect themselves to resist starvation. Moreover, the enhancement of AHL-based QS favored the EPS component productivity of the microorganisms in activated sludge, which contributed to maintain the aerobic granular structure.


Assuntos
Acil-Butirolactonas/química , Bactérias/isolamento & purificação , Percepção de Quorum/fisiologia , Aerobiose , Esgotos
20.
Sci Total Environ ; 894: 164822, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331394

RESUMO

Aerobic granular sludge (AGS) is a breakthrough biotechnology of 21st century and an innovative alternative to activated sludge for treating wastewater. Concerns on long-start up periods for development of AGS and stability of granules are impeding its widespread implementation for treating low-strength domestic wastewater especially in tropical climate conditions. Addition of nucleating agents have been shown to improve development of AGS while treating low-strength wastewaters. There are no previous studies on AGS development and biological nutrient removal (BNR) in the presence of nucleating agents during treatment of real domestic wastewater. This study investigated AGS formation and BNR pathways while treating real domestic wastewater in a 2 m3 pilot-scale granular sequencing batch reactor (gSBR) operated without and with granular activated carbon (GAC) particles. The gSBRs were operated under tropical climate (T ≈ 30 °C) for >4-years to evaluate the effect of GAC addition on granulation, granular stability and BNR at pilot-scale. Formation of granules was observed within 3 months. MLSS values of 4 and 8 g/L were recorded within 6 months in gSBRs without and with GAC particles, respectively. The granules had an average size of 1.2 mm and SVI5 of 22 mL/g. Ammonium was mainly removed through nitrate formation in the gSBR without GAC. But, ammonium was removed by short-cut nitrification via nitrite due to washout of nitrite oxidizing bacteria in the presence of GAC. Phosphorus removal was much higher in gSBR with GAC due to the establishment of enhanced biological phosphorus removal (EBPR) pathway. After 3 months, the phosphorus removal efficiencies were at 15 % and 75 %, respectively, without and with GAC particles. The addition of GAC led to moderation in bacterial community and enrichment of polyphosphate-accumulating organisms. This is the first ever report on pilot-scale demonstration of AGS technology in the Indian sub-continent and GAC addition on BNR pathways.


Assuntos
Compostos de Amônio , Águas Residuárias , Esgotos/microbiologia , Fósforo/metabolismo , Carvão Vegetal/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Aerobiose , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Compostos de Amônio/metabolismo , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA