Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.490
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 731: 150394, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39024978

RESUMO

Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.

2.
Small ; : e2400629, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682737

RESUMO

The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.

3.
Mol Biol Rep ; 51(1): 53, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165494

RESUMO

BACKGROUND: Aspergillus species cause broad spectrum infections especially invasive lethal infections in immunocompromised patients. This study aimed to assess the antifungal activity of plants and compounds including Aloe vera, Thyme, carvacrol, and nano-encapsulation of carvacrol on the growth and production of aflatoxin B1 production by Aspergillus parasiticus and Aspergillus flavus. METHODS AND RESULTS: Minimum inhibitory concentrations of extracts Aloe vera, Thyme, carvacrol, and nanocarvacrol, and fluconazole as a control were determined according to Clinical and Laboratory Standards Institute by serial microdilution protocol. Then, the effect of inhibitory concentrations of these compounds on the aflatoxin B1 production level was evaluated by real-time PCR and high-performance liquid chromatography. Our results indicate that the Aspergillus parasiticus and Aspergillus flavusare sensitive to selected plants and compounds. CONCLUSION: Our findings showed that the compounds are appropriate alternative candidates against growth and production of aflatoxin of Aspergillus spp.


Assuntos
Antifúngicos , Aspergillus flavus , Humanos , Antifúngicos/farmacologia , Aflatoxina B1 , Aspergillus
4.
Appl Microbiol Biotechnol ; 108(1): 348, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809353

RESUMO

Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.


Assuntos
Oryza , Amido , Zea mays , Oryza/química , Zea mays/química , Amido/metabolismo , Aspergillus/metabolismo , Aspergillus flavus/metabolismo , Aflatoxina B1/biossíntese , Aflatoxina B1/metabolismo , Esterigmatocistina/biossíntese , Esterigmatocistina/metabolismo , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Micotoxinas/metabolismo , Micotoxinas/biossíntese , Vidro
5.
BMC Vet Res ; 20(1): 108, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500117

RESUMO

BACKGROUND: Camel milk and silymarin have many different beneficial effects on several animal species. Meanwhile, Aflatoxins are mycotoxins with extraordinary potency that pose major health risks to several animal species. Additionally, it has been documented that aflatoxins harm the reproductive systems of a variety of domestic animals. The present design aimed to investigate the impact of aflatoxin B1 (AFB1) on rat body weight and reproductive organs and the ameliorative effects of camel milk and silymarin through measured serum testosterone, testes pathology, and gene expression of tumor necrosis factor (TNF-α), luteinizing hormone receptor (LHR), and steroidogenic acute regulatory protein (StAR) in the testes. A total of sixty mature male Wister white rats, each weighing an average of 83.67 ± 0.21 g, were used. There were six groups created from the rats. Each division had ten rats. The groups were the control (without any treatment), CM (1 ml of camel milk/kg body weight orally), S (20 mg silymarin/kg b. wt. suspension, orally), A (1.4 mg aflatoxin/kg diet), ACM (aflatoxin plus camel milk), and AS (aflatoxin plus silymarin). RESULTS: The results indicated the positive effects of camel milk and silymarin on growth, reproductive organs, and gene expression of TNF-α, LHR, and StAR with normal testicular architecture. Also, the negative effect of AFB1 on the rat's body weight and reproductive organs, as indicated by low body weight and testosterone concentration, was confirmed by the results of histopathology and gene expression. However, these negative effects were ameliorated by the ingestion of camel milk and silymarin. CONCLUSION: In conclusion, camel milk and silymarin could mitigate the negative effect of AFB1 on rat body weight and reproductive organs.


Assuntos
Aflatoxinas , Silimarina , Masculino , Ratos , Animais , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Silimarina/farmacologia , Camelus , Leite , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Testículo/metabolismo , Testosterona/metabolismo , Peso Corporal
6.
Arch Toxicol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834875

RESUMO

Aflatoxin B1 (AFB1) is a pro-carcinogenic compound bioactivated in the liver by cytochromes P450 (CYPs). In mammals, CYP1A and CYP3A are responsible for AFB1 metabolism, with the formation of the genotoxic carcinogens AFB1-8,9-epoxide and AFM1, and the detoxified metabolite AFQ1. Due to climate change, AFB1 cereals contamination arose in Europe. Thus, cattle, as other farm animals fed with grains (pig, sheep and broiler), are more likely exposed to AFB1 via feed with consequent release of AFM1 in milk, posing a great concern to human health. However, knowledge about bovine CYPs involved in AFB1 metabolism is still scanty. Therefore, CYP1A1- and CYP3A74-mediated molecular mechanisms of AFB1 hepatotoxicity were here dissected. Molecular docking of AFB1 into CYP1A1 model suggested AFB1 8,9-endo- and 8,9-exo-epoxide, and AFM1 formation, while docking of AFB1 into CYP3A74 pointed to AFB1 8,9-exo-epoxide and AFQ1 synthesis. To biologically confirm these predictions, CYP1A1 and CYP3A74 knockout (KO) BFH12 cell lines were exposed to AFB1. LC-MS/MS investigations showed the abolished production of AFM1 in CYP1A1 KO cells and the strong increase of parent AFB1 in CYP3A74 KO cells; the latter result, coupled to a decreased cytotoxicity, suggested the major role of CYP3A74 in AFB1 8,9-exo-epoxide formation. Finally, RNA-sequencing analysis indirectly proved lower AFB1-induced cytotoxic effects in engineered cells versus naïve ones. Overall, this study broadens the knowledge on AFB1 metabolism and hepatotoxicity in cattle, and it provides the weight of evidence that CYP1A1 and CYP3A74 inhibition might be exploited to reduce AFM1 and AFBO synthesis, AFB1 toxicity, and AFM1 milk excretion.

7.
Food Microbiol ; 123: 104588, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038893

RESUMO

Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.


Assuntos
Aflatoxina B1 , Antifúngicos , Aspergillus flavus , Espécies Reativas de Oxigênio , Zea mays , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Zea mays/microbiologia , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Arachis/microbiologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo
8.
Ecotoxicol Environ Saf ; 279: 116449, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759532

RESUMO

Over the past few years, there has been growing interest in the ability of insect larvae to convert various organic side-streams containing mycotoxins into insect biomass that can be used as animal feed. Various studies have examined the effects of exposure to aflatoxin B1 (AFB1) on a variety of insect species, including the larvae of the black soldier fly (BSFL; Hermetia illucens L.; Diptera: Stratiomyidae) and the housefly (HFL; Musca domestica L.; Diptera: Muscidae). Most of these studies demonstrated that AFB1 degradation takes place, either enzymatic and/or non-enzymatic. The possible role of feed substrate microorganisms (MOs) in this process has thus far not been investigated. The main objective of this study was therefore to investigate whether biotransformation of AFB1 occurred and whether it is caused by insect-enzymes and/or by microbial enzymes of MOs in the feed substrate. In order to investigate this, sterile and non-sterile feed substrates were spiked with AFB1 and incubated either with or without insect larvae (BSFL or HFL). The AFB1 concentration was determined via LC-MS/MS analyses and recorded over time. Approximately 50% of the initially present AFB1 was recovered in the treatment involving BSFL, which was comparable to the treatment without BSFL (60%). Similar patterns were observed for HFL. The molar mass balance of AFB1 for the sterile feed substrates with BSFL and HFL was 73% and 78%, respectively. We could not establish whether non-enzymatic degradation of AFB1 in the feed substrates occurred. The results showed that both BSFL and substrate-specific MOs play a role in the biotransformation of AFB1 as well as in conversion of AFB1 into aflatoxin P1 and aflatoxicol, respectively. In contrast, HFL did not seem to contribute to AFB1 degradation. The obtained results contribute to our understanding of aflatoxin metabolism by different insect species. This information is crucial for assessing the safety of feeding fly larvae with feed substrates contaminated with AFB1 with the purpose of subsequent use as animal feed.


Assuntos
Aflatoxina B1 , Ração Animal , Biotransformação , Dípteros , Moscas Domésticas , Larva , Animais , Aflatoxina B1/metabolismo , Moscas Domésticas/metabolismo , Ração Animal/análise , Espectrometria de Massas em Tandem
9.
Ecotoxicol Environ Saf ; 281: 116661, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38954907

RESUMO

OBJECTIVE: Baicalin has antioxidative, antiviral, and anti-inflammatory properties. However, its ability to alleviate oxidative stress (OS) and DNA damage in liver cells exposed to aflatoxin B1 (AFB1), a highly hepatotoxic compound, remains uncertain. In this study, the protective effects of baicalin on AFB1-induced hepatocyte injury and the mechanisms underlying those effects were investigated. METHODS: Stable cell lines expressing CYP3A4 were established using lentiviral vectors to assess oxidative stress levels by conducting assays to determine the content of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Additionally, DNA damage was evaluated by 8-hydroxy-2-deoxyguanosine (8-OHdG) and comet assays. Transcriptome sequencing, molecular docking, and in vitro experiments were conducted to determine the mechanisms underlying the effects of baicalin on AFB1-induced hepatocyte injury. In vivo, a rat model of hepatocyte injury induced by AFB1 was used to evaluate the effects of baicalin. RESULTS: In vitro, baicalin significantly attenuated AFB1-induced injury caused due to OS, as determined by a decrease in ROS, MDA, and SOD levels. Baicalin also considerably decreased AFB1-induced DNA damage in hepatocytes. This protective effect of baicalin was found to be closely associated with the TP53-mediated ferroptosis pathway. To elaborate, baicalin physically interacts with P53, leading to the suppression of the expression of GPX4 and SLC7A11, which in turn inhibits ferroptosis. In vivo findings showed that baicalin decreased DNA damage and ferroptosis in AFB1-treated rat liver tissues, as determined by a decrease in the expression of γ-H2AX and an increase in GPX4 and SLC7A11 levels. Overexpression of TP53 weakened the protective effects of baicalin. CONCLUSIONS: Baicalin can alleviate AFB1-induced OS and DNA damage in liver cells via the TP53-mediated ferroptosis pathway. In this study, a theoretical foundation was established for the use of baicalin in protecting the liver from the toxic effects of AFB1.


Assuntos
Aflatoxina B1 , Ferroptose , Flavonoides , Hepatócitos , Proteína Supressora de Tumor p53 , Flavonoides/farmacologia , Aflatoxina B1/toxicidade , Ferroptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Animais , Proteína Supressora de Tumor p53/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Masculino , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Humanos , Espécies Reativas de Oxigênio/metabolismo
10.
Ecotoxicol Environ Saf ; 276: 116332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626608

RESUMO

According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 µM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 µM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 µM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 µM AFB1 (P < 0.05), respectively. Furthermore, 15 µM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 µM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 µM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.


Assuntos
Aflatoxina B1 , Carpas , Proliferação de Células , Matriz Extracelular , Mioblastos , Espécies Reativas de Oxigênio , Animais , Aflatoxina B1/toxicidade , Mioblastos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
11.
Ecotoxicol Environ Saf ; 269: 115782, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056121

RESUMO

Aflatoxin B1 (AFB1) is a major food and feed pollutant that endangers public health. Previous studies have shown that exposure to AFB1 causes neurotoxicity in the body. However, the mechanism of neurotoxicity caused by AFB1 is not well understood, and finding a workable and practical method to safeguard animals from AFB1 toxicity is essential. This study confirmed that AFB1 caused endoplasmic reticulum stress (ER stress) and apoptosis in hippocampal neurons using C57BL/6 J mice and HT22 cells as models. In vitro experiments showed that the aryl hydrocarbon receptor (AHR) plays a significant role in the cytotoxicity of AFB1. Finally, we assessed how hesperetin protecting against the neurotoxicity caused by AFB1. Our findings demonstrated that AFB1 increased the levels of BAX and Cleaved-Caspase3 proteins, while decreasing the levels of BCL2 protein in the CA1 and CA3 regions of the hippocampus. The AFB1 increased the expression of AHR and activated nuclear translocation. It also elevated the expression levels of Chop, GRP78, p-IRE1/ Xbp1s, and p-PERK/p-EIF2a. Importantly, we also discovered for the first time that blocking AHR in HT22 cells dramatically reduced the level of ER stress and apoptosis caused by AFB1. In vivo and in vitro studies, supplementation of hesperetin effectively reversed AFB1-induced cytotoxicity. We have demonstrated that hesperetin effectively restored the imbalance in the GSH/GST system in HT22 cells treated with AFB1. Furthermore, we observed that elevated GSH levels facilitated the formation of AFB1-GSH complexes, which enhanced the excretion of AFB1. Therefore, hesperetin improves ER stress-induced apoptosis by reducing AFB1 activation of AHR.


Assuntos
Aflatoxina B1 , Apoptose , Hesperidina , Camundongos , Animais , Aflatoxina B1/toxicidade , Camundongos Endogâmicos C57BL , Neurônios , Hipocampo
12.
Ecotoxicol Environ Saf ; 283: 116781, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067074

RESUMO

Aflatoxin B1 (AFB1) is recognized as the most toxic mycotoxin, widely present in nature and known to specifically target the liver, leading to severe consequences to animal and human health. The mechanisms underlying AFB1-induced hepatotoxicity involve oxidative stress and apoptosis. Radix Bupleuri (RB) and its extracts (RBE), traditional Chinese herbs with a rich history spanning over 2000 years, have been reported to possess hepatoprotective properties. Nevertheless, the impact of RBE on AFB1-induced liver injury remains to be fully elucidated. The current study utilized Pekin ducks as experimental models to explore the effects of RBE on AFB1-induced liver injury both in vitro and in vivo. In vitro findings indicated that RBE mitigated AFB1-induced cytotoxicity, improved primary duck hepatocytes (PDHs) morphology, and reduced intracellular reactive oxygen species (ROS) levels. In vivo experiments demonstrated that: I) RBE alleviated the growth inhibitory caused by AFB1, as evidenced by improved final body weight and weight gain. II) AFB1 led to significant alterations in serum biochemical parameters (AST, ALT, TP, and ALB) and liver lesions attenuated by RBE supplementation at 2.5 g/kg. III) RBE significantly mitigated oxidative stress induced by AFB1. IV) AFB1-induced changes in mRNA and protein levels associated with oxidative stress and apoptosis were counteracted by RBE. In conclusion, our results suggest that RBE offers protection against AFB1-induced liver injury in ducks, primarily through its antioxidative and anti-apoptotic properties. These findings indicate the potential of RBE in preventing and treating AFB1 poisoning.

13.
Ecotoxicol Environ Saf ; 280: 116527, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833978

RESUMO

Aflatoxin B1 (AFB1) is known to inhibit growth, and inflict hepatic damage by interfering with protein synthesis. Allicin, has been acknowledged as an efficacious antioxidant capable of shielding the liver from oxidative harm. This study aimed to examine the damage caused by AFB1 on bovine hepatic cells and the protective role of allicin against AFB1-induced cytotoxicity. In this study, cells were pretreated with allicin before the addition of AFB1 for co-cultivation. Our findings indicate that AFB1 compromises cellular integrity, suppresses the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, allicin attenuates oxidative damage to bovine hepatic cells caused by AFB1 by promoting the expression of the Nrf2 pathway and reducing cell apoptosis. In conclusion, the results of this study will help advance clinical research and applications, providing new options and directions for the prevention and treatment of liver diseases.


Assuntos
Aflatoxina B1 , Antioxidantes , Apoptose , Dissulfetos , Hepatócitos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Ácidos Sulfínicos , Animais , Ácidos Sulfínicos/farmacologia , Aflatoxina B1/toxicidade , Bovinos , Dissulfetos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Feminino
14.
Ecotoxicol Environ Saf ; 280: 116574, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875822

RESUMO

Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.


Assuntos
Aflatoxina B1 , Gansos , Ligilactobacillus salivarius , Fígado , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Aflatoxina B1/toxicidade , Mitofagia/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ligilactobacillus salivarius/fisiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas Quinases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/farmacologia
15.
Ecotoxicol Environ Saf ; 281: 116619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925031

RESUMO

This study investigated the effects of compound probiotics (CP) on AFB1-induced cytotoxicity in Sertoli TM4 cells. The L9 (3 × 3) orthogonal test was conducted to determine the optimal CP required for high AFB1 degradation in the artificial gastrointestinal fluid in vitro. The maximal AFB1 degradation rate was 40.55 % (P < 0.05) when the final viable count was 1.0 × 105 CFU/mL for Bacillus subtilis, Lactobacillus casein, and Saccharomyces cerevisiae. The effects of CP and the CP supernatant (CPS) on TM4 cell viability were evaluated to achieve the optimal protective conditions. When CPS4 (corresponding to CP viable counts of 1.0 × 104 CFU/mL) was added to the TM4 cells for 24 h, the cell viability reached 108.86 % (P < 0.05). AFB1 reduced TM4 cell viability in a concentration- and time-dependent manner at an AFB1 concentration ranging from 0 to 1.5 µM after 48-h AFB1 exposure. The optimal AFB1 concentration/times for low- and high damage models were 0.5 and 1.25 µM both for 24 h, which decreased viability to 76.04 % and 65.35 %, respectively. however, CPS4 added to low- and high-damage models increased the cell viability to 97.43 % and 75.12 %, respectively (P < 0.05). Transcriptome sequencing was performed based on the following designed groups: the control, 0.5 µM AFB1, 1.25 µM AFB1, CPS4, and CPS4+0.5 µM AFB1. The Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis was further performed to identify significantly enriched signaling pathways, which were subsequently verified. It was shown that AFB1 induced apoptosis by blocking the PI3K-AKT-mTOR pathway and upregulating autophagy proteins such as LC3B, Beclin1, and ATG5 while inhibiting autophagic flux. CPS4 promoted AFB1 degradation, activated the p62-NRF2 antioxidant, and inhibited ROS/TRPML1 pathways, thereby reducing ROS production and inflammation and ultimately alleviating AFB1-induced autophagy and apoptosis. These findings supports the potential of probiotics to protect the male reproductive system from toxin damage.


Assuntos
Aflatoxina B1 , Antioxidantes , Autofagia , Sobrevivência Celular , Fator 2 Relacionado a NF-E2 , Probióticos , Células de Sertoli , Probióticos/farmacologia , Animais , Aflatoxina B1/toxicidade , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Masculino , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos
16.
Ecotoxicol Environ Saf ; 272: 116049, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301584

RESUMO

Global concern exists regarding the contamination of food and animal feed with aflatoxin B1 (AFB1), which poses a threat to the health of both humans and animals. Previously, we found that a laccase from Bacillus subtilis (BsCotA) effectively detoxified AFB1 in a reaction mediated by methyl syringate (MS), although the underlying mechanism has not been determined. Therefore, our primary objective of this study was to explore the detoxification mechanism employed by BsCotA. First, the enzyme and mediator dependence of AFB1 transformation were studied using the BsCotA-MS system, which revealed the importance of MS radical formation during the oxidation process. Aflatoxin Q1 (AFQ1) resulting from the direct oxidation of AFB1 by BsCotA, was identified using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results of UPLC-MS/MS and density functional theory calculations indicated that the products included AFQ1, AFB1-, and AFD1-MS-coupled products in the BsCotA-MS system. The toxicity evaluations revealed that the substances derived from the transformation of AFB1 through the BsCotA-MS mechanism exhibited markedly reduced toxicity compared to AFB1. Finally, we proposed a set of different AFB1-transformation pathways generated by the BsCotA-MS system based on the identified products. These findings greatly enhance the understanding of the AFB1-transformation mechanism of the laccase-mediator system.


Assuntos
Aflatoxina B1 , Ácido Gálico/análogos & derivados , Lacase , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/química , Cromatografia Líquida , Espectrometria de Massas em Tandem
17.
Ecotoxicol Environ Saf ; 275: 116278, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564860

RESUMO

Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Simulação de Acoplamento Molecular , Aflatoxina B1/toxicidade , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB/metabolismo
18.
Ecotoxicol Environ Saf ; 276: 116344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636259

RESUMO

Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 µg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Polissacarídeos , Salvia miltiorrhiza , Animais , Coelhos , Polissacarídeos/farmacologia , Aflatoxina B1/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Salvia miltiorrhiza/química , Fígado/efeitos dos fármacos , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Alanina Transaminase/sangue , Espécies Reativas de Oxigênio/metabolismo
19.
Ecotoxicol Environ Saf ; 278: 116336, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691883

RESUMO

Aflatoxin B1 (AFB1), a common mycotoxin, can occur in agricultural products. As a metabolite of AFB1, aflatoxin M1 (AFM1) mainly exist in dairy products. These two mycotoxins threaten human health, although it is unclear how they affect the function of the intestinal barrier. In this study, mice were exposed to AFB1 (0.3 mg/kg body b.w.) and AFM1(3.0 mg/kg b.w.) either individually or in combination for 28 days to explore the main differentially expressed proteins (DEPs) and the associated enriched pathways. These findings were preliminarily verified by the transcriptomic and proteomic analyses in differentiated Caco-2 cells. The results revealed that AFB1 and AFM1 exposure in mice disrupted the function of the intestinal barrier, and the combined toxicity was greater than that of each toxin alone. Further proteomic analysis in mice demonstrated that the mechanisms underlying these differences could be explained as follows: (i) lipid metabolism was enriched by AFB1-induced DEPs. (ii) protein export pathway was stimulated by AFM1-induced DEPs. (iii) cell metabolic ability was inhibited (as evidenced by changes in UDP-GT1, UDP-GT2, and Gatm6), apoptosis was induced (MAP4K3), and epithelial cell integrity was disrupted (Claudin7 and IQGAP2), resulting in more extensive intestinal damage after combined treatment. In conclusion, the hazardous impact of co-exposure to AFB1 and AFM1 from proteomic perspectives was demonstrated in the present study.


Assuntos
Aflatoxina B1 , Aflatoxina M1 , Proteômica , Aflatoxina M1/toxicidade , Aflatoxina B1/toxicidade , Animais , Camundongos , Células CACO-2 , Humanos , Masculino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo
20.
Ecotoxicol Environ Saf ; 277: 116363, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663190

RESUMO

Environmental aflatoxin B1 (AFB1) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB1-exposed hepatocyte-derived EVs (AFB1-EVs) were extracted, and the functional effects of AFB1-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB1 exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB1 exposure induced liver fibrosis via HSCs activation in mice, while the AFB1-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB1 exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB1-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB1-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB1 exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB1-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB1 exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.


Assuntos
Aflatoxina B1 , Vesículas Extracelulares , Células Estreladas do Fígado , Hepatócitos , Cirrose Hepática , Mitofagia , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Aflatoxina B1/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Mitofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA