Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001019

RESUMO

In underground coal mining, machine operators put themselves at risk when getting close to the machine or cutting face to observe the process. To improve the safety and efficiency of machine operators, a cutting force sensor is proposed. A linear cutting machine is used to cut two separate coal samples cast in concrete with conical pick cutters to simulate mining with a continuous miner. Linear and neural network regression models are fit using 100 random 70:30 test/train splits. The normal force exceeds 60 kN during the rock-cutting tests, and it is averaged using a low pass filter with a 10 Hertz cutoff frequency. The sensor uses measurements of the resonant frequency of capacitive cells in a steel case to determine cutting forces. When used in the rock-cutting experiments, the sensor conforms to the tooling and the stiffness and sensitivity are increased compared to the initial configuration. The sensor is able to track the normal force on the conical picks with a mean absolute error less than 6 kN and an R2 score greater than 0.60 using linear regression. A small neural network with a second-order polynomial expansion is able to improve this to a mean absolute error of less than 4 kN and an R2 score of around 0.80. Filtering measurements before regression fitting is explored. This type of sensor could allow operators to assess tool wear and material type using objective force measurements while maintaining a greater distance from the cutting interface.

2.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676141

RESUMO

In the automotive industry, there has been considerable focus on developing various sensors for engine oil monitoring. However, when it comes to monitoring the condition of brake fluid, which is crucial for ensuring safety, there has been a lack of a secure online method for this monitoring. This study addresses this gap by developing a hybrid silica nanofiber mat, or an aerogel integrated with an optical fiber sensor, to monitor brake fluid condition. The incorporation of silica nanofibers in this hybrid enhances the sensitivity of the optical fiber glass surface by at least 3.75 times. Furthermore, creating an air gap between the glass surface of the optical fiber and the nanofibers boosts sensitivity by at least 5 times, achieving a better correlation coefficient (R2 = 0.98). In the case of silica aerogel, the sensitivity is enhanced by 10 times, but this enhancement relies on the presence of the established air gap. The air gap was adjusted to range from 0.5 mm to 1 mm, without any significant change in the measurement within this range. The response time of the developed sensor is a minimum of 15 min. The sensing material is irreversible and has a diameter of 2.5 mm, making it easily replaceable. Overall, the sensor demonstrates strong repeatability, with approximately 90% consistency, and maintains uncertainty levels below 5% across specific ranges: from 3% to 6% for silica aerogel and from 5% to 6% for silica nanofibers in the presence of an air gap. These findings hold promise for integrating such an optical fiber sensor into a car's electronic system, enabling the direct online monitoring of brake fluid quality. Additionally, the study elucidates the effect of water absorption on the refractive index of brake fluid, as well as on the silica nanomaterials.

3.
Int J Biometeorol ; 67(1): 121-131, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36323952

RESUMO

Both the physical properties of the fabric materials used in clothing and the effective design of the clothing, primarily in terms of the air gap thickness, restrict the transmission of the thermal energy from the heat source to the firefighter's body. The air gap distribution over the body in real deployment conditions of firefighters will vary, and is likely to be different from the air gap distribution in standardised manikin tests in standing upright posture. In this study, we investigated differences in the distribution of air layers in firefighters' clothing in three postures reflecting realistic on-duty exposure conditions (crawling, hose-holding, and standing upright used in laboratory tests) using 3D body scanning technology. The body posture induced substantial changes in the air gap thickness on the upper body (chest and back) and lower body. These changes were reflected in both the thermal and evaporative resistance of the ensemble, and consequently, in their potential thermal performance in the field. Therefore, it is recommended to consider body postures during the evaluation of clothing protective performance. Secondly, the knowledge of local clothing properties in real-life exposure provides a true protection mapping and gives design inputs to improve the local protective properties of firefighters' clothing.


Assuntos
Bombeiros , Humanos , Regulação da Temperatura Corporal , Postura , Manequins , Vestuário , Roupa de Proteção
4.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679472

RESUMO

An air gap is a technique that increases the security of information systems. The use of unconventional communication channels allows for obtaining communication that is of interest to the attacker as well as to cybersecurity engineers. One of the very dangerous forms of attack is the use of computer screen brightness modulation, which is not visible to the user but can be observed from a distance by the attacker. Once infected, the computer can transmit data over long distances. Even in the absence of direct screen visibility, transmission can be realized by analyzing the modulated reflection of the monitor's afterglow. The paper presents a new method for the automatic segmentation of video sequences to retrieve the transmitted data that does not have the drawbacks of the heretofore known method of growth (filling) based on an analysis of adjacent pixels. A fast camera operating at 380 fps was used for image acquisition. The method uses the characteristics of the amplitude spectrum for individual pixels, which is specific to the light sources in the room, and clustering with the k-means algorithm to group pixels into larger areas. Then, using the averaging of values for individual areas, it is possible to recover the 2-PAM (pulse-amplitude modulation) signal even at a 1000 times greater level of interference in the area to the transmitted signal, as shown in the experiments. The method does not require high-quality lenses.


Assuntos
Algoritmos , Computadores , Comunicação , Sistemas de Informação , Análise por Conglomerados , Processamento de Imagem Assistida por Computador/métodos
5.
Sensors (Basel) ; 23(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36991925

RESUMO

Major public institutions and organizations that handle sensitive data frequently enforce strong security policies by implementing network separation policies that segregates their internal work networks and internet network using air gaps to prevent the leakage of confidential information. Such closed networks have long been considered the most secure technique for protecting data; however, studies have shown that they are no longer effective in providing a safe data protection environment. Research on air-gap attacks remains in its infancy stage. Studies have been conducted to check the method and demonstrate the possibility of transmitting data using various transmission media available within the closed network. These transmission media include optical signals such as HDD LEDs, acoustic signals such as speakers, and the electrical signals of power lines. This paper examines various media used for air-gap attacks by analyzing different techniques and their essential functions, strengths, and limitations. The findings of this survey and the follow-up analysis aim to assist companies and organizations in protecting their information by providing an understanding of air-gap attacks and their current trends.

6.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808365

RESUMO

The structural discontinuities in the form of air gaps in transformer cores cause the concentration of electromagnetic force, which is an important source of transformer vibration and noise. In this paper, an engineering model of magnetic flux density and electromagnetic force density on transformer core discontinuities is analytically developed. Based on a reasonable structural simplification and assumptions, magnetic flux density and electromagnetic force density are deduced as explicit functions of the geometric, material, and electrical excitation characteristics of the gap region and the transformer core. The accuracy of the established model is validated by the finite element method (FEM) combined with a magnetic measurement experiment. According to this engineering model, the electromagnetic force density can be reduced by decreasing the gap ratio and increasing the gap thickness to a reasonable level. The outcome of this paper can help to understand the physical mechanism of the electromagnetic force generated by core air gap discontinuities, which is meaningful for noise control and the condition monitoring of transformers.

7.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36236667

RESUMO

This paper presents a fast design optimization using an effective characteristic analysis for linear permanent magnet motors (LPMMs) with techniques for improving motor performance such as using an auxiliary tooth, permanent magnet (PM) skew, and overhang structures. These techniques have different effects on the characteristics of the LPMM depending on the combinations of each other, resulting in complexity in the design optimization process. In particular, the three-dimensional (3-D) effect of the PM skew and overhang structure takes a lot of time to be analyzed. To deal with this problem, an effective magnetic field analysis method and a novel optimization algorithm are proposed. Preferentially, the field reconstruction method is used for a fast and accurate evaluation of the magnetic field of the LPMM. In the proposed magnetic field analysis method, the change of magnetic field distribution due to the addition of an auxiliary tooth is predicted, and the 3-D magnetic field effect of PM skew and overhang structure is considered. By reducing the computational burden in the magnetic field analysis, the electromagnetic characteristics of LPMMs can be calculated quickly, such as detent force, end force, thrust force, and back-EMF. The effect of the auxiliary tooth and overhang structure on the optimal PM skew length is investigated with comparative study results. Subsequently, the proposed optimization algorithm has the advantage of reducing time cost by providing multimodal optimization and robustness evaluation of local peaks at the same time. The proposed method is verified via comparison with finite element analysis and experimental results.


Assuntos
Algoritmos , Imãs , Fenômenos Eletromagnéticos , Análise de Elementos Finitos , Campos Magnéticos
8.
Sep Purif Technol ; 263: 118390, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34002109

RESUMO

Water recovery from concentrated blackwater has been studied using air gap (AGMD), direct contact (DCMD) and vacuum membrane distillation (VMD) to deliver decentralised sanitation. Whilst good water quality was achieved with each configuration, differences in the rejection of volatile compounds was observed. VMD exhibited the highest rejection of volatiles, specifically ammoniacal nitrogen, of all the configurations but fouling inhibited total flux. DCMD exhibited a temperature dependent volatile rejection which resulted in poor rejection at lower feed temperatures (≤40 °C). AGMD was identified as the most promising configuration for application within decentralised sanitation, since the rejection of volatiles was consistent over a range of operating temperatures with ammonia rejection directly related to solution pH. An increase in organic colloids and particles due to faecal contamination reduced COD removal due to the induction of wetting, but was shown to be offset by adoption of a smaller pore size (0.1 µm), and when complemented with upstream solid-liquid separation within a fully integrated system, will provide a robust sanitation solution. Importantly, this work has shown that AGMD can recover water from concentrated blackwater close to international discharge and reuse regulations in a single stage process; this is significant as blackwater consists of only urine and faeces, and is thus 40 times more concentrated than municipal sewage. It is proposed that the water quality produced reflects a step change to delivering safe sanitation, and is complemented by a simple method for heat recovery integration this is similarly advantageous for resource constrained environments common to decentralised sanitation solutions.

9.
Radiat Environ Biophys ; 59(2): 295-306, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32236740

RESUMO

The main aim of this study was to investigate the dosimetric characteristics of the INTRABEAM ® system in the presence of air gaps between the surface of applicators (APs) and tumor bed. Additionally, the effect of tissue heterogeneities was another focus. Investigating the dosimetric characteristics of the INTRABEAM® system is essential to deliver the required dose to the tumor bed correctly and reduce the delivered dose to the ribs and lung. Choosing the correct AP size and fitting it to the lumpectomy cavity is essential to remove the effect of air gaps and avoid inaccurate dose delivery. Consequently, the Geant4 toolkit was used to simulate the INTRABEAM ® system with spherical APs of various sizes. The wall effect of the ion chamber (IC) PTW 34013 used in the present study was checked. The simulations were validated in comparison with measurements, and then used to calculate any inaccuracies in dose delivery in the presence of 4- and 10-mm air gaps between the surface of the APs and the tumor bed. Also, the doses received due to tissue heterogeneities were characterized. It turned out that measurements and simulations were approximately in agreement (± 2%) for all sizes of APs. The perturbation factor introduced by the IC due to differences in graphite-coated polyethylene and air as compared to the phantom material was approximately equal to one for all AP. The greatest relative dose delivery difference was observed for an AP with a diameter of 1.5 cm, i.e., 44% and 70% in the presence of 4- and 10-mm air gaps, respectively. In contrast, the lowest relative dose delivery difference was observed for an AP with a diameter of 5 cm, i.e., 24% and 42% in the presence of 4- and 10-mm air gaps, respectively. Increasing APs size showed a decrease in relative dose delivery difference due to the presence of air gaps. In addition, the undesired dose received by the ribs turned out to be higher when a treatment site closer to the ribs was assumed. The undesired dose received by the ribs increased as the AP size increased. The lung dose turned out to be decreased due to the shielding effect of the ribs, small lung density, and long separation distance from the AP surface.


Assuntos
Radiometria , Radioterapia/instrumentação , Ar , Mama , Neoplasias da Mama/radioterapia , Simulação por Computador , Feminino , Humanos , Pulmão , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Costelas
10.
J Appl Clin Med Phys ; 21(10): 210-217, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32959511

RESUMO

PURPOSE: To investigate the replacement of conventional grid by air gap in axiolateral hip radiographs. The optimal air gap distance was studied with respect to radiation dose and image quality using phantom images, as well as 26 patient axiolateral hip radiographs. METHODS: The CDRAD phantom, along with polymethylmethacrylate slabs with thicknesses of 10.0, 14.6, and 20.0 cm was employed. The inverse image quality index and dose area product (DAP), as well as their combination, so called figure-of-merit (FOM) parameter, were evaluated for these images, with air gaps from 20 to 50 cm in increments of 10 cm. Images were compared to those acquired using a conventional grid utilized in hip radiography. Radiation dose was measured and kept constant at the surface of the detector by using a reference dosimeter. Verbal consent was asked from 26 patients to participate to the study. Air gap distances from 20 to 50 cm and tube current-time products from 8 to 50 mAs were employed. Exposure index, DAP, as well as patient height and weight were recorded. Two radiologists evaluated the image quality of 26 hip axiolateral projection images on a 3-point nondiagnostic - good/sufficiently good - too good scale. Source-to-image distance of 200 cm and peak tube voltage of 90 kVp were used in both studies. RESULTS AND CONCLUSION: Based on the phantom study, it is possible to reduce radiation dose by replacing conventional grid with air gap without compromising image quality. The optimal air gap distance appears to be 30 cm, based on the FOM analysis. Patient study corroborates this observation, as sufficiently good image quality was found in 24 of 26 patient radiographs, with 7 of 26 images obtained with 30 cm air gap. Thus, air gap method, with an air gap distance of 30 cm, is recommended in axiolateral hip radiography.


Assuntos
Intensificação de Imagem Radiográfica , Humanos , Imagens de Fantasmas , Doses de Radiação , Radiografia
11.
Sensors (Basel) ; 20(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635459

RESUMO

This paper presents the fabrication by means of roll-to-roll slot-die coating and characterization of air gap-based cantilever type capacitive acceleration sensors. As the mass of the sensor moves in the opposite direction of the acceleration, a capacitance change occurs. The sensor is designed to have a six layers structure with an air gap. Fabrication of the air gap and cantilever was enabled by coating and removing water-soluble PVA. The bottom electrode, the dielectric layer, and the sacrificial layer were formed using the roll-to-roll slot-die coating technique. The spacer, the top electrode, and the structural layer were formed by spin coating. Several kinds of experiments were conducted for characterization of the fabricated sensor samples. Experimental results show that accelerations of up to 3.6 g can be sensed with an average sensitivity of 0.00856 %/g.

12.
J Appl Clin Med Phys ; 20(1): 356-360, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30556259

RESUMO

PURPOSE: The main objective of this study was to develop a technique to accurately determine the air gap between the end of the proton beam compensator and the body of the patient in proton radiotherapy. METHODS: Orthogonal x-ray image-based automatic coordinate reconstruction was used to determine the air gap between the patient body surface contour and the end of beam nozzle in proton radiotherapy. To be able to clearly identify the patient body surface contour on the orthogonal images, a radiopaque wire was placed on the skin surface of the patient as a surrogate. In order to validate this method, a Rando® head phantom was scanned and five proton plans were generated on a Mevion S250 Proton machine with various air gaps in Varian Eclipse Treatment Planning Systems (TPS). When setting up the phantom in a treatment room, a solder wire was placed on the surface of the phantom closest to the beam nozzle with the knowledge of the beam geometry in the plan. After the phantom positioning was verified using orthogonal kV imaging, the last pair of setup kV images was used to segment the solder wire and the in-room coordinates of the wire were reconstructed using a back-projection algorithm. Using the wire as a surrogate of the body surface, we calculated the air gaps by finding the minimum distance between the reconstructed wire and the end of the compensator. The methodology was also verified and validated on clinical cases. RESULTS: On the phantom study, the air gap values derived with the automatic reconstruction method were found to be within 1.1 mm difference from the planned values for proton beams with air gaps of 85.0, 100.0, 150.0, 180.0, and 200.0 mm. The reconstruction technique determined air gaps for a patient in two clinical treatment sessions were 38.4 and 41.8 mm, respectively, for a 40 mm planned air gap, and confirmed by manual measurements. There was strong agreement between the calculated values and the automatically measured values, and between the automatically and manually measured values. CONCLUSIONS: An image-based automatic method has been developed to conveniently determine the air gap of a proton beam, directly using the orthogonal images for patient positioning without adding additional imaging dose to the patient. The method provides an objective, accurate, and efficient way to confirm the target depth at treatment to ensure desired target coverage and normal tissue sparing.


Assuntos
Ar , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Cabeça/efeitos da radiação , Imagens de Fantasmas , Terapia com Prótons , Tomografia Computadorizada por Raios X/instrumentação , Artefatos , Automação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos
13.
Sensors (Basel) ; 19(5)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832368

RESUMO

This paper presents the project proposal of a low-cost transducer with a Hall-effect sensor placed in a ferromagnetic core's air gap, which enables the measurement of the distorted voltage instantaneous values without the feedback loop used for measurements in electrical machines. The presented transducer allows for electrical separation between the measured voltage and the voltage at the output. Moreover, the influences of frequency, additional resistance, and the reactance of the winding circuit on the voltage phase shift caused by winding inductance with ferrite core and amplitude are discussed. The result of simulating leakage inductance of measuring winding with ferrite core with an air gap is calculated using finite element analysis. Experimental investigations of the voltage phase shift angle and output voltage amplitude drop for the voltage transducers with an open feedback loop are carried out, taking into account the linear core magnetization characteristic.

14.
Int J Biometeorol ; 62(7): 1121-1134, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29478101

RESUMO

To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.


Assuntos
Regulação da Temperatura Corporal , Sensação Térmica , Vestuário , Arquitetura de Instituições de Saúde , Humanos , Manequins , Modelos Teóricos
15.
Sensors (Basel) ; 18(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567414

RESUMO

Direct acting solenoid on⁻off valves are key fluid power components whose efficiency is dependent upon the state of the spool's axial motion. By sensing the trajectory of the valve spool, more efficient control schemes can be implemented. Therefore, the goal of this study is to derive an analytical model for spool displacement sensing based on coil inductance. First, a mathematical model of the coil inductance as a function of air gap width and lumped magnetic reluctance is derived. Second, to solve the inductance from coil current, an optimization to obtain an initial value based on physical constraints is proposed. Furthermore, an experiment using a laser triangulation sensor is designed to correlate the magnetic reluctance to the air gap. Lastly, using the obtained empirical reluctance model to eliminate unknowns from the proposed air gap-inductance model, the model in atmosphere or hydraulic oil environments was tested. Initial results showed that the proposed model is capable of calculating the spool displacement based on the coil current, and the estimation errors compared to the laser measurement are within ±7% in air environment.

16.
Int J Biometeorol ; 61(2): 363-375, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27522664

RESUMO

The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.


Assuntos
Regulação da Temperatura Corporal , Vestuário , Modelos Teóricos , Postura , Ar , Humanos , Manequins , Software
17.
Int J Biometeorol ; 60(12): 1995-2004, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27757698

RESUMO

The heat and mass transfer between the human body and the environment is not only affected by the properties of the fabric, but also by the size of the air gap thickness and the magnitude of the contact area between the body and garment. In this clothing-human-environment system, there is also an interaction between the clothing and the physiological response of the wearer. Therefore, the aim of this study was to evaluate the distribution of the air gap thickness and the contact area for the male lower body in relation to the garment fit and style using a three-dimensional (3D) body scanning method with a manikin. Moreover, their relation with the physiological response of the lower body was analysed using the physiological modelling. The presented study showed that the change in the air gap thickness and the contact area due to garment fit was greater for legs than the pelvis area due to regional differences of the body. Furthermore, the garment style did not have any effect on the core temperature or total water loss of the lower body, whereas the effect of garment fit on the core temperature and total water loss of lower body was observed only for 40 °C of ambient temperature. The skin temperatures were higher for especially loose garments at thigh than the tight garments. Consequently, the results of this study indicated that the comfort level of the human body for a given purpose can be adjusted by selection of fabric type and the design of ease allowances in the garment depending on the body region.


Assuntos
Vestuário , Modelos Biológicos , Sensação Térmica , Ar , Fibra de Algodão , Quadril/fisiologia , Humanos , Perna (Membro)/fisiologia , Masculino , Manequins , Pelve/fisiologia , Poliuretanos
18.
Ergonomics ; 59(8): 999-1008, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26653094

RESUMO

This paper reports on an experimental investigation on the effects of air gap, wind and walking motion on the thermal properties of traditional Arabian thawbs and Chinese cheongsams. Total thermal resistance (It) and vapour resistance (Re) were measured using the sweating fabric manikin - 'Walter', and the air gap volumes of the garments were determined by a 3D body scanner. The results showed the relative changes of It and Re of thawbs due to wind and walking motion are greater than those of cheongsams, which provided an explanation of why thawbs are preferred in extremely hot climate. It is further shown that thermal insulation and vapour resistance of thawbs increase with the air gap volume up to about 71,000 cm(3) and then decrease gradually. Thawbs with higher air permeability have significantly lower evaporative resistance particularly under windy conditions demonstrating the advantage of air permeable fabrics in body cooling in hot environments. Practitioner Summary: This paper aims to better understand the thermal insulation and vapour resistance of traditional Arabian thawbs and Chinese cheongsams, and the relationship between the thermal properties and their fit and design. The results of this study provide a scientific basis for designing ethnic clothing used in hot environments.


Assuntos
Vestuário , Exposição Ambiental/prevenção & controle , Temperatura Alta/efeitos adversos , Teste de Materiais/métodos , Movimento/fisiologia , Sudorese/fisiologia , Árabes , Povo Asiático , Regulação da Temperatura Corporal/fisiologia , Humanos , Imageamento Tridimensional/métodos , Manequins , Termotolerância/fisiologia , Caminhada/fisiologia , Vento
19.
Int J Biometeorol ; 59(11): 1701-10, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25796204

RESUMO

In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42%. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.


Assuntos
Vestuário , Modelos Teóricos , Ar , Convecção , Temperatura Alta
20.
J Hepatol ; 61(5): 1048-55, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24972044

RESUMO

BACKGROUND & AIMS: Hepatic ischemia and reperfusion (I/R) injury is a major complication of liver transplantation, hepatic resection and trauma. Helium preconditioning (HPC) exerts protection against ischemic stress. We investigated potential beneficial effects of HPC on I/R-induced liver injury and investigated mechanisms underlying HPC-induced protection. METHODS: We employed a model of segmental warm hepatic I/R on BALB/c mice. Serum ALT was measured and livers were analysed by histology, RT-PCR and western blot. HPC was induced by inhalation of a 70% helium/30% oxygen mixture for three 5-min periods, interspersed with three 5-min washout periods by room air. We tested which component of HPC (the helium/air mixture inhalation, the air room gap, or the interaction between these two factors) is protective. RESULTS: We found that HPC caused a significant increase in Akt phosphorylation in hepatocytes. The HPC-induced Akt phosphorylation resulted in decreased hepatocellular injury and improved survival rate of the treated animals. PI3K inhibitors abolished HPC induced effects. HPC-induced Akt phosphorylation affected expression of its downstream molecules. The effects of HPC on the PI3K/Akt pathway were attenuated by adenosine A2A receptor blockade, but could be re-established by PTEN inhibition. We demonstrated that the interaction of helium/air breathing and air gaps is responsible for the observed effects of HPC. CONCLUSIONS: HPC may be a promising strategy leading to a decrease in I/R induced liver injury in clinical settings. Additionally, the PI3K/Akt pathway plays an essential role in the protective effects of HPC in hepatic I/R injury.


Assuntos
Hélio/uso terapêutico , Precondicionamento Isquêmico/métodos , Transplante de Fígado , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Condicionamento Pré-Transplante/métodos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/metabolismo , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosforilação , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Triazinas/farmacologia , Triazóis/farmacologia , Isquemia Quente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA