Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Sci (China) ; 146: 91-102, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969465

RESUMO

In this study, a gravity-driven membrane (GDM) filtration system and hydroponic system (cultivating basil and lettuce) were combined for nutrient recovery from primary municipal wastewater. The GDM system was optimized by increasing the periodic air sparging flow rate from 1 to 2 L/min (∼15 hr per 3-4 days), resulting in a ∼52% reduction of irreversible fouling. However, the total fouling was not alleviated, and the water productivity remained comparable. The GDM-filtrated water was then delivered to hydroponic systems, and the effects of hydroponic operation conditions on plant growth and heavy metal uptake were evaluated, with fertilizer- and tap water-based hydroponic systems and soil cultivation system (with tap water) for comparison. It was found that (i) the hydroponic system under batch mode facilitated to promote vegetable growth with higher nutrient uptake rates compared to that under flow-through feed mode; (ii) a shift in nutrient levels in the hydroponic system could impact plant growth (such as plant height and leaf length), especially in the early stages. Nevertheless, the plants cultivated with the GDM-treated water had comparable growth profiles to those with commercial fertilizer or in soils. Furthermore, the targeted hazard quotient levels of all heavy metals for the plants in the hydroponic system with the treated water were greatly lower than those with the commercial fertilizer. Especially, compared to the lettuce, the basil had a lower heavy metal uptake capability and displayed a negligible impact on long-term human health risk, when the treated water was employed for the hydroponic system.


Assuntos
Filtração , Hidroponia , Nutrientes , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Nutrientes/análise , Nutrientes/metabolismo , Cerâmica , Membranas Artificiais , Poluentes Químicos da Água/análise , Gravitação , Fertilizantes
2.
Molecules ; 27(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35566247

RESUMO

In this paper, we present the treatment of humic acid solution via carbon nanotube immobilized membrane (CNIM) distillation assisted by air sparging (AS). Carbon nanotubes offer excellent hydrophobicity to the modified membrane surface and actively transport water vapor molecules through the membrane to generate higher vapor flux and better rejection of humic acid. The introduction of air sparging in the membrane distillation (MD) system has changed the humic substance fouling by changing the colloidal behavior of the deposits. This modified MD system can sustain a higher run time of separation and has enhanced the evaporation efficiency by 20% more than the regular membrane distillation. The air sparging has reduced the deposition by 30% in weight and offered lesser fouling of membrane surface even after a longer operating cycle. The water vapor flux increased with temperature and decreased as the volumetric concentrating factor (VCF) increased. The mass transfer coefficient was found to be the highest for the air sparged-carbon nanotube immobilized membrane (AS-CNIM) integrated membrane distillation. While the highest change in mass transfer coefficient (MTC) was found for polytetrafluoroethylene (PTFE) membrane with air sparging at 70 °C.


Assuntos
Nanotubos de Carbono , Purificação da Água , Destilação , Substâncias Húmicas , Membranas Artificiais , Vapor
3.
Artigo em Inglês | MEDLINE | ID: mdl-30623720

RESUMO

Contamination in coastal aquifer plains is of great concern in many countries given that non-aqueous phase liquids (NAPLs) have polluted numerous sites through accidental oil spills or improper disposal. We have developed a method to remove pollutants such as NAPLs from sandy sediment samples collected from the Mandol area of Gomso Bay in western South Korea. The sediments were collected from around the diffuser in a two-dimensional (2D) acrylic reaction apparatus, and these contained a total petroleum hydrocarbon (TPH) concentration of 89.3 ppm (mg/kg media). The maximum perchloroethylene (PCE) concentration was 398.51 ppm in the unsaturated zone and 0.77 ppm in the saturated zone. Volatile organic compounds (VOCs) were detected between 20 and 44 hour. However, non-volatile contaminants remained in the sediments after treatment. In situ air sparging (IAS) combined with soil vapor extraction (SVE), transformation from sorbed and nonaqueous phases to the vapor phase, is incomplete when treatment is performed using a pervasive air flow for sediments such as the sand of Mandol. During air transformation, the groundwater flow conditions increased the rate of contaminant removal. Although pilot-scale testing in the field site was fluctuated due to the heterogeneous of sediments condition, this 2D study found that the proposed method can alter the measurable geophysical properties of NAPLs. These findings demonstrate that IAS combined with SVE in the saturated zone is an effective technology for aquifer remediation high applicability of sandy coastal sediments contaminated by NAPLs.


Assuntos
Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Água Subterrânea/química , Hidrocarbonetos/isolamento & purificação , Poluição por Petróleo , Solo/química , Compostos Orgânicos Voláteis/isolamento & purificação , Poluição Ambiental , Gases/isolamento & purificação , Humanos , Petróleo/toxicidade , República da Coreia , Poluentes do Solo/isolamento & purificação , Extração em Fase Sólida/métodos , Eliminação de Resíduos Líquidos/métodos
4.
J Contam Hydrol ; 260: 104258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064800

RESUMO

The objective of this study was to investigate the effect of a removable physical barrier on the air sparging performance using a lab-scale aquifer model was investigated. The barrier was installed in water-saturated porous media, prior to the air sparging, by injecting calcium chloride aqueous solution into the aquifer with pre-applied alginate solution. Changes in the air flow direction and air flux at the media surface during air sparging were evaluated. With a hydrogel barrier set at the center of the media, the airflow detoured the barrier resulting in a bimodal air flux distribution at the media surface. While employing two gel-formed barriers positioned away from the media's center, the airflow concentrated specifically on the gap between the barriers. The hydrogel was successfully removed using a sodium bicarbonate solution (1.0 mol/L). Using the hydrogel barrier, the performance of air sparging was significantly enhanced for removing contaminants [tetrachloroethene (PCE) and n-hexane mixture] due to increased air flux; 9.8% of PCE applied (7.8 g) was removed during 120 min air sprging for the gel barrier system whereas no PCE was removed for the control. Alginate gel did not show significant sorption capacity for PCE. It was stable in the contaminant up to 68 days with reasonable loss of its mass. Findings of this study present a promising option for air sparging process specifically targeting the contaminant source zone in the aquifer.


Assuntos
Água Subterrânea , Tetracloroetileno , Poluentes Químicos da Água , Hidrogéis , Poluentes Químicos da Água/análise
5.
Chemosphere ; 339: 139650, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495056

RESUMO

Air sparging (AS) is deemed unacceptable for remediating VOCs contaminated soil with low-permeability. To improve air flow and contaminant removal in sparging process, an original approach, termed as pressure gradient-enhanced air sparging (PGEAS) approach, is proposed by controlling pressure gradient in soil. Then the remediation efficiency, mass transfer characteristics, and remediation mechanism are investigated. Results showed that, the PGEAS approach accelerates gaseous contaminant exhaust, reduces residue contamination in soil, and promotes total contaminant removal, finally results in an improved remediation efficiency compared to the conventional approach. Controlled by sparging pressure and flow distance, the pressure gradient is created in soil, and a critical value needs to be exceeded to enhance the VOCs removal and mass transfer characteristics. The measured results of pore pressure and liquid saturation confirm a notable pressure gradient and drainage behavior in soil, which indicate the massive air subchannel formation during air sparging. At a two-dimensional scale, discrete distributions of contaminant concentrations in exhaust air and soil are presented, the removal extent and area are both enhanced using the PGEAS approach with a pressure gradient higher than the critical value. The reached conclusions are of great importance to contaminant removal in heterogeneous stratigraphy at sites.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Solo/química , Ar , Gases , Fenômenos Químicos , Permeabilidade , Poluentes do Solo/análise
6.
Chemosphere ; 313: 137416, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460152

RESUMO

As one of the most effective methods for remediating VOCs contaminated site, air sparging technology is not suitable to low-permeability soil due to the poor remediation efficiency. To solve this problem, an improved approach aiming for mass transfer enhancement by establishing pressure gradient in soil is proposed in this study, and the remediation efficiency, removal mechanism, as well as the mass transfer characteristic are comprehensively investigated. Test results showed that, using the proposed approach significantly reduced the time for exhaust air contaminants reaching concentration equilibrium, and improved the contaminant removal zone and extent in soil, which were especially strengthened at sparging pressures higher than 40 kPa. The total contaminant removal rate was improved by introducing the proposed approach, with a maximum improved removal rate of 23.7% at 100 kPa sparging pressure. In mechanism analysis, the recorded changes in total pore pressure and average liquid saturation illustrated the pressure drop and discrete drainage phenomena, confirming the pressure gradient and air sub-channels formed in low-permeability soil. Finally, contaminant mass transfer characteristic was quantitatively analyzed using the lumped parameter model, in which the mass transfer coefficient and the air channel influencing fraction were enhanced almost fourfold and fivefold respectively by introducing the proposed approach. Compared to the conventional approach, the improved remediation efficiency using the proposed approach tackled the in-situ remediation challenge on low-permeability soil, and further expanded the application scope of air sparging technology on VOC contaminated site.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Ar , Solo , Fenômenos Químicos , Fenômenos Físicos , Permeabilidade , Poluentes do Solo/análise
7.
J Contam Hydrol ; 255: 104165, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36812705

RESUMO

Air sparging (AS) is a popular technology for the in-situ remediation of groundwater contaminated by volatile organic compounds. The scope of the zone within which injected air exists, i.e., zone of influence (ZOI) and the airflow characteristics within ZOI are of great interest. However, few studies have shed light on the scope of the zone within which air flows, namely, the zone of flow (ZOF) and its relation with the scope of ZOI. This study focuses on the ZOF characteristics and its relation with ZOI based on quantitative observations of ZOF and ZOI using a quasi-2D transparent flow chamber. The relative transmission intensity obtained by the light transmission method presents a rapid and continuous increasing near the ZOI boundary, providing a criterion for the quantitative determination of ZOI. An integral airflow flux approach is proposed to determine the scope of ZOF based on the airflow flux distributions through aquifers. The ZOF radius decreases with the growth of particle sizes of aquifers; while it increases first and then keeps constant with the increase of sparging pressure. The ZOF radius is around 0.55- 0.82 times of the ZOI radius, which depends on air flow patterns related to particle diameters dp, that is, 0.55- 0.62 for channel flow (dp < 1- 2 mm), while 0.75- 0.82 for bubble flow (dp > 2- 3 mm). The experimental results show that the sparged air is entrapped with little flowing inside ZOI regions that are outside the ZOF, which should be considered carefully in the design of AS.


Assuntos
Água Subterrânea , Compostos Orgânicos Voláteis , Tamanho da Partícula
8.
J Contam Hydrol ; 250: 104049, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863213

RESUMO

Surfactant-enhanced air sparging (SEAS) is an effective technology for the remediation of volatile organic compounds contamination of medium and high-permeability soil, though applying SEAS to low-permeability soil contamination has rarely been explored. In this study, a series of two-dimensional physical model tests were designed to explore the feasibility and remediation characteristics of SEAS on low-permeability soil. In the test results, the incorporation and increase in surfactant concentration promoted air channel formation in the low-permeability soil, finally reduced the capillary breakthrough pressure and improved the airflow rate. The majority of the exhausted gaseous contaminants were distributed along the horizontal direction, differing from the results observed in medium and high-permeability soils. The exhausted gaseous contaminant concentration changed slightly when the sparging pressure and surfactant concentration increased at relatively low levels and increased as the sparging pressure and surfactant concentration increased further. Increasing the air sparging pressure without surfactant incorporation or with a low surfactant concentration cannot effectively remove the contaminant, while the removal efficiency can be enhanced with further increases in surfactant concentration. The discrete remediation characteristics had been confirmed during SEAS application on low-permeability soil, then the relationships between the ratios of remediation area and remediation extent under different surfactant concentrations and sparging pressures were established for remediation efficiency evaluation. Using this method, the discrete remediation characteristics can be recreated once the surfactant concentration and the sparging pressure were chosen. On the other side, targeted improvements in the remediation area or extent can be achieved by controlling the surfactant concentration and sparging pressure. Through this study, SEAS technology and the proposed evaluation method were successfully implemented in soil with hydraulic conductivity around 9E-7 m/s, which expanded the application scope of SEAS technology for contaminant removal.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Compostos Orgânicos Voláteis , Oceanos e Mares , Permeabilidade , Solo , Poluentes do Solo/análise , Tensoativos , Tecnologia
9.
Chemosphere ; 296: 134015, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182528

RESUMO

Air sparging (AS) is considered an effective remediation technology for groundwater contaminated by volatile organic compounds. However, the effects of AS remediation of heterogeneous aquifers with lenses of different permeability are still unclear, which limits the application of AS technology. In this study, the effects of different permeable lenses on nitrobenzene (NB) transport were quantitatively analysed by tracking the temporal and spatial evolutions of the NB concentration and using light transmission visualisation technology to observe airflow. Experimental results showed that the NB outside the airflow zone of the heterogeneous aquifer containing a gravel lens was rapidly removed, which is a special phenomenon. Through moisture content monitoring and colour tracer technology, the bubble-induced water circulation zone in a gravel lens was discovered during AS. At this time, the zone of influence (ZOI) included air flow zone and water circulation zone, while previous studies believed that the ZOI only contained the air flow zone. The presence of water circulation zone in the heterogeneous aquifer with a gravel lens increased the ZOI area and average contaminant removal flux by 5 and 2.3 times, respectively, compared with those in homogeneous aquifer. These findings have modified the conventional cognition about the ZOI and are conducive to an in-depth understanding of the remediation mechanisms and a better design of AS technology in heterogeneous aquifers with different permeable lenses.


Assuntos
Recuperação e Remediação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/análise , Nitrobenzenos , Porosidade , Água/análise , Poluentes Químicos da Água/análise
10.
Front Microbiol ; 12: 714769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512592

RESUMO

An extensive plume of the emerging contaminant sulfolane has been found emanating from a refinery in Interior Alaska, raising questions about the microbial potential for natural attenuation and bioremediation in this subarctic aquifer. Previously, an aerobic sulfolane-assimilating Rhodoferax sp. was identified from the aquifer using stable isotope probing. Here, we assessed the distribution of known sulfolane-assimilating bacteria throughout the contaminated subarctic aquifer using 16S-rRNA-amplicon analyses of ~100 samples collected from groundwater monitoring wells and two groundwater treatment systems. One treatment system was an in situ air sparging system where air was injected directly into the aquifer. The other was an ex situ granular activated carbon (GAC) filtration system for the treatment of private well water. We found that the sulfolane-assimilating Rhodoferax sp. was present throughout the aquifer but was significantly more abundant in groundwater associated with the air sparge system. The reduction of sulfolane concentrations combined with the apparent enrichment of sulfolane degraders in the air sparging zone suggests that the addition of oxygen facilitated sulfolane biodegradation. To investigate other environmental controls on Rhodoferax populations, we also examined correlations between groundwater geochemical parameters and the relative abundance of the Rhodoferax sp. and found only manganese to be significantly positively correlated. The sulfolane-assimilating Rhodoferax sp. was not a major component of the GAC filtration system, suggesting that biodegradation is not an important contributor to sulfolane removal in these systems. We conclude that air sparging is a promising approach for enhancing the abundance and activity of aerobic sulfolane-degraders like Rhodoferax to locally stimulate sulfolane biodegradation in situ.

11.
Ultrason Sonochem ; 70: 105334, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32932226

RESUMO

The effects of air sparging (0-16 L min-1) and mechanical mixing (0-400 rpm) on enhancing the sonochemical degradation of rhodamine B (RhB) was investigated using a 28 kHz sonoreactor. The degradation of RhB followed pseudo first-order kinetics, where sparging or mixing induced a large sonochemical enhancement. The kinetic constant varied in three stages (gradually increased â†’ increased exponentially â†’ decreased slightly) as the rate of sparging or mixing increased, where the stages were similar for both processes. The highest sonochemical activity was obtained with sparging at 8 L min-1 or mixing at 200 rpm, where the standing wave field was significantly deformed by sparging and mixing, respectively. The cavitational oxidation activity was concentrated at the bottom of the sonicator when higher sparging or mixing rates were employed. Therefore, the large enhancement in the sonochemical oxidation was attributed mainly to the direct disturbance of the ultrasound transmission and the resulting change in the cavitation-active zone in this study. The effect of the position of air sparging and mixing was investigated. The indirect inhibition of the ultrasound transmission resulted in less enhancement of the sonochemical activity. Moreover, the effect of various sparging gases including air, N2, O2, Ar, CO2, and an Ar/O2 (8:2) mixture was compared, where all gases except CO2 induced an enhancement in the sonochemical activity, irrespective of the concentration of dissolved oxygen. The highest activity was obtained with the Ar/O2 (8:2) mixture. Therefore, it was revealed that the sonochemical oxidation activity could be further enhanced by applying gas sparging using the optimal gas.

12.
Sci Total Environ ; 722: 137844, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208252

RESUMO

The poor performance of air sparging (AS) remediation in heterogeneous porous media is receiving increasing attention. However, understanding of the air migration and flowrate distribution mechanisms in heterogeneous aquifers is still lacking. In this study, for experimental purposes, a heterogeneous aquifer with lenses of different permeabilities was designed in the laboratory. The effects of the double interface between a lens and the background media on the air migration were visually observed for the first time, and four types of double interfaces and their related air flowrate distributions were identified. These were bimodal distribution (∆Pe ≤ -1.1 kPa, i.e., the air entry suction difference between the background media and the lens), fingered distribution for a low-permeability lens (-1.1 <∆Pe ≤ -0.3 kPa), Gaussian distribution (-0.3 <∆Pe < 0.4 kPa), and fingered distribution for a high-permeability lens (∆Pe ≥ 0.4 kPa). The experimental results indicated that double interface characteristics and air injection rates affected air accumulation behavior. A mathematical model was established to simulate the experimental data of the air flowrate distribution, and it could well describe the air flowrate distribution patterns in heterogeneous aquifers. These findings are significant for improving our understanding of the mechanisms of air migration and flowrate distribution in heterogeneous aquifers, leading to a better design and prediction of the AS remediation required for heterogeneous aquifer pollution.

13.
J Hazard Mater ; 398: 122866, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32464561

RESUMO

The decrease of remediation effect during air sparging (AS) remediation in heterogeneous porous media has attracted increasing attention. In this study, an improved light transmission visualization method was used to investigate the air accumulation, migration and flowrate distribution in benzene-contaminated heterogeneous porous media during AS. Experimental results indicated that the benzene removal rate in the porous media was mainly controlled by air flowrate distribution which could be used as a major factor to evaluate the remediation effect. Visualization of air migration showed that air accumulation occurred below the geologic heterogeneous interface when ΔPe > 0 kPa (ΔPe: the air entry pressure difference of the media above and below the interface), and the accumulation thickness and length presented exponential decay increases with increasing ΔPe and air injection rates. Air flowrate was monitored by gas flow sensors, and the flowrate distributions were found as Gaussian distribution when ΔPe ≤ 0 kPa, trapezoidal distribution when 0 <ΔPe< 0.3 kPa and fingered distribution when ΔPe ≥ 0.3 kPa. Fingered distribution of air flowrate resulted in extremely nonuniform benzene removal above the interface and reduced the overall benzene removal rate. These findings reveal the reasons for the poor performance of AS remediation in heterogeneous porous media, leading to a better understanding of the remediation mechanisms in heterogeneous aquifer.

14.
Environ Sci Pollut Res Int ; 26(34): 35140-35150, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31686334

RESUMO

In this study, the effects of medium carbon chain alcohol (1-heptanol)-enhanced air sparging (AS) on the remediation of benzene-contaminated aquifers in different media (medium sand, channelized flow; gravel, bubbly flow) were investigated by comparison with a commonly used surfactant (sodium dodecylbenzene sulfonate (SDBS)). The results showed that the addition of 1-heptanol and SDBS significantly increased the air saturation in AS process under different airflow modes. Combined with water retention curves, 1-heptanol had the same effect on reducing the surface tension of groundwater and stabilizing bubbles as SDBS. In the study of benzene pollution removal, when the removal efficiency of the benzene pollutant exceeded 95%, the time required for surfactant-enhanced AS (SEAS) and alcohol-enhanced AS (AEAS) in medium sand was shortened by 28.6% and 52.4%, respectively, and the time required for SEAS and AEAS in gravel media was shortened by 16.7% and 58.3%, respectively, compared with the time required for AS. This finding indicated that the addition of SDBS or 1-heptanol could significantly increase the removal rate of benzene pollutants. Under the same surface tension conditions, the removal effect of 1-heptanol on the benzene pollutant was better than that of SDBS. This difference was due to the disturbance of the flow field during AEAS process causing the 1-heptanol on the gas-liquid interface to volatilize in the carrying gas, thereby inducing Marangoni convection on the interface, enhancing the gas-liquid mass transfer rate, and increasing the removal rate of benzene on the interface. Therefore, 1-heptanol is promising as a new reagent to enhance AS to remediate groundwater pollution.


Assuntos
Benzeno/análise , Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Benzenossulfonatos , Etanol , Tensão Superficial , Tensoativos , Volatilização
15.
J Contam Hydrol ; 220: 49-58, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30502064

RESUMO

Air sparging is a popular, yet slow, remediation technology for soil and groundwater contaminated with volatile organic compounds (VOCs). This paper theoretically and experimentally studies the effect of electromagnetic (EM) waves on air-channel formation within a glass-bead medium-used as an analogy to soil-during air-sparging experiments. The impact of EM waves on cleanup is not the focus of this paper, and the impact on airflow may or may not positively impact resulting cleanup process using air sparging to remove VOCs through volatilization. The hypothesis is that dielectrophoretic forces by EM waves can be used to alter airflow. Air injection was performed at different pressures, in the presence of EM waves (referred to as EM-stimulated) of various power and frequencies and the absence of EM waves (referred to as unstimulated). Digital images of the airflow patterns were collected, processed, and analyzed for all tests. The shape of the zone of influence (ZOI) was observed, and the radius of the zone of influence (ROI) was measured, which showed a 16% increase in ROI due to EM stimulation. An experimentally validated numerical simulation of the electric-field component of EM waves was developed. The correlation between EM-wave and air sparging characteristics were then studied using the numerical simulation and acquired digital images of the airflow to investigate and validate that the dielectrophoretic mechanism is behind the EM effect on airflow.


Assuntos
Água Subterrânea , Poluentes do Solo , Radiação Eletromagnética , Solo , Volatilização
16.
Ultrason Sonochem ; 51: 412-418, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30060989

RESUMO

The effect of air sparging on sonochemical oxidation reactions was investigated using a relatively large reactor equipped with a 36 kHz transducer module at the bottom. KI dosimetry and luminol techniques were used for quantitative and qualitative analysis of the reactions. The cavitation yield increased and then varied minimally as the liquid height increased from 1λ (42 mm) to 8λ (333 mm) with no air sparging. The flow rate of the air used for sparging and the position of the sparger significantly affected the extent of the sonochemical oxidation reactions. A significant enhancement in the sonochemical oxidation by air sparging was observed for higher liquid height and higher flow rate conditions at a constant input power. This enhancement is attributed to the violent mixing effect and the significant change in the sound field and cavitation-active zone in the liquid. Higher sonochemical activity was obtained when air sparging was applied closer to the transducer module at a higher flow rate. Imaging the motion of the liquid surface and sonochemiluminescence revealed that the instability of the liquid body was directly related to the sonochemical activity.

17.
J Hazard Mater ; 344: 942-949, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29197790

RESUMO

This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%.

18.
J Contam Hydrol ; 210: 42-49, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29502850

RESUMO

The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers.


Assuntos
Pressão do Ar , Água Subterrânea/química , Modelos Teóricos , Ozônio/química , Tensoativos/química , Poluentes Químicos da Água/análise , Benzenossulfonatos/química , Carboximetilcelulose Sódica/química , Recuperação e Remediação Ambiental , Dióxido de Silício/química , Soluções , Tensão Superficial , Viscosidade
19.
J Contam Hydrol ; 205: 96-106, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28962802

RESUMO

Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode.


Assuntos
Hidrologia/métodos , Tolueno/isolamento & purificação , Compostos Orgânicos Voláteis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Ar , Água Subterrânea/química , Tolueno/química , Compostos Orgânicos Voláteis/química , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
20.
Sci Total Environ ; 609: 377-384, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28753513

RESUMO

In this study, an improved laboratory two-dimensional airflow visualization device was developed for the quantitative analysis of airflow distribution at different heights from the sparger (20, 30, and 40cm) within the zone of influence (ZOI). The results indicated that the measured airflow rate distribution appeared Trapezium when the height was 20cm; however, the airflow rate matched a Gaussian distribution when the heights became 30cm and 40cm. The conical shape of the ZOI was observed in the experimental processes. The experimental results verified that the airflow distribution within the ZOI conformed to turbulent jet theory. According to turbulent jet theory, the distribution of the airflow rate changes from Trapezium to Gaussian, and the jet boundary mixed layer is a linear extension in the processes of jets. Through our study, it was found that this theory could be applied to airflow distribution and predictive models for the ZOI in air sparging remediation. The shape of the ZOI should be cone-like and the boundary layer of the ZOI is a linear extension in air sparging process. All the results from this study can provide theoretical support for the design and prediction of air sparging remediation for groundwater pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA