Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Eur Heart J ; 45(26): 2294-2305, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38848133

RESUMO

Alcohol-induced cardiomyopathy (AC) is an acquired form of dilated cardiomyopathy (DCM) caused by prolonged and heavy alcohol intake in the absence of other causes. The amount of alcohol required to produce AC is generally considered as >80 g/day over 5 years, but there is still some controversy regarding this definition. This review on AC focuses on pathogenesis, which involves different mechanisms. Firstly, the direct toxic effect of ethanol promotes oxidative stress in the myocardium and activation of the renin-angiotensin system. Moreover, acetaldehyde, the best-studied metabolite of alcohol, can contribute to myocardial damage impairing actin-myosin interaction and producing mitochondrial dysfunction. Genetic factors are also involved in the pathogenesis of AC, with DCM-causing genetic variants in patients with AC, especially titin-truncating variants. These findings support a double-hit hypothesis in AC, combining genetics and environmental factors. The synergistic effect of alcohol with concomitant conditions such as hypertension or liver cirrhosis can be another contributing factor leading to AC. There are no specific cardiac signs and symptoms in AC as compared with other forms of DCM. However, natural history of AC differs from DCM and relies directly on alcohol withdrawal, as left ventricular ejection fraction recovery in abstainers is associated with an excellent prognosis. Thus, abstinence from alcohol is the most crucial step in treating AC, and specific therapies are available for this purpose. Otherwise, AC should be treated according to current guidelines of heart failure with reduced ejection fraction. Targeted therapies based on AC pathogenesis are currently being developed and could potentially improve AC treatment in the future.


Assuntos
Cardiomiopatia Alcoólica , Humanos , Cardiomiopatia Alcoólica/fisiopatologia , Cardiomiopatia Alcoólica/etiologia , Etanol/efeitos adversos , Estresse Oxidativo/fisiologia
2.
J Magn Reson Imaging ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558213

RESUMO

BACKGROUND: Alcoholic cardiomyopathy (ACM) can lead to progressive cardiac dysfunction and heart failure, but little is known about biventricular impairment and ventricular interdependence (VI) in ACM patients. PURPOSE: To use cardiac MRI to investigate biventricular impairment and VI in ACM patients. STUDY TYPE: Retrospective. POPULATION: Forty-one male patients with ACM and 45 sex- and age-matched controls. FIELD STRENGTH/SEQUENCE: 3.0 T/balanced steady-state free precession sequence, inversion recovery prepared echo-planar imaging sequence and phase-sensitive inversion recovery sequence. ASSESSMENT: Biventricular structure, function, and global strain (encompassing peak strain [PS], peak systolic, and diastolic strain rate), PS of interventricular septal (IVS), microvascular perfusion (including upslope and time to maximum signal intensity [TTM]), late gadolinium enhancement (LGE), and baseline characteristics were compared between the controls and ACM patients. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, Pearson's correlation, and multivariable linear regression models with a stepwise selection procedure. A two-tailed P value <0.05 was deemed as statistically significant. RESULTS: Compared to control subjects, ACM patients showed significantly biventricular adverse remodeling, reduced left ventricle (LV) global upslope and prolonged global TTM, and the presence of LGE. ACM patients were characterized by a significant decline in all global strain within the LV, right ventricle (RV), and IVS compared with the controls. RV global PS was significantly associated with LV global PS and IVS PS in radial, circumferential, and longitudinal directions. Multivariable analyses demonstrated the longitudinal PS of IVS was significantly correlated with RV global radial PS (ß = 0.614) and circumferential PS (ß = 0.545). Additionally, RV global longitudinal PS (GLPS) was significantly associated with radial PS of IVS (ß = -0.631) and LV GLPS (ß = 1.096). DATA CONCLUSION: ACM patients exhibited biventricular adverse structural alterations and impaired systolic and diastolic function. This cohort also showed reduced LV microvascular perfusion, the presence of LGE, and unfavorable VI. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.

3.
Mol Cell Biochem ; 478(6): 1345-1359, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36309883

RESUMO

Alcohol abuse has attracted public attention and long-term alcohol exposure can lead to alcohol-featured non-ischemic dilated cardiomyopathy. However, the precise underlying mechanisms of alcoholic cardiomyopathy remain to be elucidated. This study aimed to comprehensively characterize alcohol abuse-mediated effects on downstream metabolites and genes transcription using a multi-omics strategy. We established chronic ethanol intoxication model in adult male C57BL/6 mice through 8 weeks of 95% alcohol vapor administration and performed metabolomics analysis, mRNA-seq and microRNA-seq analysis with myocardial tissues. Firstly, ethanol markedly induced ejection fraction reductions, cardiomyocyte hypertrophy, and myocardial fibrosis in mice with myocardial oxidative injury. In addition, the omics analysis identified a total of 166 differentially expressed metabolites (DEMs), 241 differentially expressed genes (DEGs) and 19 differentially expressed microRNAs (DEmiRNAs), respectively. The results highlighted that alcohol abuse mainly interfered with endogenous lipids, amino acids and nucleotides production and the relevant genes transcription in mice hearts. Based on KEGG database, the affected signaling pathways are primarily mapped to the antigen processing and presentation, regulation of actin cytoskeleton, AMPK signaling pathway, tyrosine metabolism and PPAR signaling pathway, etc. Furthermore, 9 hub genes related to oxidative stress from DEGs were selected based on function annotation, and potential alcoholic cardiotoxic oxidative stress biomarkers were determined through establishing PPI network and DEmiRNAs-DEGs cross-talk. Altogether, our data strongly supported the conclusion that ethanol abuse characteristically affected amino acid and energy metabolism, nucleotide metabolism and especially lipids metabolism in mice hearts, and underlined the values of lipids signaling and oxidative stress in the treatment strategies.


Assuntos
Alcoolismo , Etanol , Camundongos , Masculino , Animais , Etanol/toxicidade , Transcriptoma , Cardiotoxicidade , Camundongos Endogâmicos C57BL , Lipídeos
4.
Mol Biol Rep ; 50(4): 3469-3478, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36765018

RESUMO

BACKGROUND: Metformin, a first-line oral anti-diabetic drug, has recently been reported to exert protective effect on various cardiovascular diseases. However, the potential role of metformin in ethanol-induced cardiomyocyte injury is still unknown. Therefore, this study was aimed to investigate the effect of metformin on ethanol-induced cardiomyocyte injury and its underlying mechanism. METHODS AND RESULTS: H9c2 cardiomyocytes were exposed to ethanol for 24 h to establish an ethanol-induced cardiomyocyte injury model, and followed by treatment with metformin in the presence or absence of Lapatinib (an ErbB2 inhibition). CCK8 and LDH assays demonstrated that metformin improved cell viability in cardiomyocytes exposed to ethanol. Furthermore, metformin suppressed cardiomyocyte apoptosis and reduced the expressions of apoptosis-related proteins (Bax and C-CAS-3). In addition, our results showed that metformin activated the AKT/Nrf2 pathway, and then promoted Nrf2 nuclear translocation and the transcription of its downstream antioxidant genes (HO-1, CAT and SOD2), thereby inhibiting oxidative stress. Interestingly, we found that ErbB2 protein expression was significantly inhibited in ethanol-treated cardiomyocytes, which was markedly reversed by metformin. In contrast, Lapatinib largely abrogated the activation of AKT/Nrf2 signaling by metformin, accompanied by the increases in oxidative stress and cardiomyocyte apoptosis, indicating that metformin prevented ethanol-induced cardiomyocyte injury in an ErbB2-dependent manner. CONCLUSION: In summary, our study provides the first evidence that metformin protects cardiomyocyte against ethanol-induced oxidative stress and apoptosis by activating ErbB2-mediated AKT/Nrf2 signaling. Thus, metformin may be a potential novel treatment approach for alcoholic cardiomyopathy.


Assuntos
Metformina , Miócitos Cardíacos , Apoptose , Linhagem Celular , Etanol/farmacologia , Lapatinib/farmacologia , Metformina/farmacologia , Metformina/metabolismo , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo
5.
Bull Exp Biol Med ; 175(4): 442-445, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37770783

RESUMO

We studied some features of blood and lymph microcirculation in the brain, heart, and liver of female rats with developed alcoholic cardiomyopathy. In female rats after 24-week forced consumption of 10% ethanol solution, the size and inotropic function of the heart were measured by echocardiography. Microcirculation in the brain, myocardium, and liver was assessed by laser Doppler flowmetry using LAKK-OP2 and LAZMA-D computerized laser analyzers. Using spectral wavelet analysis, we determined the absolute and normalized to total perfusion amplitudes of microcirculation oscillations reflecting various regulatory mechanisms. Intact animals served as controls. In rats of the experimental group, alcoholic cardiomyopathy completely developed. Under these conditions, the index of microcirculation in the brain, myocardium, and liver significantly decreased. At the same time, there was a redistribution in the brain between shunting and nutritive blood flow in favor of the latter. In the myocardium and liver, this ratio did not change.


Assuntos
Cardiomiopatia Alcoólica , Ratos , Feminino , Animais , Microcirculação/fisiologia , Coração , Encéfalo , Fígado , Fluxometria por Laser-Doppler
6.
Alcohol Clin Exp Res ; 46(6): 1011-1022, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35373347

RESUMO

BACKGROUND AND AIMS: Excessive alcohol consumption predisposes drinkers to develop alcoholic cardiomyopathy. Although cardiomyocyte loss is the hallmark of cardiomyopathy, the underlying mechanism remains elusive. This study examined the potential mechanism of alcohol-induced cardiomyocyte death in a mouse model of alcoholic cardiomyopathy. METHODS: We established the alcoholic cardiomyopathy mouse model using C57BL/6J mice and confirmed it via echocardiography and histological examination. The cardiac ceramide content and profile were analyzed with a triple-quadrupole mass spectrometer. The molecular mechanism underlying the accumulation of ceramide due to chronic alcohol consumption and ceramide-induced cardiomyocyte death were investigated by in vivo and in vitro models. Finally, we established a TLR4 mutation model to explore the function of TLR4 in CH3/HeJ mice. RESULTS: Cardiac lipotoxicity that followed alcohol exposure resulted mainly in C16:0-, C18:0-, and C24:1-ceramide aggregation. Genes encoding the sphingosine hydrolysis enzymes (SMPD1 and SMPD2) rather than de novo synthetic biomarkers were markedly upregulated. Exogenous ceramide mimics (C6-ceramide) werenderlying the accumulation of ceramide observed to cause H9C2 cardiomyocyte-like cell death, which was consistent with results under palmate acid (PA) treatment. As a ceramide precursor, PA induces intracellular ceramide generation through TLR4 signaling, which can be abolished by an inhibitor of ceramide synthesis. Furthermore, mechanistic investigations demonstrated that pharmacological or genetic inhibition of TLR4 attenuated PA-induced cell death and corresponding ceramide production. Moreover, global mutation of TLR4 in CH3/HeJ mice significantly reduced the accumulation of C24:0, C24:1, OH_C24:1, and total ceramide following alcohol challenge. CONCLUSIONS: Our findings demonstrate that ceramide accumulation plays a crucial role in alcoholic cardiomyopathy, effects that are partially mediated through the TLR4-dependent pathway.


Assuntos
Cardiomiopatia Alcoólica , Animais , Cardiomiopatia Alcoólica/metabolismo , Ceramidas/metabolismo , Modelos Animais de Doenças , Etanol/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Receptor 4 Toll-Like/genética
7.
J Nucl Cardiol ; 29(1): 278-288, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32557237

RESUMO

INTRODUCTION: The purpose of this study was to evaluate subjects with high-risk alcohol cardiotoxicity and patients with alcoholic cardiomyopathy (ACM) via dynamic 11C-Acetate positron emission tomography (PET) imaging as a myocardial oxidative metabolic probe. METHODS AND RESULTS: We recruited 37 subjects with chronic alcohol consumption [18 with moderate consumption (MC), 19 with heavy consumption (HC)], 5 ACM patients, and 12 healthy controls to receive dynamic 11C-Acetate PET scans. PET imaging data were analyzed to calculate kinetic parameters (e.g., Kmono, K1 and k2) based on the mono-exponential and one-tissue compartmental models. Myocardial oxygen consumption (MVO2) and myocardial external efficiency (MEE) were then derived from these kinetic parameters. MVO2 was significantly lowered in the HC group and in ACM patients (0.121± 0.018 and 0.111 ± 0.017 mL·g-1·min-1, respectively) compared with those in healthy controls and MC subjects (0.144 ± 0.023 and 0.146 ± 0.027 mL·g-1·min-1, respectively; P < .01). MEE was significantly reduced in ACM patients (13.0% ± 4.3%) compared with those of healthy controls (22.4% ± 4.6%, P < .01), MC subjects (20.1% ± 4.5%, P < .05), and HC subjects (22.3% ± 4.5%, P < .001). CONCLUSION: Functional assessment via dynamic 11C-Acetate PET imaging may represent a clinically feasible probe for identifying cohorts with high-risk cardiotoxicity due to addictive alcohol consumption and ACM.


Assuntos
Cardiomiopatia Alcoólica , Acetatos/metabolismo , Cardiomiopatia Alcoólica/diagnóstico por imagem , Cardiomiopatia Alcoólica/metabolismo , Cardiotoxicidade , Humanos , Miocárdio/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X
8.
J Pathol ; 254(3): 213-215, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33630303

RESUMO

The metabolic regulator fibroblast growth factor 21 (FGF21) has been reported as a cardioprotective factor regulating cardiac remodeling in several cardiac diseases. In a recent issue of The Journal of Pathology, Ferrer-Curriu, Guitart-Mampel et al investigated FGF21 in alcoholic cardiomyopathy (ACM). They showed that FGF21 deficiency aggravates alcohol-induced cardiac damage and dysfunction by exacerbating mitochondrial alterations, oxidative stress, and lipid metabolic dysregulation, suggesting FGF21 as a promising therapeutic agent in ACM. Paradoxically, FGF21 cardiac and circulating levels correlate with cardiac damage and oxidative stress in patients with ACM, pointing to FGF21 as a potential biomarker of alcohol-induced cardiac damage. Further studies are needed to address when FGF21 can be used as a diagnostic biomarker and when it can be used as a therapeutic agent to treat ACM. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Cardiomiopatia Alcoólica , Cardiomiopatia Alcoólica/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Estresse Oxidativo , Reino Unido
9.
J Pathol ; 253(2): 198-208, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33125701

RESUMO

Alcoholic cardiomyopathy (ACM) resulting from chronic alcohol misuse is one of the main contributors leading to heart failure and cardiovascular mortality. Fibroblast growth factor 21 (FGF21) is a well-established cardioprotective factor. We aimed to study the role of FGF21 in experimentally induced models and clinical affected patients with cardiac damage due to chronic alcohol consumption. We found that circulating FGF21 levels and cardiac FGF21 and ß-klotho protein levels were increased in subjects with chronic alcohol consumption. As an experimental model of ACM, we fed wild-type and Fgf21 knockout (Fgf21-/- ) mice with a 4% alcohol liquid diet for 4 and 12 weeks. FGF21 circulating levels and FGF21 expression in the myocardium were also increased in wild-type mice after chronic alcohol intake. Fgf21-/- mice develop a higher degree of cardiac hypertrophy, fibrosis, and cardiac dysfunction after chronic alcohol consumption than wild-type mice. Moreover, the myocardium of Fgf21-/- mice showed signs of metabolic deregulation, oxidative stress, and mitochondrial dysfunction after alcohol intake. Finally, human cardiac biopsies from patients with chronic alcohol consumption developing ACM presented a higher degree of oxidative stress which positively correlated with the FGF21 protein levels in the myocardium. We conclude that plasma levels and cardiac myocyte FGF21 expression were induced in response to chronic alcohol consumption. The lack of FGF21 aggravated cardiac damage produced by ACM, in association with enhanced mitochondrial and oxidative stress, thus pointing to FGF21 as a protective agent against development of alcohol-induced cardiomyopathy. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Cardiomegalia/patologia , Cardiomiopatia Alcoólica/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Insuficiência Cardíaca/patologia , Animais , Cardiomiopatia Alcoólica/complicações , Cardiomiopatia Alcoólica/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/genética , Insuficiência Cardíaca/etiologia , Humanos , Masculino , Camundongos , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Substâncias Protetoras/uso terapêutico
10.
Molecules ; 27(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35807529

RESUMO

Chronic alcohol exposure can cause myocardial degenerative diseases, manifested as cardiac insufficiency, arrhythmia, etc. These are defined as alcoholic cardiomyopathy (ACM). Alcohol-mediated myocardial injury has previously been studied through metabolomics, and it has been proved to be involved in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway concerning unsaturated fatty acids biosynthesis and oxidative phosphorylation, which tentatively explored the mechanism of ACM induced by chronic drinking. To further study alcohol-induced myocardial injury, myocardial specimens from a previously successfully established mouse model of ACM were subjected to histological, echocardiographic, and proteomic analyses, and validated by real-time quantitative polymerase chain reaction (qPCR). Results of histopathology and echocardiography showed the hypertrophy of cardiomyocytes, the dilation of ventricles, and decreased cardiac function. Proteomic results, available via ProteomeXchange with identifier PXD032949, revealed 56 differentially expressed proteins (DEPs) were identified, which have the potential to be involved in the KEGG pathway related to fatty acid biosynthesis disorders, lipid metabolism disorders, oxidative stress, and, ultimately, in the development of dilated cardiomyopathy (DCM). The present study further elucidates the underlying effects of myocardial injury due to chronic alcohol intake, laying a foundation for further studies to clarify the potential mechanisms of ACM.


Assuntos
Cardiomiopatias , Cardiomiopatia Alcoólica , Animais , Cardiomiopatias/metabolismo , Cardiomiopatia Alcoólica/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Camundongos , Miocárdio/metabolismo , Projetos Piloto , Proteômica
11.
Toxicol Appl Pharmacol ; 412: 115378, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352188

RESUMO

Chronic excessive ethanol consumption is associated with a high incidence of mortality due to ethanol-induced dilated cardiomyopathy, known as alcoholic cardiomyopathy (ACM). Mechanistic studies have demonstrated that apoptosis is key to the pathogenesis of ACM, and endoplasmic reticulum (ER) stress-associated apoptosis contributes to various ethanol-related diseases. Astaxanthin (AST) is a natural carotenoid that exerts an anti-ER stress effect. Importantly, strong evidence has shown that AST induces beneficial effects in various cardiovascular diseases. The present study aimed to investigate whether AST induces beneficial effects on ACM by suppressing cardiac apoptosis mediated by ER stress. We showed that after 2 months of chronic excessive ethanol consumption, mice displayed obvious cardiac dysfunction and morphological changes associated with increased fibrosis, oxidative stress, ER stress and apoptosis. However, cardiac damage above was attenuated in response to AST treatment. The cardioprotective effect of AST against ethanol toxicity was also confirmed in both H9c2 cells and primary cardiomyocytes, indicating that AST-induced protection directly targets cardiomyocytes. Both in vivo and in vitro studies showed that AST inhibited all three ER stress signaling pathways activated by ethanol. Furthermore, administration of the ER stress inhibitor sodium 4-phenylbutyrate (4-PBA) strongly suppressed ethanol-induced cardiomyocyte damage. Interestingly, AST induced further anti-apoptotic effects once co-treated with 4-PBA, indicating that AST protects the heart from ACM partially by attenuating ER stress, but other mechanisms still exist. This study highlights that administration of AST ablated chronic excessive ethanol consumption-induced cardiomyopathy by suppressing cardiac ER stress and subsequent apoptosis.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cardiomiopatia Alcoólica/prevenção & controle , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatia Alcoólica/etiologia , Cardiomiopatia Alcoólica/metabolismo , Cardiomiopatia Alcoólica/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Etanol , Fibrose , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Xantofilas/farmacologia
12.
Clin Exp Pharmacol Physiol ; 48(6): 837-845, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33527532

RESUMO

Ethanol-induced myocardial injury involves multiple pathophysiological processes including apoptosis. Empagliflozin (EMPA), is a novel hypoglycaemic drug which possesses multiple pharmacologically relevant protective effects, including anti-apoptotic, anti-inflammatory and antioxidant effects. However, whether EMPA treatment has a protective effect on ethanol-induced myocardial injury has not been assessed, to the best of our knowledge. Therefore, the aim of this study was to determine the effect of EMPA treatment on ethanol-induced myocardial injury and the underlying mechanism. An ethanol-induced myocardial injury model was established by culturing H9c2 cells treated with 200 mmol/L ethanol for 24 hours, and additional groups of ethanol treated cells were also treated with EMPA with or without SIRT1 inhibitors prior to ethanol treatment. Cell viability and apoptosis were assessed using a CCK-8 assay and flow cytometry, respectively. The expression of apoptosis-related proteins was assessed using western blotting. The results showed that EMPA pretreatment resulted in increased cell viability and a decrease in LDH activity. Moreover, EMPA pretreatment significantly reduced apoptosis of cardiomyocytes, and reduced the expression of cleaved caspase 3. Furthermore, EMPA increased the expression of SIRT1, increased the phosphorylation levels of Akt, and reduced the expression of PTEN. EMPA also reduced ethanol-induced mitochondrial apoptosis, increasing the Bcl-2/Bax ratio and the mitochondrial membrane potential. However, the cardioprotective effects of EMPA were abrogated when cells were pretreated with a SIRT1 inhibitor. In conclusion, EMPA can alleviate ethanol-induced myocardial injury by inhibiting mitochondrial apoptosis via the SIRT1/PTEN/Akt pathway. Therefore, EMPA may be a novel target for treatment of ethanol-induced myocardial injury.


Assuntos
Miócitos Cardíacos , Sirtuína 1 , Animais , Apoptose , Compostos Benzidrílicos , Caspase 3 , Etanol , Glucosídeos , Mitocôndrias , Traumatismo por Reperfusão Miocárdica , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2
13.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918931

RESUMO

Chronic alcohol consumption leads to myocardial injury, ventricle dilation, and cardiac dysfunction, which is defined as alcoholic cardiomyopathy (ACM). To explore the induced myocardial injury and underlying mechanism of ACM, the Liber-DeCarli liquid diet was used to establish an animal model of ACM and histopathology, echocardiography, molecular biology, and metabolomics were employed. Hematoxylin-eosin and Masson's trichrome staining revealed disordered myocardial structure and local fibrosis in the ACM group. Echocardiography revealed thinning wall and dilation of the left ventricle and decreased cardiac function in the ACM group, with increased serum levels of brain natriuretic peptide (BNP) and expression of myocardial BNP mRNA measured through enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR), respectively. Through metabolomic analysis of myocardium specimens, 297 differentially expressed metabolites were identified which were involved in KEGG pathways related to the biosynthesis of unsaturated fatty acids, vitamin digestion and absorption, oxidative phosphorylation, pentose phosphate, and purine and pyrimidine metabolism. The present study demonstrated chronic alcohol consumption caused disordered cardiomyocyte structure, thinning and dilation of the left ventricle, and decreased cardiac function. Metabolomic analysis of myocardium specimens and KEGG enrichment analysis further demonstrated that several differentially expressed metabolites and pathways were involved in the ACM group, which suggests potential causes of myocardial injury due to chronic alcohol exposure and provides insight for further research elucidating the underlying mechanisms of ACM.


Assuntos
Alcoolismo/metabolismo , Cardiomiopatia Alcoólica/metabolismo , Metabolômica , Miocárdio/metabolismo , Miocárdio/patologia , Alcoolismo/diagnóstico por imagem , Alcoolismo/fisiopatologia , Animais , Cardiomiopatia Alcoólica/diagnóstico por imagem , Cardiomiopatia Alcoólica/fisiopatologia , Análise Discriminante , Modelos Animais de Doenças , Eletrocardiografia , Testes de Função Cardíaca , Análise dos Mínimos Quadrados , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Transdução de Sinais
14.
Bull Exp Biol Med ; 171(1): 41-44, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34050832

RESUMO

The molecular mechanisms underlying the cardioprotective effect of fabomotizole were studied using the translational rat model of alcoholic cardiomyopathy developed by us. It was shown that intraperitoneal administration of fabomotizole (15 mg/kg) for 28 days to animals with alcoholic cardiomyopathy contributes to normalization of the expression of mRNA of genes of regulatory proteins СаМ (p=0.00001), Ерас1 (p=0.021), and Ерас2 (p=0.018) and receptors RyR2 (p=0.0031) and IP3R2 (p=0.006) in the myocardium of the myocardium of the left ventricle that is enhanced in control animals (p<0.05). These changes were accompanied by echocardiographically documented decrease in the degree of left ventricle remodeling and improvement of its inotropic function.


Assuntos
Cardiomiopatia Alcoólica , Animais , Cardiomiopatia Alcoólica/tratamento farmacológico , Cardiomiopatia Alcoólica/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
15.
Sud Med Ekspert ; 64(5): 27-31, 2021.
Artigo em Russo | MEDLINE | ID: mdl-34644030

RESUMO

Objective - a morphological study of myocardial tissue was carried out in order to characterize the metabolic lesions that influence the heart contractility in cases of sudden cardiac death from alcoholic cardiomyopathy. The occurrence of metabolic damages in myocardial tissue in cases of alcoholic cardiomyopathy is a vivid reflection of the toxic effects on the cardiac muscle of ethanol and its metabolites. The toxic damage of the main structural components of the microcirculatory vessels contributes to the disruption of the transport of electrolytes and nutrients with the development of trophic disorders and the increasing phenomena of hypoxia that is the cause dystrophic and necrobiotic changes in myocardial tissue. The contracture damages of cardiomyocytes, intracellular myocytolysis, and cationic decomposition of myofibrils were revealed in polarized light and they were mosaic in nature and played a direct role in the occurrence of cardiac rhythm disturbances. An immunohistochemical study of desmin expression can be recommended as a marker of ischemic and necrobiotic changes in cardiomyocytes, that development is possible on the background of subtotal concentrations of ethanol in the blood. The results of a morphometric study of the parenchymal component of myocardial tissue have established that the relative area of the parenchyma is not directly related to the age and gender of those who died from alcoholic cardiomyopathy. It is recommended to use a combination of morphological methods including light microscopy, polarization microscopy methods and immunohistochemical method for the diagnosis of alcoholic cardiomyopathy in forensic practice.


Assuntos
Cardiomiopatia Alcoólica , Medicina Legal , Humanos , Microcirculação , Contração Miocárdica , Miocárdio
16.
Mol Cell Biochem ; 471(1-2): 189-201, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535704

RESUMO

Abusive chronic alcohol consumption can cause metabolic and functional derangements in the heart and is a risk factor for development of non-ischemic cardiomyopathy. microRNA 214 (miR-214) is a molecular sensor of stress signals that negatively impacts cell survival. Considering cardioprotective and microRNA modulatory effects of sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, we investigated the impact of chronic alcohol consumption on cardiac expression of miR-214 and its anti-apoptotic protein target, Bcl-2 and whether sildenafil attenuates such changes. Adult male FVB mice received unlimited access to either normal liquid diet (control), alcohol diet (35% daily calories intake), or alcohol + sildenafil (1 mg/kg/day, p.o.) for 14 weeks (n = 6-7/group). The alcohol-fed groups with or without sildenafil had increased total diet consumption and lower body weight as compared with controls. Echocardiography-assessed left ventricular function was unaltered by 14-week alcohol intake. Alcohol-fed group had 2.6-fold increase in miR-214 and significant decrease in Bcl-2 expression, along with enhanced phosphorylation of ERK1/2 and cleavage of PARP (marker of apoptotic DNA damage) in the heart. Co-ingestion with sildenafil blunted the alcohol-induced increase in miR-214, ERK1/2 phosphorylation, and maintained Bcl-2 and decreased PARP cleavage levels. In conclusion, chronic alcohol consumption triggers miR-214-mediated pro-apoptotic signaling in the heart, which was prevented by co-treatment with sildenafil. Thus, PDE5 inhibition may serve as a novel protective strategy against cardiac apoptosis due to chronic alcohol abuse.


Assuntos
Alcoolismo/complicações , Apoptose , Cardiopatias/tratamento farmacológico , MicroRNAs/genética , Miócitos Cardíacos/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Citrato de Sildenafila/farmacologia , Animais , Modelos Animais de Doenças , Cardiopatias/etiologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Fosforilação , Transdução de Sinais , Regulação para Cima
17.
J Cardiovasc Magn Reson ; 22(1): 23, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299425

RESUMO

BACKGROUND: Chronic alcohol consumption initially leads to asymptomatic left ventricular dysfunction, but can result in myocardial impairment and heart failure if ongoing. This study sought to characterize myocardial tissues and oxidative metabolism in asymptomatic subjects with chronic alcohol consumption by quantitative cardiovascular magnetic resonance (CMR) and 11C-acetate positron emission tomography (PET)/computed tomography (CT). METHODS: Thirty-four male subjects (48.8 ± 9.1 years) with alcohol consumption > 28 g/day for > 10 years and 35 age-matched healthy male subjects (49.5 ± 9.7 years) underwent CMR and 11C-acetate PET/CT. Native and post T1 values and extracellular volume (ECV) from CMR and Kmono and K1 from PET imaging were measured. Quantitative measurements by CMR and PET imaging were compared between subjects with moderate to heavy alcohol consumption and healthy controls, and their correlations were also analyzed. RESULTS: Compared to healthy controls, subjects with alcohol consumption showed significantly shorter native T1 (1133 ± 65 ms vs. 1186 ± 31 ms, p < 0.001) and post T1 (477 ± 42 ms vs. 501 ± 38 ms, p = 0.008) values, greater ECV (28.2 ± 2.2% vs. 26.9 ± 1.3%, p = 0.003), marginally lower Kmono (57.6 ± 12.1 min- 1 × 10- 3 vs. 63.0 ± 11.7 min- 1 × 10- 3, p = 0.055), and similar K1 (0.82 ± 0.13 min- 1 vs. 0.83 ± 0.15 min- 1, p = 0.548) after adjusting for confounding factors. There were no significant differences in CMR measurements and K1 between subjects with heavy and moderate alcohol consumption (all p > 0.05). In contrast, subjects with heavy alcohol consumption showed significantly lower Kmono values compared to those with moderate alcohol consumption (52.9 ± 12.1 min- 1 × 10- 3 vs. 63.7 ± 9.2 min- 1 × 10- 3, p = 0.012). Strong and moderate correlations were found between K1 and ECV in healthy controls (r = 0.689, p = 0.013) and subjects with moderate alcohol consumption (r = 0.518, p = 0.048), respectively. CONCLUSION: Asymptomatic men with heavy alcohol consumption have detectable structural and metabolic changes in myocardium on CMR and 11C-acetate PET/CT. Compared with quantitative CMR, 11C-acetate PET/CT imaging may be more sensitive for detecting differences in myocardial damage among subjects with moderate to heavy alcohol consumption.


Assuntos
Acetatos/administração & dosagem , Consumo de Bebidas Alcoólicas/efeitos adversos , Carbono/administração & dosagem , Cardiomiopatia Alcoólica/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/administração & dosagem , Adulto , Consumo de Bebidas Alcoólicas/metabolismo , Cardiomiopatia Alcoólica/metabolismo , Estudos de Casos e Controles , Meios de Contraste/administração & dosagem , Gadolínio DTPA/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Oxirredução , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(4): 386-394, 2020 Apr 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-32879062

RESUMO

OBJECTIVES: To establish an electrophysiological model of alcoholic cardiomyopathy by inducing pluripotent stem cells (iPSCs) to differentiate into cardiomyocytes (iPSC-CM) in vitro. METHODS: The human iPSC were expanded in vitro and differentiated into iPSC-CM. The iPSC-CM were divided into a blank control group, an alcoholic experiment group (according to the concentration of alcoholic, the alcoholic experiment was also divided into many subgroups), and a KN93 treatment group. Then the efficiency of iPSC differentiated to iPSC-CM was detected by immunofluorescence, the function of iPSC-CM was detected by cell counting kit-8 (CCK8) assay and lactate dehydrogenase (LDH) activity assay kit. The electrophysiological activity of iPSC-CM was monitored by real time cellular analysis (RTCA), the injury of iPSC-CM caused by alcohol was further verified by the mitochondrial membrane potential fluorescence probe JC-1 staining combined with RTCA analysis. RESULTS: Compared with the blank control group, the different doses (25, 50, 100, 150, 200, 250, 300 mmol/L) of alcohol could significantly inhibit the proliferation of iPSC-CM in a dose-dependent manner (all P<0.05). Compared with the blank control group, the activity of iPSC-CM was significantly reduced by 100 mmol/L alcohol, resulting in the increase of LDH release, the decrease of mitochondrial membrane potential, the amplitude and beating rate (all P<0.05). Compared with the 100 mg/mL alcoholic experiment group, the KN93 treatment group significantly alleviated the damage of alcohol to iPSC-CM by blocking the necrotic apoptotic pathway, resulting in the decrease of LDH release, the increase of mitochondrial membrane potential, the amplitude and beating rate (all P<0.05). CONCLUSIONS: The electrophysiological model of alcoholic cardiomyopathy based on the differentiation of cardiomyocytes are successfully established, which can be used to study the electrophysiological activity and the molecular mechanism for relevant diseases, and it may provide a more reasonable and effective research tool for drug screening and clinical study.


Assuntos
Cardiomiopatia Alcoólica , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Fenômenos Eletrofisiológicos , Humanos , Miócitos Cardíacos
19.
Alcohol Clin Exp Res ; 43(11): 2344-2353, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31498445

RESUMO

BACKGROUND: (Pro)renin receptor (PRR), a novel member of the renin-angiotensin system, participates in various cardiovascular diseases. However, the role of PRR in alcoholic cardiomyopathy (ACM), which is caused by alcohol intake and manifests as myocardial damage and cardiac dysfunction, remains unclear. METHODS: PRR gene silencing was achieved by transfecting recombinant adenovirus expressing anti-PRR short hairpin RNA (PRR-shRNA). In vitro, primary rat cardiac fibroblasts (CFs) were cultured with the stimulation of alcohol (200 mM), with or without PRR-shRNA and PD98059. Immunofluorescence, RT-PCR, and Western blot were used to measure the protein and messenger (mRNA) expression of PRR, fibrotic factors, and members of related signaling pathways. In vivo, Wistar rats were fed a diet containing 9% (v/v) alcohol or a normal diet for 3 months, with or without PRR-shRNA. Sirius Red staining, immunohistochemical staining, and toluidine blue staining were used to evaluate myocardial fibrosis, oxidative stress, and inflammation response. RESULTS: Alcohol markedly increased PRR mRNA and protein expression in a time- and concentration-dependent manner in CFs. The increased expression of fibrotic factors induced by alcohol was prevented by PRR-shRNA and PD98059. Moreover, PRR-shRNA decreased the phosphorylation of extracellular regulated protein kinases (ERK) 1/2 in CFs. Furthermore, PRR-shRNA decreased cardiac fibrosis, reduced oxidative stress, and alleviated inflammation response in the myocardial tissue. CONCLUSIONS: Our results show that PRR-ERK1/2 signaling was involved in the development of ACM and that PRR could be a new target for the treatment of ACM.


Assuntos
Receptores de Superfície Celular/metabolismo , Animais , Western Blotting , Cardiomiopatia Alcoólica/metabolismo , Etanol/efeitos adversos , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Pró-Renina
20.
Alcohol Clin Exp Res ; 43(7): 1452-1461, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31034614

RESUMO

BACKGROUND: The Lieber-DeCarli alcoholic liquid diet is a classical method for establishing animal models of alcoholic cardiomyopathy (ACM). No study has reported whether the AIN-93 diet, which is widely used as a standard diet for both long-term and short-term studies with laboratory animals, could be used to construct the ACM animal model. The present study intended to investigate whether the AIN-93 diet could be used to establish a mouse ACM model. METHODS: Twenty-four C57BL/6 male mice were randomly divided into 4 equally sized groups. In ethanol (EtOH)-fed groups, mice were fed a 4%-EtOH (w/v, 28% of total calories) alcoholic liquid diet of Lieber-DeCarli or the AIN-93 diet for chronic alcohol exposure for 180 days. In control-fed groups, mice were fed with non-EtOH liquid diets with the same calories as EtOH-fed groups. Morphological observations of the hearts and molecular investigation of the brain natriuretic peptide (BNP) were carried out by echocardiography, hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining, real-time quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay. RESULTS: Echocardiography showed that mice fed with either the 4%-EtOH Lieber-DeCarli diet or the 4%-EtOH AIN-93 diet had dilated ventricles and poor cardiac function. IHC staining of BNP, qPCR of BNP mRNA, and plasma concentration of BNP showed an up-regulated expression in mice fed with both the 4%-EtOH Lieber-DeCarli and 4%-EtOH AIN-93 diets. Less fatty liver was also observed in mice fed the AIN-93 alcoholic diet than those fed the Lieber-DeCarli alcoholic diet. CONCLUSIONS: The AIN-93 alcoholic liquid diet can be used to establish ACM animal models, as with the conventional Lieber-DeCarli alcoholic liquid diet.


Assuntos
Cardiomiopatia Alcoólica/etiologia , Dieta/efeitos adversos , Animais , Cardiomiopatia Alcoólica/diagnóstico por imagem , Cardiomiopatia Alcoólica/metabolismo , Depressores do Sistema Nervoso Central/toxicidade , Modelos Animais de Doenças , Ecocardiografia , Etanol/toxicidade , Fígado Gorduroso/patologia , Ventrículos do Coração/patologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Peptídeo Natriurético Encefálico/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA