Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
Stress ; 27(1): 2357330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38775373

RESUMO

Why individuals suffer negative consequences following stress is a complex phenomenon that is dictated by individual factors, the timing of stress within the lifespan, and when in the lifespan the consequences are measured. Women who undergo adverse childhood experiences are at risk for lasting biological consequences, including affective and stress dysregulation. We have shown that pubertal adversity is associated with a blunted hypothalamic-pituitary-adrenal axis glucocorticoid response in peripartum humans and mice. In mice, our prior examination of the paraventricular nucleus (PVN) of the hypothalamus showed that pubertal stress led to an upregulation of baseline mRNA expression of six immediate early genes (IEGs) in the PVN of adult, pregnant mice. Separately, we showed that the pregnancy-associated hormone allopregnanolone is necessary and sufficient to produce the blunted stress response phenotype in pubertally stressed mice. In the current study, we further examined a potential mechanistic role for the IEGs in the PVN. We found that in pubertally stressed adult female, but not male, mice, intra-PVN allopregnanolone was sufficient to recapitulate the baseline IEG mRNA expression profile previously observed in pubertally stressed, pregnant mice. We also examined baseline IEG mRNA expression during adolescence, where we found that IEGs have developmental trajectories that showed sex-specific disruption by pubertal stress. Altogether, these data establish that IEGs may act as a key molecular switch involved in increased vulnerability to negative outcomes in adult, pubertally stressed animals. How the factors that produce vulnerability combine throughout the lifespan is key to our understanding of the etiology of stress-related disorders.


Assuntos
Núcleo Hipotalâmico Paraventricular , Estresse Psicológico , Transcriptoma , Animais , Feminino , Masculino , Camundongos , Estresse Psicológico/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Pregnanolona , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Gravidez , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Maturidade Sexual , Genes Precoces
2.
Epilepsia ; 65(3): e41-e46, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243753

RESUMO

Trilostane is a 3ß-hydroxysteroid dehydrogenase/Δ5-4 isomerase inhibitor able to produce a manyfold increase in brain levels of various neurosteroids, including allopregnanolone. We previously found that treatment with trilostane can slow down epileptogenesis in the kainic acid (KA) model of temporal lobe epilepsy. It is unknown whether trilostane may have a similar effect on the progression of epilepsy severity, as observed in KA-treated rats. Consequently, we investigated the effects of trilostane (50 mg/kg/day, 1 week) in epileptic rats, given 64 days after KA administration. Seizures were monitored by video-electrocorticographic recordings before and during the treatment with trilostane or vehicle (sesame oil), and neurosteroid levels were measured in serum and cerebral tissue using liquid chromatography-electrospray tandem mass spectrometry after treatment. Pregnenolone sulfate, pregnenolone, progesterone, 5α-dihydroprogesterone, and allopregnanolone peripheral levels were massively increased by trilostane. With the only exception of hippocampal pregnenolone sulfate, the other neurosteroids augmented in both the neocortex and hippocampus. Only pregnanolone levels were not upregulated by trilostane. As expected, a significant increase in the seizure occurrence was observed in rats receiving the vehicle, but not in the trilostane group. This suggests that the increased availability of neurosteroids produced a disease-modifying effect in the brain of epileptic rats.


Assuntos
Epilepsia , Neuroesteroides , Ratos , Animais , Neuroesteroides/farmacologia , Pregnanolona/farmacologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Encéfalo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
3.
Acta Psychiatr Scand ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923502

RESUMO

BACKGROUND: Perinatal depression (PND) is a debilitating condition affecting maternal well-being and child development. Allopregnanolone (ALLO) is important to perinatal neuroplasticity, however its relationship with depression severity and postpartum structural brain volume is unknown. METHOD: We examined perinatal temporal dynamics and bidirectional associations between ALLO and depression severity and the association between these variables and postpartum gray matter volume, using a random intercept cross-lagged panel model. RESULTS: We identified a unidirectional predictive relationship between PND severity and ALLO concentration, suggesting greater depression severity early in the perinatal period may contribute to subsequent changes in ALLO concentration (ß = 0.26, p = 0.009), while variations in ALLO levels during the perinatal period influences the development and severity of depressive symptoms later in the postpartum period (ß = 0.38, p = 0.007). Antepartum depression severity (Visit 2, ß = 0.35, p = 0.004), ALLO concentration (Visit 2, ß = 0.37, p = 0.001), and postpartum depression severity (Visit 3, ß = 0.39, p = 0.031), each predicted the right anterior cingulate volume. Antepartum ALLO concentration (Visit 2, ß = 0.29, p = 0.001) predicted left suborbital sulcus volume. Antepartum depression severity (Visit 1, ß = 0.39, p = 0.006 and Visit 2, ß = 0.48, p < 0.001) predicted the right straight gyrus volume. Postpartum depression severity (Visit 3, ß = 0.36, p = 0.001) predicted left middle-posterior cingulate volume. CONCLUSION: These results provide the first evidence of bidirectional associations between perinatal ALLO and depression severity with postpartum gray matter volume.

4.
Eur Arch Psychiatry Clin Neurosci ; 274(3): 515-524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37086304

RESUMO

The progression of bipolar disorder (BD) is characterized by recurrent episodes of depression, mania, and hypomania, thus affecting the daily functionality of individuals. Previous studies have shown that a large proportion of patients diagnosed with BD who are in clinical remission experience significant functional disorders. The present study aimed to investigate the relationships between cognitive impairment and serum progesterone, allopregnanolone and BDNF levels in male bipolar disorder patients who are in the euthymic period. Our study included 41 euthymic male patients with bipolar disorder and 40 age, sex, body mass index (BMI) and smoking-matched male healthy control subjects. Neuropsychiatric tests such as the Stroop Test TBAG Form, Auditory Verbal Digit Span Test- Form B (VADS-B) and Cancellation Test were administered to all participants, and 5-7 ml of peripheral venous blood sample was taken from all participants. Serum allopregnanolone, progesterone and BDNF levels were also measured in all participants. Serum allopregnanolone and progesterone levels were found to be lower in bipolar patients, and it was observed that the serum level of allopregnanolone decreased as the disease duration increased. The serum BDNF levels were similar between groups. The cognitive functions assessed using the Stroop, VADS-B and cancellation tests were found to be better in healthy subjects. The neurocognitive test performances of all participants were strongly positively correlated with allopregnanolone levels. The present study supports the hypothesis that allopregnanolone acts as an endogenous mood stabilizer.


Assuntos
Transtorno Bipolar , Humanos , Masculino , Transtorno Bipolar/psicologia , Pregnanolona , Progesterona , Fator Neurotrófico Derivado do Encéfalo , Testes Neuropsicológicos , Cognição , Mania
5.
J Anesth ; 38(2): 261-274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252143

RESUMO

Neurosteroids (NS) are a class of steroids that are synthesized within the central nervous system (CNS). Various NS can either enhance or inhibit CNS excitability and they play important biological roles in brain development, brain function and as mediators of mood. One class of NS, 3α-hydroxy-pregnane steroids such as allopregnanolone (AlloP) or pregnanolone (Preg), inhibits neuronal excitability; these endogenous NS and their analogues have been therapeutically applied as anti-depressants, anti-epileptics and general anesthetics. While NS have many favorable properties as anesthetics (e.g. rapid onset, rapid recovery, minimal cardiorespiratory depression, neuroprotection), they are not currently in clinical use, largely due to problems with formulation. Recent advances in understanding NS mechanisms of action and improved formulations have rekindled interest in development of NS as sedatives and anesthetics. In this review, the synthesis of NS, and their mechanism of action will be reviewed with specific emphasis on their binding sites and actions on γ-aminobutyric acid type A (GABAA) receptors. The potential advantages of NS analogues as sedative and anesthetic agents will be discussed.


Assuntos
Anestésicos Gerais , Anestésicos , Neuroesteroides , Anestésicos Gerais/efeitos adversos , Anestésicos/efeitos adversos , Pregnanolona/farmacologia , Ácido gama-Aminobutírico , Receptores de GABA-A
6.
J Neurochem ; 167(2): 154-167, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458164

RESUMO

Mitochondrial enzyme 17ß-hydroxysteroid dehydrogenase type 10 (HSD10) is a potential molecular target for treatment of mitochondrial-related disorders such as Alzheimer's disease (AD). Its over-expression in AD brains is one of the critical factors disturbing the homeostasis of neuroprotective steroids and exacerbating amyloid beta (Aß)-mediated mitochondrial toxicity and neuronal stress. This study was focused on revalidation of the most potent HSD10 inhibitors derived from benzothiazolyl urea scaffold using fluorescent-based enzymatic assay with physiologically relevant substrates of 17ß-oestradiol and allopregnanolone. The oestradiol-based assay led to the identification of two nanomolar inhibitors (IC50 70 and 346 nM) differing from HSD10 hits revealed from the formerly used assay. Both identified inhibitors were found to be effective also in allopregnanolone-based assay with non-competitive or uncompetitive mode of action. In addition, both inhibitors were confirmed to penetrate the HEK293 cells and they were able to inhibit the HSD10 enzyme in the cellular environment. Both molecules seem to be potential lead structures for further research and development of HDS10 inhibitors.

7.
Neurobiol Dis ; 183: 106169, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257664

RESUMO

Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.


Assuntos
Fármacos Neuroprotetores , Neuroesteroides , Doença de Parkinson , Humanos , Neuroesteroides/metabolismo , Fármacos Neuroprotetores/farmacologia , 5-alfa-Di-Hidroprogesterona/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , Encéfalo/metabolismo , Esteroides/metabolismo
8.
Front Neuroendocrinol ; 66: 101007, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623450

RESUMO

Around 80% of women worldwide suffer mild Premenstrual Disorders (PMD) during their reproductive life. Up to a quarter are affected by moderate to severe symptoms, and between 3% and 8% experience a severe form. It is classified as premenstrual syndrome (PMS) with predominantly physical symptoms and premenstrual dysphoric disorder (PMDD) with psychiatric symptoms. The present review analyzes the factors associated with PMD and the Hypothalamus-Pituitary-Ovarian or Hypothalamus-Pituitary-adrenal axis and discusses the main animal models used to study PMDD. Evidence shows that the ovarian hormones participate in PMDD symptoms, and several points of regulation of their synthesis, metabolism, and target sites could be altered. PMDD is complex and implies several factors that require consideration when this condition is modeled in animals. Of particular interest are those points related to areas that may represent opportunities to develop new approximations to understand the mechanisms involved in PMDD and possible treatments.


Assuntos
Transtorno Disfórico Pré-Menstrual , Síndrome Pré-Menstrual , Animais , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Modelos Animais , Sistema Hipófise-Suprarrenal/metabolismo , Síndrome Pré-Menstrual/diagnóstico , Síndrome Pré-Menstrual/metabolismo , Síndrome Pré-Menstrual/psicologia
9.
Front Neuroendocrinol ; 66: 100998, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597328

RESUMO

Differential HPA axis function has been proposed to underlie sex-differences in mental disorders; however, the impact of fluctuating sex hormones across the menstrual cycle on HPA axis activity is still unclear. This meta-analysis investigated basal cortisol concentrations as a marker for HPA axis activity across the menstrual cycle. Through a systematic literature search of five databases, 121 longitudinal studies were included, summarizing data of 2641 healthy, cycling participants between the ages of 18 and 45. The meta-analysis showed higher cortisol concentrations in the follicular vs. luteal phase (dSMC = 0.12, p =.004, [0.04 - 0.20]). Comparisons between more precise cycle phases were mostly insignificant, aside from higher concentrations in the menstrual vs. premenstrual phase (dSMC = 0.17, [0.02 - 0.33], p =.03). In all included studies, nine samples used established cortisol parameters to indicate HPA axis function, specifically diurnal profiles (k = 4) and the cortisol awakening response (CAR) (k = 5). Therefore, the meta-analysis highlights the need for more rigorous investigation of HPA axis activity and menstrual cycle phase.


Assuntos
Hidrocortisona , Sistema Hipotálamo-Hipofisário , Adolescente , Adulto , Feminino , Humanos , Hidrocortisona/análise , Sistema Hipotálamo-Hipofisário/fisiologia , Ciclo Menstrual/fisiologia , Pessoa de Meia-Idade , Sistema Hipófise-Suprarrenal/fisiologia , Saliva/química , Adulto Jovem
10.
Dev Neurosci ; 45(5): 290-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37004512

RESUMO

Disruptions to neurodevelopment are known to be linked to behavioral disorders in childhood and into adulthood. The fetal brain is extremely vulnerable to stimuli that alter inhibitory GABAergic pathways and critical myelination processes, programing long-term neurobehavioral disruption. The maturation of the GABAergic system into the major inhibitory pathway in the brain and the development of oligodendrocytes into mature cells capable of producing myelin are integral components of optimal neurodevelopment. The current study aimed to elucidate prenatal stress-induced mechanisms that disrupt these processes and to delineate the role of placental pathways in these adverse outcomes. Pregnant guinea pig dams were exposed to prenatal stress with strobe light exposure for 2 h/day on gestational age (GA) 35, 40, 45, 50, 55, 60, and 65, and groups of fetuses and placentae were collected after the stress exposure on GA40, GA50, GA60, and GA69 (term). Fetal plasma, placental, and brain tissue were collected for allopregnanolone and cortisol quantification with ELISA. Relative mRNA expression of genes of specific pathways of interest was examined with real-time PCR in placental and hippocampal tissue, and myelin basic protein (MBP) was quantified immunohistochemically in the hippocampus and surrounding regions for assessment of mature myelin. Prenatal stress in mid-late gestation resulted in disruptions to the translational machinery responsible for the production of myelin and decreased myelin coverage in the hippocampus and surrounding regions. The male placenta showed an initial protective increase in allopregnanolone concentrations in response to maternal psychosocial stress. The male and female placentae had a sex-dependent increase in neurosteroidogenic enzymes at term following prenatal stress. Independent from exposure to prenatal stress, at gestational day 60 - a critical period for myelin development, the placentae of female fetuses had increased capability of preventing cortisol transfer to the fetus through expression of 11-beta-hydroxysteroid dehydrogenase types 1 and 2. The deficits early in the process of maturation of myelination indicate that the reduced myelination observed at childhood equivalence in previous studies begins in fetal life. This negative programing persists into childhood, potentially due to dysregulation of MBP translation processes. Expression patterns of neurosteroidogenic enzymes in the placenta at term following stress may identify at-risk fetuses that have been exposed to a stressful in utero environment.

11.
J Intern Med ; 294(3): 281-294, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37518841

RESUMO

The prevalence of cognitive dysfunction, dementia, and neurodegenerative disorders such as Alzheimer's disease (AD) is increasing in parallel with an aging population. Distinct types of chronic stress are thought to be instrumental in the development of cognitive impairment in central nervous system (CNS) disorders where cognitive impairment is a major unmet medical need. Increased GABAergic tone is a mediator of stress effects but is also a result of other factors in CNS disorders. Positive GABA-A receptor modulating stress and sex steroids (steroid-PAMs) such as allopregnanolone (ALLO) and medroxyprogesterone acetate can provoke impaired cognition. As such, ALLO impairs memory and learning in both animals and humans. In transgenic AD animal studies, continuous exposure to ALLO at physiological levels impairs cognition and increases degenerative AD pathology, whereas intermittent ALLO injections enhance cognition, indicating pleiotropic functions of ALLO. We have shown that GABA-A receptor modulating steroid antagonists (GAMSAs) can block the acute negative cognitive impairment of ALLO on memory in animal studies and in patients with cognitive impairment due to hepatic encephalopathy. Here we describe disorders affected by steroid-PAMs and opportunities to treat these adverse effects of steroid-PAMs with novel GAMSAs.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Neuroesteroides , Animais , Humanos , Idoso , Receptores de GABA-A , Neuroesteroides/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Pregnanolona/farmacologia , Doença de Alzheimer/tratamento farmacológico , Ácido gama-Aminobutírico/farmacologia
12.
J Transl Med ; 21(1): 825, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978513

RESUMO

BACKGROUND: Causative genetic variants cannot yet be found for many disorders with a clear heritable component, including chronic fatigue disorders like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). These conditions may involve genes in difficult-to-align genomic regions that are refractory to short read approaches. Structural variants in these regions can be particularly hard to detect or define with short reads, yet may account for a significant number of cases. Long read sequencing can overcome these difficulties but so far little data is available regarding the specific analytical challenges inherent in such regions, which need to be taken into account to ensure that variants are correctly identified. Research into chronic fatigue disorders faces the additional challenge that the heterogeneous patient populations likely encompass multiple aetiologies with overlapping symptoms, rather than a single disease entity, such that each individual abnormality may lack statistical significance within a larger sample. Better delineation of patient subgroups is needed to target research and treatment. METHODS: We use nanopore sequencing in a case of unexplained severe fatigue to identify and fully characterise a large inversion in a highly homologous region spanning the AKR1C gene locus, which was indicated but could not be resolved by short-read sequencing. We then use GC-MS/MS serum steroid analysis to investigate the functional consequences. RESULTS: Several commonly used bioinformatics tools are confounded by the homology but a combined approach including visual inspection allows the variant to be accurately resolved. The DNA inversion appears to increase the expression of AKR1C2 while limiting AKR1C1 activity, resulting in a relative increase of inhibitory GABAergic neurosteroids and impaired progesterone metabolism which could suppress neuronal activity and interfere with cellular function in a wide range of tissues. CONCLUSIONS: This study provides an example of how long read sequencing can improve diagnostic yield in research and clinical care, and highlights some of the analytical challenges presented by regions containing tandem arrays of genes. It also proposes a novel gene associated with a novel disease aetiology that may be an underlying cause of complex chronic fatigue. It reveals biomarkers that could now be assessed in a larger cohort, potentially identifying a subset of patients who might respond to treatments suggested by the aetiology.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Espectrometria de Massas em Tandem , Biomarcadores , Hidroxiesteroide Desidrogenases
13.
Neuroendocrinology ; 113(1): 14-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35760047

RESUMO

Neuroactive steroids can be synthetic or endogenous molecules produced by neuronal and glial cells and peripheral glands. Examples include estrogens, testosterone, progesterone and its reduced metabolites such as 5α-dihydro-progesterone and allopregnanolone. Steroids produced by neurons and glia target the nervous system and are called neurosteroids. Progesterone and analog molecules, known as progestogens, have been shown to exhibit neurotrophic, neuroprotective, antioxidant, anti-inflammatory, glial modulatory, promyelinating, and remyelinating effects in several experimental models of neurodegenerative and injury conditions. Pleiotropic mechanisms of progestogens may act synergistically to prevent neuron degeneration, astrocyte and microglial reactivity, reducing morbidity and mortality. The aim of this review is to summarize the significant findings related to the actions of progesterone and other progestogens in experimental models and epidemiological and clinical trials of some of the most prevalent and debilitating chronic neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. We evaluated progestogen alterations under pathological conditions, how pathology modifies their levels, as well as the intracellular mechanisms and glial interactions underlying their neuroprotective effects. Furthermore, an analysis of the potential of natural progestogens and synthetic progestins as neuroprotective and regenerative agents, when administered as hormone replacement therapy in menopause, is also discussed.


Assuntos
Doença de Alzheimer , Progestinas , Feminino , Humanos , Progestinas/farmacologia , Progestinas/uso terapêutico , Progestinas/metabolismo , Progesterona/farmacologia , Progesterona/uso terapêutico , Progesterona/metabolismo , Neuroproteção , Doença de Alzheimer/metabolismo , Neurônios/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-37980294

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) has proven effective in the treatment of major depression. The underlying mechanisms of action are still poorly understood. We aimed to evaluate the changes in the levels of neuroactive steroids, neurotrophins and immunological biomarkers before and after rTMS treatment and assess the relationship of this change between clinical response and cognitive functions after monotherapy rTMS treatment. Twenty-three patients with major depressive disorder (MDD) and 25 matched healthy controls were included in the study. The Hamilton Depression Rating Scale (HDRS), Trail Making Test A and B forms and Digit Span Test were administered. Biomarkers (BDNF, TNF-α, IL-1ß, NAS) were run in the peripheral blood at the end of the first month that rTMS was administered daily and at the end of the 2nd month when that rTMS was administered once a week. Appropriate conditions were provided so that the relevant biomarkers were not affected by the biorhythm. After rTMS monotherapy, an increase in BDNF and allopregnanolone, a decrease in TNF-α, IL-1ß, DHEA, and DHEA-S levels was found to be statistically significant. The scores on cognitive tests increased with the treatment. Positive significant correlations was found between BDNF levels and cognitive tests at the end of the first and second months. Our findings suggest that the effects of rTMS treatment may be related to the neuroendocrine, neurotrophin, and immunological mechanisms. rTMS treatment is found to have positive effects on cognitive functions in the short term.

15.
Acta Obstet Gynecol Scand ; 102(10): 1316-1322, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36944570

RESUMO

INTRODUCTION: The mechanism underlying endometriosis-related pain remains poorly understood. Previous studies have indicated that γ-aminobutyric acid (GABA) type A (GABAA ) receptors and GABAergic substances (eg endogenous neurosteroids) play important mechanistic roles in various pain conditions. Our primary objective was to compare GABAA receptor function between women with endometriosis and healthy controls by performing a challenge test with diazepam, a GABAA receptor agonist, using the saccadic eye velocity as the main outcome. The secondary objective was to investigate the relation between GABAA receptor function and serum levels of allopregnanolone, an endogenous positive modulator of the GABAA receptor, in the participating women. MATERIAL AND METHODS: 15 women with pelvic pain and laparoscopically confirmed endometriosis and 10 healthy, symptom-free, control women, aged 18-40 years, underwent the diazepam challenge test during the follicular phase of the menstrual cycle. Basal serum allopregnanolone levels were measured prior to diazepam injection. RESULTS: Compared with healthy controls, women with pelvic pain and confirmed endometriosis had a significantly smaller change in saccadic eye velocity after GABAA receptor stimulation with diazepam, indicating lower sensitivity to diazepam. The saccadic eye velocity response was not correlated with the serum allopregnanolone levels. CONCLUSIONS: Women with painful endometriosis show altered GABAA receptor function, depicted as a muted response to an exogenous GABAA receptor agonist.


Assuntos
Endometriose , Receptores de GABA-A , Feminino , Humanos , Receptores de GABA-A/fisiologia , Pregnanolona , Ácido gama-Aminobutírico , Diazepam , Hormônios Esteroides Gonadais , Dor Pélvica
16.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674713

RESUMO

Patients affected by diabetes mellitus (DM) show diabetic encephalopathy with an increased risk of cognitive deficits, dementia and Alzheimer's disease, but the mechanisms are not fully explored. In the male animal models of DM, the development of cognitive impairment seems to be the result of the concomitance of different processes such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and aberrant synaptogenesis. However, even if diabetic encephalopathy shows some sex-dimorphic features, no observations in female rats have been so far reported on these aspects. Therefore, in an experimental model of type 1 DM (T1DM), we explored the impact of one month of pathology on memory abilities by the novel object recognition test and on neuroinflammation, synaptogenesis and mitochondrial functionality. Moreover, given that steroids are involved in memory and learning, we also analysed their levels and receptors. We reported that memory dysfunction can be associated with different features in the female hippocampus and cerebral cortex. Indeed, in the hippocampus, we observed aberrant synaptogenesis and neuroinflammation but not mitochondrial dysfunction and oxidative stress, possibly due to the results of locally increased levels of progesterone metabolites (i.e., dihydroprogesterone and allopregnanolone). These observations suggest specific brain-area effects of T1DM since different alterations are observed in the cerebral cortex.


Assuntos
Diabetes Mellitus Tipo 1 , Feminino , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Doenças Neuroinflamatórias , Aprendizagem em Labirinto , Encéfalo/metabolismo , Hipocampo/metabolismo , Estresse Oxidativo
17.
Mol Pain ; 18: 17448069211069255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35040378

RESUMO

Orofacial pain disorders are predominately experienced by women. Progesterone, a major ovarian hormone, is neuroprotective and antinociceptive. We recently reported that progesterone attenuates estrogen-exacerbated orofacial pain behaviors, yet it remains unclear what anatomical substrate underlies progesterone's activity in the trigeminal system. Progesterone has been reported to exert protective effects through actions at intracellular progesterone receptors (iPR), membrane-progesterone receptors (mPR), or sigma 1 receptors (Sig-1R). Of these, the iPR and Sig-1R have been reported to have a role in pain. Progesterone can also have antinociceptive effects through its metabolite, allopregnanolone. Two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD), are required for the metabolism of progesterone to allopregnanolone. Both progesterone and allopregnanolone rapidly attenuate pain sensitivity, implicating action of either progesterone at Sig-1R and/or conversion to allopregnanolone which targets GABAA receptors. In the present study, we investigated whether Sig-1 Rs are expressed in nociceptors within the trigeminal ganglia of cycling female rats and whether the two enzymes required for progesterone metabolism to allopregnanolone, 5α-reductase and 3α-hydroxysteroid dehydrogenase, are also present. Adult female rats from each stage of the estrous cycle were rapidly decapitated and the trigeminal ganglia collected. Trigeminal ganglia were processed by either fluorescent immunochemistry or western blotting to for visualization and quantification of Sig-1R, 5α-reductase, and 3α-hydroxysteroid dehydrogenase. Here we report that Sig-1Rs and both enzymes involved in progesterone metabolism are highly expressed in a variety of nociceptive sensory neuron populations in the female rat trigeminal ganglia at similar levels across the four stages of the estrous cycle. These data indicate that trigeminal sensory neurons are an anatomical substrate for the reported antinociceptive activity of progesterone via Sig-1R and/or conversion to allopregnanolone.


Assuntos
Nociceptores , Progesterona , Analgésicos , Animais , Feminino , Humanos , Nociceptividade , Nociceptores/metabolismo , Progesterona/metabolismo , Progesterona/farmacologia , Ratos , Receptores sigma , Células Receptoras Sensoriais/metabolismo , Gânglio Trigeminal/metabolismo , Receptor Sigma-1
18.
Front Neuroendocrinol ; 62: 100929, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34171352

RESUMO

Women's increased risk for depression during reproductive transitions suggests an involvement of the hypothalamic-pituitary-ovarian (HPO) axis. This is the first systematic review and meta-analysis of HPO functioning in female mood disorders. Inclusionary criteria were: i) women suffering from premenstrual dysphoric disorder (PMDD) or a depressive disorder, ii) assessment of HPO-axis related biomarkers, iii) a case-control design. Sixty-three studies (N = 5,129) were included. There was evidence for PMDD to be paralleled by lower luteal oestradiol levels. Women with depression unrelated to reproductive transition showed lower testosterone levels than healthy controls and there was some evidence for lower dehydroepiandrosterone sulfate levels. There were no differences in HPO-related parameters between women with pregnancy, postpartum, and perimenopausal depression and controls. Women with PMDD and depression unrelated to reproductive transitions exhibit specific changes in the HPO-axis, which potentially contribute to their symptoms. Further research into reproductive mood disorders characterised by extreme endocrine changes is warranted.


Assuntos
Transtorno Disfórico Pré-Menstrual , Síndrome Pré-Menstrual , Feminino , Hormônios , Humanos , Transtornos do Humor , Gravidez
19.
Cell Mol Neurobiol ; 42(1): 23-40, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34138412

RESUMO

Progesterone regulates a number of processes in neurons and glial cells not directly involved in reproduction or sex behavior. Several neuroprotective effects are better observed under pathological conditions, as shown in the Wobbler mouse model of amyotrophic laterals sclerosis (ALS). Wobbler mice are characterized by forelimb atrophy due to motoneuron degeneration in the spinal cord, and include microgliosis and astrogliosis. Here we summarized current evidence on progesterone reversal of Wobbler neuropathology. We demonstrated that progesterone decreased motoneuron vacuolization with preservation of mitochondrial respiratory complex I activity, decreased mitochondrial expression and activity of nitric oxide synthase, increased Mn-dependent superoxide dismutase, stimulated brain-derived neurotrophic factor, increased the cholinergic phenotype of motoneurons, and enhanced survival with a concomitant decrease of death-related pathways. Progesterone also showed differential effects on glial cells, including increased oligodendrocyte density and downregulation of astrogliosis and microgliosis. These changes associate with reduced anti-inflammatory markers. The enhanced neurochemical parameters were accompanied by longer survival and increased muscle strength in tests of motor behavior. Because progesterone is locally metabolized to allopregnanolone (ALLO) in nervous tissues, we also studied neuroprotection by this derivative. Treatment of Wobbler mice with ALLO decreased oxidative stress and glial pathology, increased motoneuron viability and clinical outcome in a progesterone-like manner, suggesting that ALLO could mediate some progesterone effects in the spinal cord. In conclusion, the beneficial effects observed in different parameters support the versatile properties of progesterone and ALLO in a mouse model of motoneuron degeneration. The studies foresee future therapeutic opportunities with neuroactive steroids for deadly diseases like ALS.


Assuntos
Esclerose Lateral Amiotrófica , Fármacos Neuroprotetores , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Camundongos , Neurônios Motores , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pregnanolona/metabolismo , Pregnanolona/farmacologia , Pregnanolona/uso terapêutico , Progesterona/metabolismo , Progesterona/farmacologia , Progesterona/uso terapêutico , Medula Espinal/metabolismo
20.
Horm Behav ; 137: 104937, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33516727

RESUMO

In the phase between ovulation and potential implantation of the egg, and especially during pregnancy, females downregulate their immune system to prevent it from attacking the (future) embryo, which is after all a half-foreign organism. Yet this adaptive mechanism, that is set off by rising progesterone, makes females more vulnerable to pathogens at those critical times. It has been proposed that, to compensate this depression of physiological immunity, progesterone reinforces behavioral immunity-by increasing proneness to disgust and hence active avoidance of infection-but evidence is inconclusive and indirect. Manipulating progesterone directly, a recent, crucial study on female mice's disgust for infected males came up empty handed. Here, reanalyzing these data in a more statistically sensitive manner, we show that progesterone not only raises disgust but does so in a way that is both significant and substantial.


Assuntos
Asco , Animais , Feminino , Sistema Imunitário , Masculino , Camundongos , Gravidez , Progesterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA