Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38652808

RESUMO

In fungi, fusion between individuals leads to localized cell death, a phenomenon termed heterokaryon incompatibility. Generally, the genes responsible for this incompatibility are observed to be under balancing selection resulting from negative frequency-dependent selection. Here, we assess this phenomenon in Aspergillus fumigatus, a human pathogenic fungus with a very low level of linkage disequilibrium as well as an extremely high crossover rate. Using complementation of auxotrophic mutations as an assay for hyphal compatibility, we screened sexual progeny for compatibility to identify genes involved in this process, called het genes. In total, 5/148 (3.4%) offspring were compatible with a parent and 166/2,142 (7.7%) sibling pairs were compatible, consistent with several segregating incompatibility loci. Genetic mapping identified five loci, four of which could be fine mapped to individual genes, of which we tested three through heterologous expression, confirming their causal relationship. Consistent with long-term balancing selection, trans-species polymorphisms were apparent across several sister species, as well as equal allele frequencies within A. fumigatus. Surprisingly, a sliding window genome-wide population-level analysis of an independent dataset did not show increased Tajima's D near these loci, in contrast to what is often found surrounding loci under balancing selection. Using available de novo assemblies, we show that these balanced polymorphisms are restricted to several hundred base pairs flanking the coding sequence. In addition to identifying the first het genes in an Aspergillus species, this work highlights the interaction of long-term balancing selection with rapid linkage disequilibrium decay.


Assuntos
Aspergillus fumigatus , Desequilíbrio de Ligação , Seleção Genética , Aspergillus fumigatus/genética , Genes Fúngicos , Frequência do Gene
2.
Annu Rev Microbiol ; 74: 693-712, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32689913

RESUMO

Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.


Assuntos
Proteínas Fúngicas/genética , Fungos/genética , Regulação Fúngica da Expressão Gênica , Interações Microbianas/genética , Alelos , Apoptose , Evolução Molecular , Proteínas Fúngicas/metabolismo , Fungos/classificação , Haplótipos , Interações Microbianas/fisiologia , Filogenia
3.
Proc Natl Acad Sci U S A ; 119(40): e2207374119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161920

RESUMO

Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.


Assuntos
Hidrozoários , Imunoglobulinas , Complexo Principal de Histocompatibilidade , Animais , Hidrozoários/genética , Hidrozoários/imunologia , Imunoglobulinas/química , Imunoglobulinas/genética , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Domínios Proteicos , Tirosina/química , Tirosina/genética
4.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34169317

RESUMO

Allorecognition and tissue formation are interconnected processes that require signaling between matching pairs of the polymorphic transmembrane proteins TgrB1 and TgrC1 in Dictyostelium. Extracellular and intracellular cAMP signaling are essential to many developmental processes. The three adenylate cyclase genes, acaA, acrA and acgA are required for aggregation, culmination and spore dormancy, respectively, and some of their functions can be suppressed by activation of the cAMP-dependent protein kinase PKA. Previous studies have suggested that cAMP signaling might be dispensable for allorecognition and tissue formation, while others have argued that it is essential throughout development. Here, we show that allorecognition and tissue formation do not require cAMP production as long as PKA is active. We eliminated cAMP production by deleting the three adenylate cyclases and overexpressed PKA-C to enable aggregation. The cells exhibited cell polarization, tissue formation and cooperation with allotype-compatible wild-type cells, but not with incompatible cells. Therefore, TgrB1-TgrC1 signaling controls allorecognition and tissue formation, while cAMP is dispensable as long as PKA-C is overexpressed.


Assuntos
Dictyostelium , Adenilil Ciclases/genética , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/genética , Dictyostelium/genética , Proteínas de Protozoários/genética
5.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901975

RESUMO

Intestinal transplantation (ITx) remains a lifesaving option for patients suffering from irreversible intestinal failure and complications from total parenteral nutrition. Since its inception, it became obvious that intestinal grafts are highly immunogenic, due to their high lymphoid load, the abundance in epithelial cells and constant exposure to external antigens and microbiota. This combination of factors and several redundant effector pathways makes ITx immunobiology unique. To this complex immunologic situation, which leads to the highest rate of rejection among solid organs (>40%), there is added the lack of reliable non-invasive biomarkers, which would allow for frequent, convenient and reliable rejection surveillance. Numerous assays, of which several were previously used in inflammatory bowel disease, have been tested after ITx, but none have shown sufficient sensibility and/or specificity to be used alone for diagnosing acute rejection. Herein, we review and integrate the mechanistic aspects of graft rejection with the current knowledge of ITx immunobiology and summarize the quest for a noninvasive biomarker of rejection.


Assuntos
Doenças Inflamatórias Intestinais , Transplante de Fígado , Humanos , Rejeição de Enxerto/etiologia , Intestinos , Nutrição Parenteral Total
6.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569450

RESUMO

Allorecognition is known to involve a large number of lymphocytes carrying diverse T-cell receptor repertoire. Thus, one way to understand allorecognition and rejection mechanisms is via high-throughput sequencing of T-cell receptors. In this study, in order to explore and systematize the properties of the alloreactive T-cell receptor repertoire, we modeled direct and indirect allorecognition pathways using material from inbred mice in vitro and in vivo. Decoding of the obtained T-cell receptor genes using high-throughput sequencing revealed some features of the alloreactive repertoires. Thus, alloreactive T-cell receptor repertoires were characterized by specific V-gene usage patterns, changes in CDR3 loop length, and some amino acid occurrence probabilities in the CDR3 loop. Particularly pronounced changes were observed for directly alloreactive clonotypes. We also revealed a clustering of directly and indirectly alloreactive clonotypes by their ability to bind a single antigen; amino acid patterns of the CDR3 loop of alloreactive clonotypes; and the presence in alloreactive repertoires of clonotypes also associated with infectious, autoimmune, and tumor diseases. The obtained results were determined by the modeling of the simplified allorecognition reaction in inbred mice in which stimulation was performed with a single MHCII molecule. We suppose that the decomposition of the diverse alloreactive TCR repertoire observed in humans with transplants into such simple reactions will help to find alloreactive repertoire features; e.g., a dominant clonotype or V-gene usage pattern, which may be targeted to correct the entire rejection reaction in patients. In this work, we propose several technical ways for such decomposition analysis, including separate modeling of the indirect alloreaction pathway and clustering of alloreactive clonotypes according to their ability to bind a single antigen, among others.

7.
Annu Rev Genomics Hum Genet ; 20: 73-97, 2019 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30848957

RESUMO

Pregnancy presents a singular physiological scenario during which the maternal immune system must accommodate the semiallogeneic fetus. Fluctuations between pro- and anti-inflammatory states are required throughout gestation to facilitate uterine tissue remodeling, fetal growth and development, and finally birth. Tolerance for the fetus must be established and maintained without fundamentally compromising the maternal immune system function, so that both the mother and fetus are protected from foreign insults. Here, we review our current understanding of how genetic variation at both maternal and fetal loci affects implantation and placenta formation, thereby determining the likelihood of a successful pregnancy outcome or the development of pregnancy-related complications. We also consider the impact of pregnancy on both the maternal and fetal systemic immune systems and the related implications for modulating ongoing autoimmune diseases and triggering their development.


Assuntos
Doenças Autoimunes/genética , Feto/imunologia , Genoma Humano/imunologia , Sistema Imunitário/metabolismo , Placenta/imunologia , Complicações na Gravidez/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Variação Genética , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Sistema Imunitário/crescimento & desenvolvimento , Tolerância Imunológica , Imunogenética/métodos , Placenta/metabolismo , Gravidez , Complicações na Gravidez/imunologia , Complicações na Gravidez/patologia , Receptores KIR/genética , Receptores KIR/imunologia
8.
Immunogenetics ; 74(1): 27-34, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773127

RESUMO

Hydractinia symbiolongicarpus is a colonial hydroid and a long-standing model system for the study of invertebrate allorecognition. The Hydractinia allorecognition system allows colonies to discriminate between their own tissues and those of unrelated conspecifics that co-occur with them on the same substrate. This recognition mediates spatial competition and mitigates the risk of stem cell parasitism. Here, I review how we have come to our current understanding of the molecular basis of allorecognition in Hydractinia. To date, two allodeterminants have been identified, called Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which occupy a genomic region called the allorecognition complex (ARC). Both genes encode highly polymorphic cell surface proteins that are capable of homophilic binding, which is thought to be the mechanism of self/non-self discrimination. Here, I review how we have come to our current understanding of Alr1 and Alr2. Although both are members of the immunoglobulin superfamily, their evolutionary origins remain unknown. Moreover, existing data suggest that the ARC may be home to a family of Alr-like genes, and I speculate on their potential functions.


Assuntos
Hidrozoários , Animais , Hidrozoários/genética , Imunoglobulinas
9.
Immunogenetics ; 74(6): 559-581, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35761101

RESUMO

The genetics of allorecognition has been studied extensively in inbred lines of Hydractinia symbiolongicarpus, in which genetic control is attributed mainly to the highly polymorphic loci allorecognition 1 (Alr1) and allorecognition 2 (Alr2), located within the Allorecognition Complex (ARC). While allelic variation at Alr1 and Alr2 can predict the phenotypes in inbred lines, these two loci do not entirely predict the allorecognition phenotypes in wild-type colonies and their progeny, suggesting the presence of additional uncharacterized genes that are involved in the regulation of allorecognition in this species. Comparative genomics analyses were used to identify coding sequence differences from assembled chromosomal intervals of the ARC and from genomic scaffold sequences between two incompatible H. symbiolongicarpus siblings from a backcross population. New immunoglobulin superfamily (Igsf) genes are reported for the ARC, where five of these genes are closely related to the Alr1 and Alr2 genes, suggesting the presence of multiple Alr-like genes within this complex. Complementary DNA sequence evidence revealed that the allelic polymorphism of eight Igsf genes is associated with allorecognition phenotypes in a backcross population of H. symbiolongicarpus, yet that association was not found between parental colonies and their offspring. Alternative splicing was found as a mechanism that contributes to the variability of these genes by changing putative activating receptors to inhibitory receptors or generating secreted isoforms of allorecognition proteins. Our findings demonstrate that allorecognition in H. symbiolongicarpus is a multigenic phenomenon controlled by genetic variation in at least eight genes in the ARC complex.


Assuntos
Hidrozoários , Animais , Hidrozoários/genética , Alelos , Proteínas , Fenótipo , Polimorfismo Genético
10.
Fungal Genet Biol ; 159: 103671, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150840

RESUMO

Death is an important part of an organism's existence and also marks the end of life. On a cellular level, death involves the execution of complex processes, which can be classified into different types depending on their characteristics. Despite their "simple" lifestyle, fungi carry out highly specialized and sophisticated mechanisms to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal cell death. We also describe recent data on meiotic drive elements involved in "spore killing" and the molecular basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to antifungal agents.


Assuntos
Antifúngicos , Comunicação Celular , Morte Celular/genética , Fusão Celular
11.
Am J Kidney Dis ; 80(6): 718-729.e1, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35690154

RESUMO

RATIONALE & OBJECTIVE: The relationship between human leukocyte antigen (HLA) molecular mismatches and T-cell-mediated rejection (TCMR) is unknown. We investigated the associations between the different donor HLA-derived T-cell targets and the occurrence of TCMR and borderline histologic changes suggestive of TCMR after kidney transplantation. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: All kidney transplant recipients at a single center between 2004 and 2013 with available biopsy data and a DNA sample for high-resolution HLA donor/recipient typing (N = 893). EXPOSURE: Scores calculated by the HLA matching algorithm PIRCHE-II and HLA eplet mismatches. OUTCOME: TCMR, borderline changes suggestive of TCMR, and allograft failure. ANALYTICAL APPROACH: Multivariable cause-specific hazards models were fit to characterize the association between HLA epitopes targets and study outcomes. RESULTS: We found 277 patients developed TCMR, and 134 developed only borderline changes suggestive of TCMR on at least 1 biopsy. In multivariable analyses, only the PIRCHE-II scores for HLA-DRB1 and HLA-DQB1 were independently associated with the occurrence of TCMR and with allograft failure; this was not the case for HLA class I molecules. If restricted to rejection episodes within the first 3 months after transplantation, only the T-cell epitope targets originating from the donor's HLA-DRB1 and HLA-DQB1, but not class I molecules, were associated with the early acute TCMR. Also, the median PIRCHE-II score for HLA class II was statistically different between the patients with TCMR compared to the patients without TCMR (129 [IQR, 60-240] vs 201 [IQR, 96-298], respectively; P < 0.0001). These differences were not observed for class I PIRCHE-II scores. LIMITATIONS: Observational clinical data and residual confounding. CONCLUSIONS: In the absence of HLA-DSA, HLA class II but not class I mismatches are associated with early episodes of acute TCMR and allograft failure. This suggests that current immunosuppressive therapies are largely able to abort the most deleterious HLA class I-directed alloimmune processes; however, alloresponses against HLA-DRB1 and HLA-DQB1 molecular mismatches remain insufficiently suppressed. PLAIN-LANGUAGE SUMMARY: Genetic differences in the human leukocyte antigen (HLA) complex between kidney transplant donors and recipients play a central role in T-cell-mediated rejection (TCMR), which can lead to failure of the transplanted kidney. Evaluating this genetic disparity (mismatch) in the HLA complex at the molecular (epitope) level could contribute to better prediction of the immune response to the donor organ posttransplantation. We investigated the associations of the different donor HLA-derived T-cell epitope targets and scores obtained from virtual crossmatch algorithms with the occurrence of TCMR, borderline TCMR, and graft failure after kidney transplantation after taking into account the influence of donor-specific anti-HLA antibodies. This study illustrates the greater importance of the molecular mismatches in class II molecules compared to class I HLA molecules.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Epitopos de Linfócito T , Rejeição de Enxerto/epidemiologia , Sobrevivência de Enxerto , Estudos Retrospectivos , Cadeias HLA-DRB1 , Linfócitos T , Antígenos HLA/genética , Teste de Histocompatibilidade
12.
J Exp Zool B Mol Dev Evol ; 336(3): 191-197, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819384

RESUMO

The developmental and evolutionary principles of coloniality in marine animals remain largely unexplored. Although many common traits have evolved independently in different groups of colonial animals, questions about their significance for colonial life histories remain unanswered. In 2018 (Nov. 25 - Dec. 8), the inaugural course on the Evolution of Coloniality and Modularity took place at the Center for Marine Biology of the University of São Paulo (CEBIMAR-USP), Brazil. During the intensive two-week graduate-level course, we addressed some of the historical ideas about animal coloniality by focal studies in bryozoans, tunicates, cnidarians, and sponges. We discussed many historical hypotheses and ways to test these using both extant and paleontological data, and we carried direct observations of animal colonies in the different phyla to address questions about coloniality. We covered topics related to multi-level selection theory and studied colonial traits, including modular miniaturization, polymorphism, brooding, and allorecognition. Course participants carried out short research projects using local species of animals to address questions on allorecognition and regeneration in ascidians and sponges, fusion and chimerism in anthoathecate hydrozoans, and evolution of polymorphism in bryozoans. Although many questions remain unanswered, this course served as a foundation to continue to develop a developmental and evolutionary synthesis of clonal and modular development in colonial marine organisms.


Assuntos
Invertebrados/anatomia & histologia , Invertebrados/crescimento & desenvolvimento , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/fisiologia , Invertebrados/fisiologia
13.
J Exp Zool B Mol Dev Evol ; 336(3): 198-211, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32306502

RESUMO

Nearly half of the animal phyla contain species that propagate asexually via agametic reproduction, often forming colonies of genetically identical modules, that is, ramets, zooids, or polyps. Clonal reproduction, colony formation, and modular organization have important consequences for many aspects of organismal biology. Theories in ecology, evolution, and development are often based on unitary and, mainly, strictly sexually reproducing organisms, and though colonial animals dominate many marine ecosystems and habitats, recognized concepts for the study of clonal species are often lacking. In this review, we present an overview of the study of colonial and clonal animals, from the historic interests in this subject to modern research in a range of topics, including immunology, stem cell biology, aging, biogeography, and ecology. We attempt to portray the fundamental questions lying behind the biology of colonial animals, focusing on how colonial animals challenge several dogmas in biology as well as the remaining puzzles still to be answered, of which there are many.


Assuntos
Células Clonais , Invertebrados/crescimento & desenvolvimento , Invertebrados/fisiologia , Reprodução Assexuada , Animais , Organismos Aquáticos , Evolução Biológica , Invertebrados/anatomia & histologia
14.
Clin Transplant ; 35(9): e14406, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34180101

RESUMO

Signal-regulatory protein α (SIRPα), a polymorphic inhibitory membrane-bound receptor, and its ligand CD47 have recently been implicated in the modulation of innate immune allorecognition in murine models. Here, we investigate the potential impact of SIRPα donor-recipient mismatches on graft outcomes in human kidney transplantation. To eliminate the specific role of HLA-matching in alloresponse, we genotyped the two most common variants of SIRPα in a cohort of 55 HLA-identical, biologically-related, donor-recipient pairs. 69% of pairs were SIRPα identical. No significant differences were found between donor-recipient SIRPα-mismatch status and T cell-mediated rejection/borderline changes (25.8% vs. 25%) or slow graft function (15.8% vs. 17.6%). A trend towards more graft failure (GF) (23.5% vs. 5.3%, P = .06), interstitial inflammation (50% vs. 23%, P = .06) and significant changes in peritubular capillaritis (ptc) (25% vs. 0%, P = .02) were observed in the SIRPα-mismatched group. Unexpectedly, graft-versus-host (GVH) SIRPα-mismatched pairs exhibited higher rates of GF and tubulitis (38% vs. 5%, P = .031 and .61 ± .88 vs. 0, P = .019; respectively). Whether the higher prevalence of ptc in SIRPα-mismatched recipients and the higher rates of GF in GVH SIRPα-mismatched pairs represent a potential role for SIRPα in linking innate immunity and alloimmune rejection requires further investigation in larger cohorts.


Assuntos
Antígenos de Diferenciação/genética , Transplante de Células-Tronco Hematopoéticas , Transplante de Rim , Receptores Imunológicos/genética , Animais , Rejeição de Enxerto/epidemiologia , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Antígenos HLA/genética , Histocompatibilidade , Teste de Histocompatibilidade , Humanos , Doadores Vivos , Camundongos
15.
Mar Drugs ; 19(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34436293

RESUMO

Understanding the mechanisms that sustain immunological nonreactivity is essential for maintaining tissue in syngeneic and allogeneic settings, such as transplantation and pregnancy tolerance. While most transplantation rejections occur due to the adaptive immune response, the proinflammatory response of innate immunity is necessary for the activation of adaptive immunity. Botryllus schlosseri, a colonial tunicate, which is the nearest invertebrate group to the vertebrates, is devoid of T- and B-cell-based adaptive immunity. It has unique characteristics that make it a valuable model system for studying innate immunity mechanisms: (i) a natural allogeneic transplantation phenomenon that results in either fusion or rejection; (ii) whole animal regeneration and noninflammatory resorption on a weekly basis; (iii) allogeneic resorption which is comparable to human chronic rejection. Recent studies in B. schlosseri have led to the recognition of a molecular and cellular framework underlying the innate immunity loss of tolerance to allogeneic tissues. Additionally, B. schlosseri was developed as a model for studying hematopoietic stem cell (HSC) transplantation, and it provides further insights into the similarities between the HSC niches of human and B. schlosseri. In this review, we discuss why studying the molecular and cellular pathways that direct successful innate immune tolerance in B. schlosseri can provide novel insights into and potential modulations of these immune processes in humans.


Assuntos
Cordados/imunologia , Imunidade Inata , Modelos Biológicos , Transplante de Células-Tronco , Animais , Organismos Aquáticos , Humanos
16.
Proc Natl Acad Sci U S A ; 115(10): E2292-E2301, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463729

RESUMO

In plants and metazoans, intracellular receptors that belong to the NOD-like receptor (NLR) family are major contributors to innate immunity. Filamentous fungal genomes contain large repertoires of genes encoding for proteins with similar architecture to plant and animal NLRs with mostly unknown function. Here, we identify and molecularly characterize patatin-like phospholipase-1 (PLP-1), an NLR-like protein containing an N-terminal patatin-like phospholipase domain, a nucleotide-binding domain (NBD), and a C-terminal tetratricopeptide repeat (TPR) domain. PLP-1 guards the essential SNARE protein SEC-9; genetic differences at plp-1 and sec-9 function to trigger allorecognition and cell death in two distantly related fungal species, Neurospora crassa and Podospora anserina Analyses of Neurospora population samples revealed that plp-1 and sec-9 alleles are highly polymorphic, segregate into discrete haplotypes, and show transspecies polymorphism. Upon fusion between cells bearing incompatible sec-9 and plp-1 alleles, allorecognition and cell death are induced, which are dependent upon physical interaction between SEC-9 and PLP-1. The central NBD and patatin-like phospholipase activity of PLP-1 are essential for allorecognition and cell death, while the TPR domain and the polymorphic SNARE domain of SEC-9 function in conferring allelic specificity. Our data indicate that fungal NLR-like proteins function similar to NLR immune receptors in plants and animals, showing that NLRs are major contributors to innate immunity in plants and animals and for allorecognition in fungi.


Assuntos
Apoptose , Proteínas Fúngicas/metabolismo , Proteínas NLR/metabolismo , Neurospora crassa/metabolismo , Podospora/metabolismo , Proteínas SNARE/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Proteínas NLR/química , Proteínas NLR/genética , Neurospora crassa/química , Neurospora crassa/citologia , Neurospora crassa/genética , Podospora/química , Podospora/citologia , Podospora/genética , Ligação Proteica , Domínios Proteicos , Proteínas SNARE/química , Proteínas SNARE/genética , Alinhamento de Sequência
17.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572206

RESUMO

Direct allorecognition is the earliest and most potent immune response against a kidney allograft. Currently, it is thought that passenger donor professional antigen-presenting cells (APCs) are responsible. Further, many studies support that graft ischemia-reperfusion injury increases the probability of acute rejection. We evaluated the possible role of primary human proximal renal tubular epithelial cells (RPTECs) in direct allorecognition by CD4+ T-cells and the effect of anoxia-reoxygenation. In cell culture, we detected that RPTECs express all the required molecules for CD4+ T-cell activation (HLA-DR, CD80, and ICAM-1). Anoxia-reoxygenation decreased HLA-DR and CD80 but increased ICAM-1. Following this, RPTECs were co-cultured with alloreactive CD4+ T-cells. In T-cells, zeta chain phosphorylation and c-Myc increased, indicating activation of T-cell receptor and co-stimulation signal transduction pathways, respectively. T-cell proliferation assessed with bromodeoxyuridine assay and with the marker Ki-67 increased. Previous culture of RPTECs under anoxia raised all the above parameters in T-cells. FOXP3 remained unaffected in all cases, signifying that proliferating T-cells were not differentiated towards a regulatory phenotype. Our results support that direct allorecognition may be mediated by RPTECs even in the absence of donor-derived professional APCs. Also, ischemia-reperfusion injury of the graft may enhance the above capacity of RPTECs, increasing the possibility of acute rejection.


Assuntos
Células Epiteliais/imunologia , Rejeição de Enxerto/imunologia , Transplante de Rim/efeitos adversos , Túbulos Renais Proximais/imunologia , Traumatismo por Reperfusão/imunologia , Aloenxertos/citologia , Aloenxertos/imunologia , Aloenxertos/patologia , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Técnicas de Cocultura , Rejeição de Enxerto/patologia , Humanos , Isoantígenos/imunologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Ativação Linfocitária , Cultura Primária de Células , Traumatismo por Reperfusão/patologia , Transplante Homólogo/efeitos adversos
18.
J Mol Evol ; 88(6): 482-500, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572694

RESUMO

Why has histo-incompatibility arisen in evolution and can cause self-intolerance? Compatible/incompatible reactions following natural contacts between genetically-different (allogeneic) colonies of marine organisms have inspired the conception that self-nonself discrimination has developed to reduce invasion threats by migratory foreign germ/somatic stem cells, in extreme cases resulting in conquest of the whole body by a foreign genome. Two prominent model species for allogeneic discrimination are the marine invertebrates Hydractinia (Cnidaria) and Botryllus (Ascidiacea). In Hydractinia, self-nonself recognition is based on polymorphic surface markers encoded by two genes (alr1, alr2), with self recognition enabled by homophilic binding of identical ALR molecules. Variable expression patterns of alr alleles presumably account for the first paradigm of autoaggression in an invertebrate. In Botryllus, self-nonself recognition is controlled by a single polymorphic gene locus (BHF) with hundreds of codominantly expressed alleles. Fusion occurs when both partners share at least one BHF allele while rejection develops when no allele is shared. Molecules involved in allorecognition frequently contain immunoglobulin or Ig-like motifs, case-by-case supplemented by additional molecules enabling homophilic interaction, while the mechanisms applied to destroy allogeneic grafts or neighbors include taxon-specific tools besides common facilities of natural immunity. The review encompasses comparison with allorecognition in mammals based on MHC-polymorphism in transplantation and following feto-maternal cell trafficking.


Assuntos
Comunicação Celular , Cnidários/genética , Urocordados , Alelos , Animais , Polimorfismo Genético , Urocordados/genética
20.
J Cell Sci ; 130(23): 4002-4012, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038229

RESUMO

Allorecognition is a key factor in Dictyostelium development and sociality. It is mediated by two polymorphic transmembrane proteins, TgrB1 and TgrC1, which contain extracellular immunoglobulin domains. TgrB1 and TgrC1 are necessary and sufficient for allorecognition, and they carry out separate albeit overlapping functions in development, but their mechanism of action is unknown. Here, we show that TgrB1 acts as a receptor with TgrC1 as its ligand in cooperative aggregation and differentiation. The proteins bind each other in a sequence-specific manner; TgrB1 exhibits a cell-autonomous function and TgrC1 acts non-cell-autonomously. The TgrB1 cytoplasmic tail is essential for its function and it becomes phosphorylated upon association with TgrC1. Dominant mutations in TgrB1 activate the receptor function and confer partial ligand independence. These roles in development and sociality suggest that allorecognition is crucial in the integration of individual cells into a coherent organism.


Assuntos
Adesão Celular/fisiologia , Dictyostelium/metabolismo , Ligantes , Proteínas de Protozoários/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , AMP Cíclico/metabolismo , Proteínas de Membrana/metabolismo , Mutação/genética , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA