Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2313239121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498710

RESUMO

High-entropy alloy nanoparticles (HEANs) possessing regulated defect structure and electron interaction exhibit a guideline for constructing multifunctional catalysts. However, the microstructure-activity relationship between active sites of HEANs for multifunctional electrocatalysts is rarely reported. In this work, HEANs distributed on multi-walled carbon nanotubes (HEAN/CNT) are prepared by Joule heating as an example to explain the mechanism of trifunctional electrocatalysis for oxygen reduction, oxygen evolution, and hydrogen evolution reaction. HEAN/CNT excels with unmatched stability, maintaining a 0.8V voltage window for 220 h in zinc-air batteries. Even after 20 h of water electrolysis, its performance remains undiminished, highlighting exceptional endurance and reliability. Moreover, the intrinsic characteristics of the defect structure and electron interaction for HEAN/CNT are investigated in detail. The electrocatalytic mechanism of trifunctional electrocatalysis of HEAN/CNT under different conditions is identified by in situ monitoring and theoretical calculation. Meanwhile, the electron interaction and adaptive regulation of active sites in the trifunctional electrocatalysis of HEANs were further verified by density functional theory. These findings could provide unique ideas for designing inexpensive multifunctional high-entropy electrocatalysts.

2.
Nano Lett ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39432751

RESUMO

Metal-organic frameworks (MOFs) have been considered as promising hosts for immobilizing ultrafine metal nanoparticles (MNPs) due to their high surface area and porosity. However, electrochemical applications of such emerging composites are severely limited by the poor electrical conductivity and large size of the MOFs. Herein, we report the general synthesis of incorporating various MNPs into a conjugated MOF ultrathin nanosheet (Cu-TCPP UNS) matrix, which not only prevents agglomeration and restricts the growth of MNPs but also benefits the exposure of active sites and the transport of electrons. Specifically, the obtained PtCu@Cu-TCPP UNSs exhibited nearly two times higher mass activity for the methanol oxidation reaction (MOR) than the commercial Pt/C catalyst. Mechanistic studies reveal that the strong interaction between MNPs and Cu-TCPP promotes the oxidation of the CO intermediate. Moreover, the PtCu@Cu-TCPP UNSs can be employed as bifunctional electrocatalysts to couple MOR with the hydrogen evolution reaction for highly efficient hydrogen production.

3.
Small ; 20(28): e2309574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556631

RESUMO

The multi-principal element alloy nanoparticles (MPEA NPs), a new class of nanomaterials, present a highly rewarding opportunity to explore new or vastly different functional properties than the traditional mono/bi/multimetallic nanostructures due to their unique characteristics of atomic-level homogeneous mixing of constituent elements in the nanoconfinements. Here, the successful creation of NiCoCr nanoparticles, a well-known MPEA system is reported, using ultrafast nanosecond laser-induced dewetting of alloy thin films. Nanoparticle formation occurs by spontaneously breaking the energetically unstable thin films in a melt state under laser-induced hydrodynamic instability and subsequently accumulating in a droplet shape via surface energy minimization. While NiCoCr alloy shows a stark contrast in physical properties compared to individual metallic constituents, i.e., Ni, Co, and Cr, yet the transient nature of the laser-driven process facilitates a homogeneous distribution of the constituents (Ni, Co, and Cr) in the nanoparticles. Using high-resolution chemical analysis and scanning nanodiffraction, the environmental stability and grain arrangement in the nanoparticles are further investigated. Thermal transport simulations reveal that the ultrashort (≈100 ns) melt-state lifetime of NiCoCr during the dewetting event helps retain the constituent elements in a single-phase solid solution with homogenous distribution and opens the pathway to create the unique MPEA nanoparticles with laser-induced dewetting process.

4.
Small ; 20(36): e2401360, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38708800

RESUMO

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

5.
Small ; : e2404943, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246193

RESUMO

Forced-flow atomic layer deposition nanolamination is employed to fabricate Pt-Ni nanoparticles on XC-72, with the compositions ranging from Pt94Ni6 to Pt67Ni33. Hydrogen is used as a co-reactant for depositing Pt and Ni. The growth rate of Pt is slower than that using oxygen reactant, and the growth exhibits preferred orientation along the (111) plane. Ni shows much slower growth rate than Pt, and it is only selectively deposited on Pt, not on the substrate. Higher ratios of Ni would hinder subsequent stacking of Pt atoms, resulting in lower overall growth rate and smaller particles (1.3-2.1 nm). Alloying of Pt with Ni causes shifted lattice that leads to larger lattice parameter and d-spacing as Ni fraction increases. From the electronic state analysis, Pt 4f peaks are shifted to lower binding energies with increasing the Ni content, suggesting charge transfer from Ni to Pt. Schematic of the growth behavior is proposed. Most of the alloy nanoparticles exhibit higher electrochemical surface area and oxygen reduction reaction activity than those of commercial Pt. Especially, Pt83Ni17 and Pt87Ni13 show excellent mass activities of 0.76 and 0.59 A mgPt -1, respectively, higher than the DOE target of 2025, 0.44 A mgPt -1.

6.
Chemphyschem ; : e202400521, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302252

RESUMO

Catalytic reactions occurring in an adsorbed overlayer on metallic alloy nanoparticles are of high interest in the context of applications in the chemical industry. The understanding of the corresponding kinetics is, however, still limited. One of the reasons of this state of the art is the interplay between adsorption and adsorbate-influenced segregation of metal atoms inside alloy nanoparticles. I scrutinize this interplay by using a generic field model of segregation and the mean-field approximation in order to describe adsorption, desorption, and elementary catalytic reactions. Under steady-state conditions, the segregation is demonstrated to be manifested in the change of the dependence of the activation energies of desorption or elementary reactions on coverage, and the sign of this change is positive. The effect of this change on the apparent reaction orders is briefly discussed as well.

7.
Mol Pharm ; 21(3): 1450-1465, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38335466

RESUMO

The defeat of cancer is still a challenge due to the existence of cancer stem cells (CSCs) because they resist conventional chemotherapy via multifactor regulated mechanisms. Consequently, one-dimensional action toward CSCs cannot work. Herein, we used rationally designed hybrid nanoparticles as a combined cancer therapy, hoping to form a multidimensional control network. In this paper, gold/silver alloy nanoparticle decorated camptothecin nanocrystals were formulated according to complementary anti-CSC mechanisms from gold, silver, and organic drug. This smart drug formulation could combine chemotherapy and thermotherapy, target different tumor sites, and demonstrate versatile toxicity profiles from each component. Major results indicated that this nanosystem demonstrated indiscriminately effective cytotoxic/proapoptotic/necrotic activity against bulk MCF-7 cells and their CSC subpopulation, in particular under laser ablation. Moreover, this nanosystem displayed enhanced antineoplastic activity against CSC spheroids, resulting in a significant reduction in their number and size, that is, their self-renewal capacity. All the results indicated that CSCs upon treatment of these new hybrid nanoparticles underwent reduced stemness and conversion from the original quiescent state and recovered their sensitivity toward chemotherapy. The relevant anticancer mechanism was ascribed to NIR-pH dual responsive drug release, synergistic/combined thermo-chemotherapy of organic drug and inorganic alloy nanoparticles, enhanced cellular uptake mediated by alloy nanoparticles, and Ag+-induced biomembrane damage. This thermo-chemotherapy platform provides a new combinatorial strategy for inorganic and organic agents in the complete elimination of CSCs.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Camptotecina/farmacologia , Prata , Ouro/química , Antineoplásicos/farmacologia , Nanopartículas/química , Células-Tronco Neoplásicas , Ligas/farmacologia , Linhagem Celular Tumoral , Neoplasias/patologia
8.
Nanotechnology ; 35(46)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39163878

RESUMO

Alloy nanoparticles (NPs) have great potential in nanosized 3D-printing, surface coating, plasmonic enhancement, information coding, and so forth. However, chemical-pollution-free and homogeneous sub-20 nm NPs maintain still a challenge in preparation. Here we present a smart nanosecond laser scan strategy of alloy-NPs preparation on a bilayer metal film by using a nanosized focused beam, successfully realizing controllable fabrication of the sub-20 nm homogeneous alloy NPs without pollution. As a demonstration, various sub-20 nm AgCu NPs with different volume ratios have been prepared, all NPs show narrow size distribution and uniform interparticle spacing. This simple and cost-effective method is stable and adaptable for other alloy-NPs such as AuAg NPs. In addition, such alloy NPs exhibit two-peak plasma resonance feature and information coding capacity. We believe that homogenous alloy sub-20 nm NPs will provide new application opportunities in many fields.

9.
Mikrochim Acta ; 191(7): 428, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940957

RESUMO

A novel nitrogen-doped ordered mesoporous carbon (OMC) pore-embedded growth Pt-Ru-Fe nanoparticles (Pt1-Ru7.5-Fex@N-OMCs) composite was designed and synthesized for the first time. SBA-15 was used as a template, and dopamine was used as a carbon and nitrogen source and metal linking reagent. The oxidative self-polymerization reaction of dopamine was utilized to polymerize dopamine into two-dimensional ordered SBA-15 template pores. Iron porphyrin was introduced as an iron source at the same time as polymerization of dopamine, which was introduced inside and outside the pores using dopamine-metal linkage. Carbonization of polydopamine, nitrogen doping and iron nanoparticle formation were achieved by one-step calcination. Then the templates were etched to form Fex@N-OMCs, and finally the Pt1-Ru7.5-Fex@N-OMCs composites were stabilized by the successful introduction of platinum-ruthenium nanoparticles through the substitution reaction. The composite uniformly embeds the transition metal nanoparticles inside the OMC pores with high specific surface area, which limits the size of the metal nanoparticles inside the pores. At the same time, the metal nanoparticles are also loaded onto the surface of the OMCs, realizing the uniform loading of metal nanoparticles both inside and outside the pores. This enhances the active sites of the composite, promotes the mass transfer process inside and outside the pores, and greatly enhances the electrocatalytic performance of the catalyst. The material shows high electrocatalytic performance for adrenaline, which is characterized by a wide linear range, high sensitivity and low detection limit, and can realize the detection of actual samples.

10.
Angew Chem Int Ed Engl ; 63(24): e202404505, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598471

RESUMO

Ammonia borane (AB) with 19.6 wt % H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2 ⋅ molmetal ⋅ min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrates magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8 % over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.

11.
Angew Chem Int Ed Engl ; : e202409484, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39218790

RESUMO

Utilizing hot carriers for efficient plasmon-mediated chemical reactions (PMCRs) to convert solar energy into secondary energy is one of the most feasible solutions to the global environmental and energy crisis. Finding a plasmonic heterogeneous nanostructure with a more efficient and reasonable hot carrier transport path without affecting the intrinsic plasmonic properties is still a major challenge that urgently needs to be solved in this field. Herein, the mechanism by which plasmon-promoted interatomic hot electron redistribution on the surface of Au3Cu alloy nanoparticles promotes the electrocatalytic nitrogen reduction reaction (ENRR) is successfully clarified. The localized surface plasmon resonance (LSPR) effect can boost the transfer of plasmon hot electrons from Au atoms to Cu atoms, trigger the interatomic electron regulation of Au3Cu alloy nanoparticles, enhance the desorption of ammonia molecules, and increase the ammonia yield by approximately 93.9 %. This work provides an important reference for rationally designing and utilizing the LSPR effect to efficiently regulate the distribution and mechanism of plasmon hot carriers on the surface of heterogeneous alloy nanostructures.

12.
Nanomedicine ; 48: 102652, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623714

RESUMO

Metal-organic frameworks (MOFs) have emerged as attractive candidates in cancer theranostics due to their ability to envelop magnetic nanoparticles, resulting in reduced cytotoxicity and high porosity, enabling chemodrug encapsulation. Here, FeAu alloy nanoparticles (FeAu NPs) are synthesized and coated with MIL-100(Fe) MOFs to fabricate FeAu@MOF nanostructures. We encapsulated Doxorubicin within the nanostructures and evaluated the suitability of this platform for medical imaging and cancer theranostics. FeAu@MOF nanostructures (FeAu@MIL-100(Fe)) exhibited superparamagnetism, magnetic hyperthermia behavior and displayed DOX encapsulation and release efficiency of 69.95 % and 97.19 %, respectively, when stimulated with alternating magnetic field (AMF). In-vitro experiments showed that AMF-induced hyperthermia resulted in 90 % HSC-3 oral squamous carcinoma cell death, indicating application in cancer theranostics. Finally, in an in-vivo mouse model, FeAu@MOF nanostructures improved image contrast, reduced tumor volume by 30-fold and tumor weight by 10-fold, which translated to enhancement in cumulative survival, highlighting the prospect of this platform for oral cancer treatment.


Assuntos
Carcinoma , Hipertermia Induzida , Estruturas Metalorgânicas , Neoplasias Bucais , Nanoestruturas , Animais , Camundongos , Estruturas Metalorgânicas/química , Medicina de Precisão , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/tratamento farmacológico , Diagnóstico por Imagem , Fenômenos Magnéticos , Nanomedicina Teranóstica
13.
Mikrochim Acta ; 190(7): 277, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37380931

RESUMO

Nitric oxide (NO), as a vital signaling molecule related to different physiological and pathological processes in living systems, is closely associated with cancer and cardiovascular disease. However, the detection of NO in real-time remains a difficulty. Here, PtBi alloy nanoparticles (NPs) were synthesized, dealloyed, and then fabricated to NP-based electrodes for the electrochemical detection of NO. Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and nitrogen physical adsorption/desorption show that dealloyed PtBi alloy nanoparticles (dPtBi NPs) have a porous nanostructure. Electrochemical impedance spectroscopy and cyclic voltammetry results exhibit that the dPtBi NP electrode possesses unique electrocatalytic features such as low charge transfer resistance and large electrochemically active surface area, which lead to its excellent NO electrochemical sensing performance. Owing to the higher density of catalytical active sites formed PtBi bimetallic interface, the dPtBi NP electrode displays superior electrocatalytic activity toward the oxidation of NO with a peak potential at 0.74 V vs. SCE. The dPtBi NP electrode shows a wide dynamic range (0.09-31.5 µM) and a low detection limit of 1 nM (3σ/k) as well as high sensitivity (130 and 36.5 µA µM-1 cm-2). Moreover, the developed dPtBi NP-based electrochemical sensor also exhibited good reproducibility (RSD 5.7%) and repeatability (RSD 3.4%). The electrochemical sensor was successfully used for the sensitive detection of NO produced by live cells. This study indicates a highly effective approach for regulating the composition and nanostructures of metal alloy nanomaterials, which might provide new technical insights for developing high-performance NO-sensitive systems, and have important implications in enabling real-time detection of NO produced by live cells.


Assuntos
Nanopartículas , Óxido Nítrico , Reprodutibilidade dos Testes , Espalhamento a Baixo Ângulo , Difração de Raios X , Ligas
14.
Mikrochim Acta ; 190(4): 150, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952134

RESUMO

For practical analysis and simultaneous detection of arbutin (AR) and hydrochinone (HQ) in cosmetics, an electrochemical sensor has been designed based on nitrogen and sulfur co-doped Fe-Ni alloy (N,S-FeNi3/C) nanoparticles. The N,S-FeNi3/C has been prepared for the first time via hydrothermal synthesis and high-temperature carbonization. N,S-FeNi3/C not only improves the charge transfer to the surface, but also provides rich active sites and fast ion diffusion rates owing to the iron and nickel bimetallic materials. In addition, the d-band structure of transition metals (nickel and iron) introduced by the N and S atoms exhibits an electronic structure similar to that of noble metal catalysts, thus enhancing electrocatalytic activity and increasing conductivity. Additionally, the double doping of S and N atoms significantly increases the active sites of carbon atoms; thus, N-S-FeNi3/C exhibits excellent electrochemical catalytic activity for the oxidation of AR and HQ. Further, the N,S-FeNi3/C sensor is used for the simultaneous determination of HQ and AR by square-wave pulse voltammetry. Distinct oxidation peaks of HQ and AR are observed at potentials of +0.028 V and +0.352 V (vs. SCE). The electrical signal increases linearly in the HQ concentration ranges of 0.1-100 µM and 0.05-70 µM for the simultaneous determination of AR and HQ with a detection limit as low as 0.0476 and 0.0135 µM (S/N = 3), respectively. Thus, rapid and accurate detection of AR and HQ in spiked cosmetics is successfully achieved, with a recovery ranging from 96.4 to 104.2%, and the relative standard deviation is lower than 3.8-4.0%.

15.
Nano Lett ; 22(1): 294-301, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962815

RESUMO

To control a nanoparticle's chemical composition and thus function, researchers require readily accessible and economical characterization methods that provide quantitative in situ analysis of individual nanoparticles with high throughput. Here, we established dual analyte single-particle inductively coupled plasma quadrupole mass spectrometry to quantify the chemical composition and reaction kinetics of individual colloidal nanoparticles. We determined the individual bimetallic nanoparticle mass and chemical composition changes during two different chemical reactions: (i) nanoparticle etching and (ii) element deposition on nanoparticles at a rate of 300+ nanoparticles/min. Our results revealed the heterogeneity of chemical reactions at the single nanoparticle level. This proof-of-concept study serves as a framework to quantitatively understand the dynamic changes of physicochemical properties that individual nanoparticles undergo during chemical reactions using a commonly available mass spectrometer. Such methods will broadly empower and inform the synthesis and development of safer, more effective, and more efficient nanotechnologies that use nanoparticles with defined functions.


Assuntos
Nanopartículas , Cinética , Espectrometria de Massas/métodos , Análise Espectral
16.
Angew Chem Int Ed Engl ; 62(33): e202306881, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37389975

RESUMO

Multimetallic alloy nanoparticles (NPs) have received considerable attention in various applications due to their compositional variability and exceptional properties. However, the complexity of both the general synthesis and structure-activity relationships remain the long-standing challenges in this field. Herein, we report a versatile 2D MOF-assisted pyrolysis-displacement-alloying route to successfully synthesize a series of binary, ternary and even high-entropy NPs that are uniformly dispersed on porous nitrogen-doped carbon nanosheets (PNC NSs). As a proof of utility, the obtained Co0.2 Ru0.7 Pt0.1 /PNC NSs exhibits apparent hydrogen oxidation activity and durability with a record-high mass specific kinetic current of 1.84 A mg-1 at the overpotential of 50 mV, which is approximately 11.5 times higher than that of the Pt benchmark. Both experimental and theoretical studies reveal that the addition of Pt engenders a phase transition in CoRu alloys from hexagonal close-packed (hcp) to face-centered cubic (fcc) structure. The elevated reactivity of the resulted ternary alloy can be attributed to the optimized adsorption of hydrogen intermediate and the decreased reaction barrier for water formation. This study opens a new avenue for the development of highly efficient alloy NPs with various compositions and functions.

17.
Small ; 18(17): e2107387, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35324075

RESUMO

Platinum (Pt), as a commonly used electrocatalyst in direct methanol fuel cells (DMFCs), suffers from sluggish kinetics of both the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). Geometric engineering has been proven effective for improving the MOR and ORR activities. Thus, by modulating the Pt precursor and poly(vinylpyrrolidone) (PVP) dosages, different porous PtCu nanotubes constructed by hollow nanospheres, solid alloy, and Pt-rich skinned nanoparticles, respectively, are successfully synthesized. Among them, the solid PtCu alloy nanoparticle coherent nanotubes exhibit the specific activity 9.42 times higher than Pt/C toward MOR, while the hollow PtCu alloy nanosphere coherent nanotubes show the specific activity 4.85 times higher than Pt/C toward ORR. The different Pt:Cu ratios of hollow nanospheres, solid alloy, and Pt-rich skinned nanoparticles cause the differences in electron transfer from Cu to Pt as well as electronic structures of Pt. As a result, the binding energies of intermediates can be regulated, leading to the enhancement in MOR and ORR.


Assuntos
Metanol , Nanotubos , Ligas/química , Catálise , Metanol/química , Nanotubos/química , Oxirredução , Oxigênio/química , Platina/química , Porosidade
18.
Chemistry ; 28(18): e202104380, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35229376

RESUMO

Chemoselectively oxidizing Cα -OH to C=O has been considered as a key step for the oxidative depolymerization of lignin. In this work, we design and prepare a series of composites of RuCo alloy nanoparticles and reduced graphene oxide (RuCo/rGO) with different Ru to Co ratios and explore their catalytic activities in the oxidation of veratryl alcohol derivatives, which usually serve as the model compounds for studying lignin oxidation. It is illustrated that the Ru to Co ratio determines the morphology and average size of the RuCo alloy nanoparticles on rGO, and the overall catalytic activities of the composites. The RuCo alloy nanoparticles on rGO with Ru to Co ratios of 1 : 0 to 1.2 : 1 show a unique flower-shaped morphology that increases the exposure of the active sites and thus promotes their contact with the substrates. The RuCo/rGO composites exhibit high catalytic activities for the oxidation of Cα -OH to aldehydes at 100 °C for 2 h. Additionally, the Co component affords the RuCo/rGO composites with magnetic properties that make the separation and recovery of the catalyst simple. Given the high catalytic performances and easy recovery, the RuCo/rGO composites would be potentially useful for the depolymerization of lignin.


Assuntos
Grafite , Álcoois Benzílicos , Catálise , Grafite/química , Oxirredução
19.
Chemphyschem ; 23(21): e202200136, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-35502819

RESUMO

Despite the traditional plasmonic materials are counted on one hand, there are a lot of possible combinations leading to alloys with other elements of the periodic table, in particular those renowned for magnetic or catalytic properties. It is not a surprise, therefore, that nanoalloys are considered for their ability to open new perspectives in the panorama of plasmonics, representing a leading research sector nowadays. This is demonstrated by a long list of studies describing multiple applications of nanoalloys in photonics, photocatalysis, sensing and magneto-optics, where plasmons are combined with other physical and chemical phenomena. In some remarkable cases, the amplification of the conventional properties and even new effects emerged. However, this field is still in its infancy and several challenges must be overcome, starting with the synthesis (control of composition, crystalline order, size, processability, achievement of metastable phases and disordered compounds) as well as the modelling of the structure and properties (accuracy of results, reliability of structural predictions, description of disordered phases, evolution over time) of nanoalloys. To foster the research on plasmonic nanoalloys, here we provide an overview of the most recent results and developments in the field, organized according to synthetic strategies, modelling approaches, dominant properties and reported applications. Considering the several plasmonic nanoalloys under development as well as the large number of those still awaiting synthesis, modelling, properties assessment and technological exploitation, we expect a great impact on the forthcoming solutions for sustainability, ultrasensitive and accurate detection, information processing and many other fields.


Assuntos
Ligas , Nanopartículas , Ligas/química , Reprodutibilidade dos Testes , Nanopartículas/química , Magnetismo
20.
Mikrochim Acta ; 190(1): 13, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478275

RESUMO

An ultrasensitive multiplex surface-enhanced Raman scattering (SERS) immunoassay was developed using porous Au-Ag alloy nanoparticles (p-AuAg NPs) as Raman signal amplification probe coupling with encoded photonic crystal microsphere. p-AuAg NPs were synthesized and modified with the second antibody (Ab2) and Raman tag (mercaptobenzoic acid, MBA) to prepare a Raman signal-amplified probe. The high porosity of the p-AuAg NPs enables significant coupling of the localized surface plasmon resonance and thus abundant inherent hotspots for Raman signal enhancement. 3D-ordered silver nanoparticles-coated silica photonic crystal beads (Ag/SPCBs) were prepared as encoded SERS substrate for multiplex detection using their reflection peaks. The signal-amplified probe was used for multiplex detection of tumor markers carcinoembryonic antigen (CEA) and alpha fetoprotein (AFP). The wide linear ranges of 10-7-103 ng/mL for CEA and 10-4-103 ng/mL for AFP with detection limits of 1.22 × 10-8 ng/mL and 2.47 × 10-5 ng/mL for CEA and AFP at a signal-to-noise ratio of 3 were obtained. The proposed multiplex SERS immunoassay method displays ultrahigh sensitivity, wide linear range, and excellent specificity, which can be successfully applied to measure clinical serum samples with satisfactory results. The research provides a novel SERS signal enhancement strategy for the multiplex bioassay.


Assuntos
Ligas , Nanopartículas Metálicas , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA