Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.089
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 167(5): 1385-1397.e11, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863250

RESUMO

The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases.


Assuntos
Transtorno do Espectro Autista/genética , Cerebelo/metabolismo , Código das Histonas , Córtex Pré-Frontal/metabolismo , Locos de Características Quantitativas , Lobo Temporal/metabolismo , Acetilação , Transtorno do Espectro Autista/metabolismo , Autopsia , Imunoprecipitação da Cromatina , Elementos Facilitadores Genéticos , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
2.
Cell ; 167(3): 803-815.e21, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720452

RESUMO

Do young and old protein molecules have the same probability to be degraded? We addressed this question using metabolic pulse-chase labeling and quantitative mass spectrometry to obtain degradation profiles for thousands of proteins. We find that >10% of proteins are degraded non-exponentially. Specifically, proteins are less stable in the first few hours of their life and stabilize with age. Degradation profiles are conserved and similar in two cell types. Many non-exponentially degraded (NED) proteins are subunits of complexes that are produced in super-stoichiometric amounts relative to their exponentially degraded (ED) counterparts. Within complexes, NED proteins have larger interaction interfaces and assemble earlier than ED subunits. Amplifying genes encoding NED proteins increases their initial degradation. Consistently, decay profiles can predict protein level attenuation in aneuploid cells. Together, our data show that non-exponential degradation is common, conserved, and has important consequences for complex formation and regulation of protein abundance.


Assuntos
Estabilidade Proteica , Proteínas/metabolismo , Proteólise , Alanina/análogos & derivados , Alanina/química , Aneuploidia , Linhagem Celular , Química Click , Amplificação de Genes , Humanos , Cinética , Cadeias de Markov , Complexo de Endopeptidases do Proteassoma/química , Biossíntese de Proteínas , Proteínas/química , Proteínas/genética , Proteoma , Ubiquitina/química
3.
Physiol Rev ; 103(1): 649-716, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049115

RESUMO

Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.


Assuntos
Doenças Cardiovasculares , Hematopoese , Humanos , Camundongos , Animais , Idoso , Hematopoese/genética , Hematopoiese Clonal/genética , Células-Tronco Hematopoéticas , Mosaicismo , Doenças Cardiovasculares/genética , Mutação
4.
Mol Cell ; 81(10): 2246-2260.e12, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33861991

RESUMO

Exitron splicing (EIS) creates a cryptic intron (called an exitron) within a protein-coding exon to increase proteome diversity. EIS is poorly characterized, but emerging evidence suggests a role for EIS in cancer. Through a systematic investigation of EIS across 33 cancers from 9,599 tumor transcriptomes, we discovered that EIS affected 63% of human coding genes and that 95% of those events were tumor specific. Notably, we observed a mutually exclusive pattern between EIS and somatic mutations in their affected genes. Functionally, we discovered that EIS altered known and novel cancer driver genes for causing gain- or loss-of-function, which promotes tumor progression. Importantly, we identified EIS-derived neoepitopes that bind to major histocompatibility complex (MHC) class I or II. Analysis of clinical data from a clear cell renal cell carcinoma cohort revealed an association between EIS-derived neoantigen load and checkpoint inhibitor response. Our findings establish the importance of considering EIS alterations when nominating cancer driver events and neoantigens.


Assuntos
Epitopos/genética , Éxons/genética , Perfilação da Expressão Gênica , Íntrons/genética , Neoplasias/genética , Oncogenes , Splicing de RNA/genética , Sequência de Aminoácidos , Linhagem Celular , Estudos de Coortes , Humanos , Mutação/genética
5.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
6.
Trends Genet ; 39(12): 968-980, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37778926

RESUMO

Chromosome copy number imbalances, otherwise known as aneuploidies, are a common but poorly understood feature of cancer. Here, we describe recent advances in both detecting and manipulating aneuploidies that have greatly advanced our ability to study their role in tumorigenesis. In particular, new clustered regularly interspaced short palindromic repeats (CRISPR)-based techniques have been developed that allow the creation of isogenic cell lines with specific chromosomal changes, thereby facilitating experiments in genetically controlled backgrounds to uncover the consequences of aneuploidy. These approaches provide increasing evidence that aneuploidy is a key driver of cancer development and enable the identification of multiple dosage-sensitive genes encoded on aneuploid chromosomes. Consequently, measuring aneuploidy may inform clinical prognosis, while treatment strategies that target aneuploidy could represent a novel method to counter malignant growth.


Assuntos
Aneuploidia , Neoplasias , Humanos , Neoplasias/genética
7.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38300514

RESUMO

Somatic copy number alterations (SCNAs) are a predominant type of oncogenomic alterations that affect a large proportion of the genome in the majority of cancer samples. Current technologies allow high-throughput measurement of such copy number aberrations, generating results consisting of frequently large sets of SCNA segments. However, the automated annotation and integration of such data are particularly challenging because the measured signals reflect biased, relative copy number ratios. In this study, we introduce labelSeg, an algorithm designed for rapid and accurate annotation of CNA segments, with the aim of enhancing the interpretation of tumor SCNA profiles. Leveraging density-based clustering and exploiting the length-amplitude relationships of SCNA, our algorithm proficiently identifies distinct relative copy number states from individual segment profiles. Its compatibility with most CNA measurement platforms makes it suitable for large-scale integrative data analysis. We confirmed its performance on both simulated and sample-derived data from The Cancer Genome Atlas reference dataset, and we demonstrated its utility in integrating heterogeneous segment profiles from different data sources and measurement platforms. Our comparative and integrative analysis revealed common SCNA patterns in cancer and protein-coding genes with a strong correlation between SCNA and messenger RNA expression, promoting the investigation into the role of SCNA in cancer development.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Neoplasias/genética , Algoritmos , Análise por Conglomerados , Análise de Dados
8.
Bioessays ; 46(2): e2300117, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059881

RESUMO

Bisphosphonates are a class of drugs which have shown good efficacy in the treatment of post-menopausal osteoporosis, as well as a good safety profile. However, side-effects such as risk for atypical femoral fractures (AFF) have appeared, leading to a decline in use of the drugs by many patients who would benefit from the treatment. While patient characteristics have contributed to improved understanding of risk factors, the mechanisms involved that explain AFF risk have not appeared. Recently, the possibility that the mechanism(s) involved drug-induced modification of cells of the nutrient canals of the femur and subsequent compromise in the bone matrix has been published. The present Hypothesis article builds on the concept presented earlier and expands into biomechanical considerations. An analogy of the mechanisms involved to a real-life scenario is also presented. While this analogy has limitations, consideration of the biomechanical implications of progressive alterations to defects presented by compromised nutrient canal-bone matrix also presents potential relationships with AFF risk.


Assuntos
Fraturas do Fêmur , Osteoporose , Humanos , Difosfonatos/efeitos adversos , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Ósteon , Fraturas do Fêmur/induzido quimicamente , Fraturas do Fêmur/tratamento farmacológico , Fatores de Risco
9.
Cancer Metastasis Rev ; 43(1): 409-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950087

RESUMO

MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Humanos , Plasticidade Celular/genética , Galinhas , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Fatores de Transcrição/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-38902476

RESUMO

Prostate cancer (PCa) incidence, morbidity, and mortality rates are significantly impacted by racial disparities. Despite innovative therapeutic approaches and advancements in prevention, men of African American (AA) ancestry are at a higher risk of developing PCa and have a more aggressive and metastatic form of the disease at the time of initial PCa diagnosis than other races. Research on PCa has underlined the biological and molecular basis of racial disparity and emphasized the genetic aspect as the fundamental component of racial inequality. Furthermore, the lower enrollment rate, limited access to national-level cancer facilities, and deferred treatment of AA men and other minorities are hurdles in improving the outcomes of PCa patients. This review provides the most up-to-date information on various biological and molecular contributing factors, such as the single nucleotide polymorphisms (SNPs), mutational spectrum, altered chromosomal loci, differential gene expression, transcriptome analysis, epigenetic factors, tumor microenvironment (TME), and immune modulation of PCa racial disparities. This review also highlights future research avenues to explore the underlying biological factors contributing to PCa disparities, particularly in men of African ancestry.

11.
Hum Mol Genet ; 32(22): 3146-3152, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37565819

RESUMO

Age-related clonal expansion of cells harbouring mosaic chromosomal alterations (mCAs) is one manifestation of clonal haematopoiesis. Identifying factors that influence the generation and promotion of clonal expansion of mCAs are key to investigate the role of mCAs in health and disease. Herein, we report on widely measured serum biomarkers and their possible association with mCAs, which could provide new insights into molecular alterations that promote acquisition and clonal expansion. We performed a cross-sectional investigation of the association of 32 widely measured serum biomarkers with autosomal mCAs, mosaic loss of the Y chromosome, and mosaic loss of the X chromosome in 436 784 cancer-free participants from the UK Biobank. mCAs were associated with a range of commonly measured serum biomarkers such as lipid levels, circulating sex hormones, blood sugar homeostasis, inflammation and immune function, vitamins and minerals, kidney function, and liver function. Biomarker levels in participants with mCAs were estimated to differ by up to 5% relative to mCA-free participants, and individuals with higher cell fraction mCAs had greater deviation in mean biomarker values. Polygenic scores associated with sex hormone binding globulin, vitamin D, and total cholesterol were also associated with mCAs. Overall, we observed commonly used clinical serum biomarkers related to disease risk are associated with mCAs, suggesting mechanisms involved in these diseases could be related to mCA proliferation and clonal expansion.


Assuntos
Cromossomos Humanos Y , Mosaicismo , Humanos , Masculino , Bancos de Espécimes Biológicos , Estudos Transversais , Biomarcadores , Reino Unido
12.
Annu Rev Pharmacol Toxicol ; 62: 211-233, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34990205

RESUMO

Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments. A research agenda that emphasizes the identification of overexpressed genes that contribute demonstrably to abnormalities in cognition and behavior in model systems constitutes a rational next step. Normalizing expression of such genes may usher in an era of successful treatments applicable across the life span for those with DS.


Assuntos
Síndrome de Down , Doenças Neurodegenerativas , Idoso , Animais , Modelos Animais de Doenças , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Feminino , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Gravidez
13.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36882021

RESUMO

Immune checkpoint inhibitor (ICI) treatment has created the opportunity of improved outcome for patients with hepatocellular carcinoma (HCC). However, only a minority of HCC patients benefit from ICI treatment owing to poor treatment efficacy and safety concerns. There are few predictive factors that precisely stratify HCC responders to immunotherapy. In this study, we developed a tumour microenvironment risk (TMErisk) model to divide HCC patients into different immune subtypes and evaluated their prognosis. Our results indicated that virally mediated HCC patients who had more common tumour protein P53 (TP53) alterations with lower TMErisk scores were appropriate for ICI treatment. HCC patients with alcoholic hepatitis who more commonly harboured catenin beta 1 (CTNNB1) alterations with higher TMErisk scores could benefit from treatment with multi-tyrosine kinase inhibitors. The developed TMErisk model represents the first attempt to anticipate tumour tolerance of ICIs in the TME through the degree of immune infiltration in HCCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia
14.
Am J Pathol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341365

RESUMO

Cholangiocarcinoma is a highly heterogenous group of malignancies that, despite recent progress in the understanding of its molecular pathogenesis and clinical management, continue to pose a major challenge to public health. The traditional view posits that cholangiocarcinomas derive from the neoplastic transformation of cholangiocytes lining the biliary tree. However, increasing genetic and experimental evidence has recently pointed to a more complex - and nuanced - scenario for the potential cell of origin of cholangiocarcinomas, with hepatocytes as well as hepatic stem/progenitor cells being considered as additional potential sources, depending on microenvironmental contexts including liver injury. The hypothesis of potentially diverse cells of origin for CCA, albeit controversial, is certainly not surprising given the plasticity of the cells populating the liver as well as the existence of liver cancer subtypes with mixed histological and molecular features. This review carefully looks at the current pathological, genomic and experimental evidence supporting the existence of multiple cells of origin of liver and biliary tract cancers, with particular focus on cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma.

15.
Hum Genomics ; 18(1): 75, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956648

RESUMO

BACKGROUND: Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS: We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS: These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.


Assuntos
Envelhecimento Cognitivo , Metilação de DNA , Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Metilação de DNA/genética , Feminino , Masculino , Herança Multifatorial/genética , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Fatores de Risco , Imageamento por Ressonância Magnética , Envelhecimento/genética , Envelhecimento/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Estratificação de Risco Genético
16.
EMBO Rep ; 24(8): e56335, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37341560

RESUMO

While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/ß-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic ß-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic ß-catenin, and reducing its cytoplasmic levels in a GSK3ß- and ß-TrCP-independent manner, indicating that NEURL-ß-catenin interactions can lead to a disruption of the canonical Wnt/ß-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/ß-catenin signalling.


Assuntos
Neoplasias do Colo , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt , Neoplasias do Colo/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Linhagem Celular Tumoral
17.
Brain ; 147(4): 1216-1230, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37812819

RESUMO

Dravet syndrome is a severe epileptic encephalopathy, characterized by drug-resistant epilepsy, severe cognitive and behavioural deficits, with increased risk of sudden unexpected death (SUDEP). It is caused by haploinsufficiency of SCN1A gene encoding for the α-subunit of the voltage-gated sodium channel Nav1.1. Therapeutic approaches aiming to upregulate the healthy copy of SCN1A gene to restore its normal expression levels are being developed. However, whether Scn1a gene function is required only during a specific developmental time-window or, alternatively, if its physiological expression is necessary in adulthood is untested up to now. We induced Scn1a gene haploinsufficiency at two ages spanning postnatal brain development (P30 and P60) and compared the phenotypes of those mice to Scn1a perinatally induced mice (P2), recapitulating all deficits of Dravet mice. Induction of heterozygous Nav1.1 mutation at P30 and P60 elicited susceptibility to the development of both spontaneous and hyperthermia-induced seizures and SUDEP rates comparable to P2-induced mice, with symptom onset accompanied by the characteristic GABAergic interneuron dysfunction. Finally, delayed Scn1a haploinsufficiency induction provoked hyperactivity, anxiety and social attitude impairment at levels comparable to age matched P2-induced mice, while it was associated with a better cognitive performance, with P60-induced mice behaving like the control group. Our data show that maintenance of physiological levels of Nav1.1 during brain development is not sufficient to prevent Dravet symptoms and that long-lasting restoration of Scn1a gene expression would be required to grant optimal clinical benefit in patients with Dravet syndrome.


Assuntos
Epilepsias Mioclônicas , Morte Súbita Inesperada na Epilepsia , Humanos , Camundongos , Animais , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Interneurônios/fisiologia , Encéfalo , Mutação , Modelos Animais de Doenças
18.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38185983

RESUMO

Conventional brain magnetic resonance imaging (MRI) of anti-N-methyl-D-aspartate-receptor encephalitis (NMDARE) is non-specific, thus showing little differential diagnostic value, especially for MRI-negative patients. To characterize patterns of structural alterations and facilitate the diagnosis of MRI-negative NMDARE patients, we build two support vector machine models (NMDARE versus healthy controls [HC] model and NMDARE versus viral encephalitis [VE] model) based on radiomics features extracted from brain MRI. A total of 109 MRI-negative NMDARE patients in the acute phase, 108 HCs and 84 acute MRI-negative VE cases were included for training. Another 29 NMDARE patients, 28 HCs and 26 VE cases were included for validation. Eighty features discriminated NMDARE patients from HCs, with area under the receiver operating characteristic curve (AUC) of 0.963 in validation set. NMDARE patients presented with significantly lower thickness, area, and volume and higher mean curvature than HCs. Potential atrophy predominately presented in the frontal lobe (cumulative weight = 4.3725, contribution rate of 29.86%), and temporal lobe (cumulative weight = 2.573, contribution rate of 17.57%). The NMDARE versus VE model achieved certain diagnostic power, with AUC of 0.879 in validation set. Our research shows potential atrophy across the entire cerebral cortex in acute NMDARE patients, and MRI machine learning model has a potential to facilitate the diagnosis MRI-negative NMDARE.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo , Aprendizado de Máquina , Atrofia
19.
Cell Mol Life Sci ; 81(1): 50, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252148

RESUMO

Pancreatic neuroendocrine neoplasms (PanNENs) are a group of highly heterogeneous neoplasms originating from the endocrine islet cells of the pancreas with characteristic neuroendocrine differentiation, more than 60% of which represent metastases when diagnosis, causing major tumor-related death. Metabolic alterations have been recognized as one of the hallmarks of tumor metastasis, providing attractive therapeutic targets. However, little is known about the molecular mechanism of metabolic changes regulating PanNEN progression. In this study, we first identified methylmalonic acid (MMA) as an oncometabolite for PanNEN progression, based on serum metabolomics of metastatic PanNEN compared with non-metastatic PanNEN patients. One of the key findings was the potentially novel mechanism of epithelial-mesenchymal transition (EMT) triggered by MMA. Inhibin ßA (INHBA) was characterized as a key regulator of MMA-induced PanNEN progression according to transcriptomic analysis, which has been validated in vitro and in vivo. Mechanistically, INHBA was activated by FOXA2, a neuroendocrine (NE) specific transcription factor, which was initiated during MMA-induced progression. In addition, MMA-induced INHBA upregulation activated downstream MITF to regulate EMT-related genes in PanNEN cells. Collectively, these data suggest that activation of INHBA via FOXA2 promotes MITF-mediated EMT during MMA inducing PanNEN progression, which puts forward a novel therapeutic target for PanNENs.


Assuntos
Fator 3-beta Nuclear de Hepatócito , Subunidades beta de Inibinas , Ácido Metilmalônico , Neoplasias Pancreáticas , Humanos , Fator 3-beta Nuclear de Hepatócito/genética , Subunidades beta de Inibinas/genética , Pâncreas , Neoplasias Pancreáticas/genética , Ativação Transcricional
20.
Bioessays ; 45(3): e2200194, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549872

RESUMO

The tricarboxylic acid (TCA) or Krebs cycle, which takes place in prokaryotic cells and in the mitochondria of eukaryotic cells, is central to life on Earth and participates in key events such as energy production and anabolic processes. Despite its relevance, it is not perceived as tightly regulated compared to other key metabolisms such as glycolysis/gluconeogenesis. A better understanding of the functioning of the TCA cycle is crucial due to mitochondrial function impairment in several diseases, especially those that occur with neurodegeneration. This article revisits what is known about the regulation of the Krebs cycle and hypothesizes the need for large-scale, rapid regulation of TCA cycle enzyme activity. Evidence of mitochondrial enzyme activity regulation by activation/deactivation of protein kinases and phosphatases exists in the literature. Apart from indirect regulation via G protein-coupled receptors (GPCRs) at the cell surface, signaling upon activation of GPCRs in mitochondrial membranes may lead to a direct regulation of the enzymes of the Krebs cycle. Hormonal-like regulation by posttranscriptional events mediated by activable kinases and phosphatases deserve proper assessment using isolated mitochondria. Also see the video abstract here: https://youtu.be/aBpDSWiMQyI.


Assuntos
Ciclo do Ácido Cítrico , Mitofagia , Morte Celular , Glicólise , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA