Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Food Microbiol ; 95: 103691, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397620

RESUMO

Escherichia coli O157:H7 risk associated with the consumption of fresh cut-cos lettuce during Australian industrial practices was assessed. A probabilistic risk assessment model was developed and implemented in the @Risk software by using the Monte Carlo simulation technique with 1,000,000 iterations. Australian preharvest practices yielded predicted annual mean E. coli O157:H7 levels from 0.2 to -3.4 log CFU/g and prevalence values ranged from 2 to 6.4%. While exclusion of solar radiation from the baseline model yielded a significant increase in concentration of E. coli O157:H7 (-5.2 -log fold), drip irrigation usage, exclusion of manure amended soil and rainfall reduced E. coli O157:H7 levels by 7.4, 6.5, and 4.3-log fold, respectively. The microbial quality of irrigation water and irrigation type both had a significant effect on E. coli O157:H7 concentrations at harvest (p < 0.05). The probability of illness due to consumption of E. coli O157:H7 contaminated fresh cut-cos lettuce when water washing interventions were introduced into the processing module, was reduced by 1.4-2.7-log fold (p < 0.05). This study provides a robust basis for assessment of risk associated with E. coli O157:H7 contamination on fresh cut-cos lettuce for industrial practices and will assist the leafy green industry and food safety authorities in Australia to identify potential risk management strategies.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Lactuca/microbiologia , Irrigação Agrícola , Austrália , Contagem de Colônia Microbiana , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Água Doce/microbiologia , Lactuca/crescimento & desenvolvimento , Esterco/microbiologia , Folhas de Planta/microbiologia
2.
Ecotoxicol Environ Saf ; 191: 110243, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32001421

RESUMO

The use of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazole phosphate (DMPP) has been suggested to diminish agricultural soil nitrate (NO3-) loss and increase nitrogen (N) use efficiency (NUE). However, the yield of ammonium (NH4+)-sensitive plants such as spinach (Spinacia oleracea L.) may be adversely affected by the application of NIs at high N levels and, on the other hand, the efficiency of the NIs may also be affected by soil amendments such as biochar. These two issues are still not adequately addressed. The aim of this study was to evaluate the effect of different N levels including DMPP or not in a calcareous soil with and without amendment of wheat straw biochar on spinach yield, NUE, nitrate concentration of spinach leaf, activity of enzymes nitrate reductase (NR) and nitrite reductase (NiR), and soil ammonium (NH4+) and NO3- concentration under greenhouse conditions. This experiment was carried out with different N rates factor at seven levels (un-fertilized, N0; fertilized with 50 mg N kg-1 soil, N50; fertilized with 75 mg N kg-1 soil, N75; fertilized with 100 mg N kg-1 soil, N100; fertilized with N50 + DMPP; fertilized with N75 + DMPP; and fertilized with N100 + DMPP) and biochar (BC) factor at two levels (0, 0%BC; and 2% (w/w), 2%BC) with six replications over a 56-day cultivation period of spinach. Results showed that the application of DMPP had no significant effect on the yield of spinach plant at low and medium levels of N (50 and 75 mg N kg-1 soil), but decreased the yield of this plant at the higher level of N (100 mg N kg-1 soil). However, application of BC decreased the negative effect of DMPP on spinach yield as the yield in spinach plants fertilized with N75 + DMPP and N100 + DMPP significantly increased. Both application of DMPP and addition of BC to soil decreased leaf NO3- concentration by 29.2% and 16.3% compared to control, respectively. Biochar compared to control decreased NR activity by 46.3%. With increasing N rate, NR and NiR activities increased, but DMPP decreased the activities of both enzymes. Biochar reduced the efficiency of DMPP as soil NH4+ concentration was higher in the treatments containing DMPP without BC at 56 days after planting. Biochar and DMPP could increase the quality of spinach plant through decreasing the leaf NO3- concentration. In general, wheat straw biochar counteracted DMPP-mediated negative effect on growth of spinach plant at high level of N by decreasing the efficiency of this inhibitor. These results provide the useful information for managing the application rate of N fertilizers including DMPP in biochar-amended soil.


Assuntos
Carvão Vegetal/farmacologia , Fertilizantes/análise , Nitrificação , Pirazóis/farmacologia , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/crescimento & desenvolvimento , Biomassa , Carvão Vegetal/química , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Solo/química , Spinacia oleracea/enzimologia
3.
Bull Environ Contam Toxicol ; 104(4): 497-502, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32152685

RESUMO

The effect of vermicompost added to a loam soil on the leaching behaviour of two herbicides (triclopyr and fluroxypyr) was examined. Mobility of the herbicides was assessed using disturbed soil columns under laboratory conditions. In both cases, the addition of vermicompost significantly increased the sorption of the compounds. For both, DT50 values were slightly higher in the amended soil, due to the increased adsorption. Rate constants (k) calculated according to pseudo-first order model were significantly lower in the case of triclopyr (very persistent), which led to a much lower degradation rate compared to fluroxypyr (persistent) in both unamended and amended soils. Values calculated for the experimental leaching index (ELI) in unamended and amended soils showed medium and high leachability for fluroxypyr (0.31 and 0.29) and triclopyr (0.72 and 0.70), respectively. Other index-based screening models (GUS, RLPI, LIX) also catalogue both herbicides as potential leachers. Results confirm that triclopyr and fluroxypyr may contaminate groundwater resources.


Assuntos
Acetatos/análise , Compostagem , Glicolatos/análise , Água Subterrânea/química , Modelos Teóricos , Piridinas/análise , Poluentes do Solo/análise , Solo/química , Acetatos/química , Adsorção , Glicolatos/química , Herbicidas/análise , Herbicidas/química , Piridinas/química , Poluentes do Solo/química
4.
Ecotoxicol Environ Saf ; 124: 489-496, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643763

RESUMO

Sewage treatment yields sludge, which is often used as a soil amendment in agriculture and crop production. Although the sludge contains elevated concentrations of macro and micronutrients, high levels of inorganic and organic compounds with genotoxic and mutagenic properties are present in sludge. Application of sludge in agriculture is a pathway for direct contact of crops to toxic chemicals. The objective of this study was to compile information related to the genotoxic and mutagenic effects of sewage sludge in different plant species. In addition, data are presented on toxicological effects in animals fed with plants grown in soils supplemented with sewage sludge. Despite the benefits of using sewage sludge as organic fertilizer, the data showcased in this review suggest that this residue can induce genetic damage in plants. This review alerts potential risks to health outcomes after the intake of food cultivated in sewage sludge-amended soils.


Assuntos
Cromossomos de Plantas/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Fertilizantes/efeitos adversos , Esgotos/efeitos adversos , Poluentes do Solo/toxicidade , Agricultura , Animais , Genes de Plantas/efeitos dos fármacos , Micronutrientes , Mutagênicos/toxicidade , Mutação Puntual , Esgotos/química , Solo
5.
J Environ Sci Health B ; 51(6): 383-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963628

RESUMO

The aim of this study was to investigate the pollution characteristics of typical veterinary antibiotics in manure and soil of livestock farms in Jiangsu province. This investigation employed solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A total of 53 manure and 50 amended soil samples from 16 livestock farms in Jiangsu province were collected for analysis. In the manure samples, the highest detected frequencies and concentrations were those of tetracyclines (TCs, 54.1 ± 5775.6 µgkg(-1)), followed by fluoroquinolones (FQs, 8.4 ± 435.6 µgkg(-1)), sulphonamides (SAs, 3.2 ± 5.2 µgkg(-1)) and macrolides (MACs, 0.4 ± 110.5 µgkg(-1)). Statistical analysis was used to illuminate the pollution characteristics of 23 veterinary antibiotics for various animal types and different regions in Jiangsu province. The results showed that the pollution level in cow manure was relatively lower compared with pig and chicken manure due to the relative restriction of medication. Furthermore, contamination was serious in amended soil from chicken farms. The pollution level in manure among different regions was higher to the south and north compared with the centre of the region. The same outcome was found for soil. Antibiotic residues in organic fertilizer were also investigated in this study. We found that although the detected concentration was lower in organic fertilizer than in fresh manure, detection frequencies (10-90%) were high, especially for roxithromycin (90%) in MACs (30-90%). This finding suggests attention should be paid to the pollution levels in organic fertilizer. This study is the first extensive investigation of the occurrence and distribution of many kinds of typical veterinary antibiotics in manure and soil from livestock farms of Jiangsu province. This investigation systematically assesses veterinary antibiotics usage and related emissions in southeast China.


Assuntos
Antibacterianos/análise , Fertilizantes , Esterco/análise , Poluentes do Solo/análise , Animais , Bovinos , Galinhas , China , Cromatografia Líquida , Monitoramento Ambiental/métodos , Feminino , Fertilizantes/análise , Gado , Extração em Fase Sólida , Sus scrofa , Suínos , Espectrometria de Massas em Tandem/métodos
6.
J Environ Sci Health B ; 51(1): 14-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26513264

RESUMO

Through livestock manure fertilization, antibiotics, antibiotic-resistant bacteria and genes are transferred to agricultural soils, resulting in a high prevalence of antibiotic-resistant bacteria in the soil. It is not clear, however, whether a correlation exists between resistant bacterial populations in manure and manure-amended soil. In this work, we demonstrate that the prevalence of cephalexin-, amoxicillin-, kanamycin- and gentamicin-resistant bacteria as well as bacteria simultaneously resistant to all four antibiotics was much higher in manure-amended soils than in manure-free soil. 454-pyrosequencing indicated that the ARB and multiple antibiotic-resistant bacteria (MARB) in swine or chicken manure and manure-amended soil were mainly distributed among Sphingobacterium, Myroides, Enterococcus, Comamonas and unclassified Flavobacteriaceae. The genus Sphingobacterium was highly prevalent among ARB from swine manure and manure-amended soil, and was also the most dominant genus among MARB from chicken manure and manure-amended soil. Other dominant genera among ARB or MARB populations in manure samples, including Myroides, Enterococcus and Comamonas, could not be detected or were detected at very low relative abundance in manure-amended soil. The present study suggests the possibility of transfer of ARBs from livestock manures to soils and persistence of ARB in these environments.


Assuntos
Bactérias/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Esterco/microbiologia , Microbiologia do Solo , Animais , Bactérias/genética , Galinhas/microbiologia , China , Contagem de Colônia Microbiana , Reação em Cadeia da Polimerase , Sus scrofa/microbiologia
7.
Environ Monit Assess ; 188(4): 241, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27007289

RESUMO

Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.01 M CaCl2 extraction) were prepared by diluting SAS with several levels of uncontaminated control soil. Despite long-term aging in the field, the sludge site soil still retains large reserves of heavy metals, residual organic matter, phosphorus, and other nutrients, but its characteristics appear to have stabilized over time. Nevertheless, lettuce and amaranth harvested from the sludge-treated soil had undesirable contents of Cd and Zn. The high plant uptake efficiency for Cd and Zn raises a concern regarding the quality and safety of leafy vegetables in particular, when these crops are grown on soils that have been amended heavily with sewage sludge products at any time in their past.


Assuntos
Metais Pesados/análise , Esgotos , Poluentes do Solo/análise , Solo/química , Agricultura , Biodegradação Ambiental , Cádmio , Cobre/análise , Monitoramento Ambiental , Fertilizantes , Humanos , Lactuca , Metais Pesados/toxicidade , Fósforo , Folhas de Planta/química , Poluentes do Solo/toxicidade , Verduras , Zinco/análise
8.
Crit Rev Microbiol ; 41(3): 273-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24083946

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica have been implicated in several disease outbreaks linked to consumption of fresh vegetables. Both ruminant and non-ruminant animals carry EHEC and S. enterica in their gastrointestinal tracts and can shed the pathogens in the faecal matter both in symptomatic and asymptomatic states. Application of animal waste in soil fertility management and irrigation of crops with contaminated waste water has been recognised as an important route through which EHEC and S. enterica can contaminate fresh vegetables during primary production. The behavior of E. coli O157:H7 and S. enterica in the agricultural environment has been extensively studied in the last decades. Several microbiological detection methods have been applied. This review therefore puts together current knowledge on the behavior of E. coli O157:H7 and S. enterica in the manure-amended soil-plant ecosystem of fresh vegetable crops during cultivation under various environmental conditions. The review focuses on methodological issues involved in undertaking survival studies and makes comparative analysis of experimental results obtained from studies conducted under controlled environmental conditions integrating results obtained from field experiments. Finally, a theoretical discussion on the potential likely impact of climate change on pre-harvest safety of field-cultivated vegetables is highlighted.


Assuntos
Produtos Agrícolas/microbiologia , Infecções por Escherichia coli/transmissão , Doenças Transmitidas por Alimentos/microbiologia , Infecções por Salmonella/transmissão , Verduras/microbiologia , Animais , Mudança Climática , Surtos de Doenças , Ecossistema , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/patogenicidade , Microbiologia de Alimentos , Infecções por Salmonella/microbiologia , Salmonella enterica/patogenicidade , Microbiologia do Solo
9.
J Hazard Mater ; 465: 133159, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061130

RESUMO

During biochar preparation or application some toxic substances may be formed. The established limitations of the content of polycyclic aromatic hydrocarbons (PAHs) aim to monitor the fate of PAHs in the life cycle of biochar. The latest studies have revealed that besides PAHs, some of their derivatives with confirmed toxicity are formed. There has been no policy regards PAH derivatives in biochar yet. The aim of the presented studies was the estimation the changes in the content of PAHs and their derivatives during the agricultural application of biochar. A pot experiment with grass revealed that in a short time, both the content of PAHs and their derivatives was reduced. Similarly, when biochar was added to soil in a long-term experiment, the content of determined derivatives was below the limit of detection, whereas interestingly, the content of pristine PAHs increased with time. Co-addition of biochar and sewage sludge increased the content of PAHs and their derivatives indicating potential environmental hazard due to their presence. However, the key point is the estimation of the bioavailability of PAHs and their derivatives as only the bioavailable fraction is revealing the environmental hazard.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Carvão Vegetal , Esgotos
10.
Chemosphere ; 362: 142596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876326

RESUMO

Biochar has shown promising potential for soil remediation, yet its impact on heavy metals (HMs) immobilization often overlooks soil structure, which could influence soil cracking behavior and HMs transport. To address this gap, this study investigates the role of soil structure (dry density and aggregate size) on the cracking and cadmium (Cd) leaching behavior of biochar-amended fine-grained soils. A series of semi-dynamic leaching tests were conducted on samples with and without wetting-drying (W-D) cycles. Based on the proposed improved method for quantifying the effective diffusion coefficient (De) of Cd in unsaturated soils and microstructural analyses, we found that: (1) Higher dry density and larger aggregate generally resulted in smaller De by decreasing soil pore volume. (2) Biochar could connect isolated pores within large aggregates through its internal pores, yielding greater increases in De (294.8%-469.0%) compared to small aggregates (29.1%-77.4%) with 3% biochar. However, further increases in biochar dosage led to decreased De, primarily due to the dense pore structure. (3) Biochar effectively inhibited soil cracking, achieving the highest reduction of 36.8% in surface crack ratio. (4) After W-D cycles, samples exhibited higher De with increasing dry density, with aggravated cracking being the primary cause, suggesting preferential flow within the cracks, particularly those penetrating the soil. This study highlights the importance of careful consideration of soil structure and cracking potential before in situ field application of biochar as a remediation agent for HMs-contaminated fine-grained soils.


Assuntos
Cádmio , Carvão Vegetal , Recuperação e Remediação Ambiental , Poluentes do Solo , Solo , Carvão Vegetal/química , Cádmio/química , Cádmio/análise , Poluentes do Solo/química , Poluentes do Solo/análise , Solo/química , Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Metais Pesados/análise
11.
Sci Total Environ ; 891: 164672, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290655

RESUMO

In winter, snowpack is an important driver of soil bacterial processes. Amending soil through the addition of organic compost has also been reported to affect soil properties and bacterial communities. However, the effects of snow and organic compost on soils have not been systematically researched and compared. To investigate the effects of these two activities on the succession of bacterial communities in the soil and on important soil nutrients, four treatment groups were established in this study: no snow without compost (CK-N), no snow with compost (T1-N), snow without compost (CK-X) and snow with compost (T1-X). Four representative time periods were also selected according to the extent of snow accumulation, including the first snow and melt. In addition, the compost pile was treated with fertilizer made from decomposing food waste. The results indicate that Proteobacteria was more affected by temperature and that fertilization increased its proportional abundance. The abundance of Acidobacteriota was increased by snow. Ralstonia could depend on nutrients provided by organic fertilizers, which prevented them from ceasing to breed at low temperatures, while snow cover was still able to reduce their survival. However, snowpack increased the abundance of RB41. Snow reduced the point and connectivity of the bacterial community and increased the association with environmental factors, especially the negative correlation with total nitrogen (TN); the prefertilizer application made the community network larger while maintaining association with environmental factors. Specifically, more key nodes in sparse communities after snow cover were identified by Zi-Pi analysis. The present study systematically assessed soil bacterial community succession in the context of snow cover and fertilizer application and interpreted the farm environment from a microscopic perspective through the winter. We found that snowpack affects TN through bacterial community succession. This study offers new insight into soil management.


Assuntos
Eliminação de Resíduos , Solo , Alimentos , Fertilizantes/microbiologia , Agricultura , Bactérias , Microbiologia do Solo
12.
Environ Anal Health Toxicol ; 37(4): e2022038-0, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36916051

RESUMO

Veterinary antibiotics are commonly used in poultry farming for preventing diseases and promoting growth. As a result of their incomplete metabolism in poultry birds, veterinary antibiotics are usually excreted and are frequently detected in poultry manures. Veterinary antibiotics in poultry manure applied onto soil may pose serious ecological effect to the terrestrial and aquatic environment. In the present work, the occurrence of three veterinary antibiotics (sulfamethoxazole, sulfadimidine and trimethoprim), categorized as veterinary antimicrobial agents of critical importance, was investigated in poultry manure from two poultry farms in Nigeria. The potential ecotoxicological risk of target veterinary antibiotics in poultry manure-amended soil was also assessed. A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction was adopted for the extraction of target veterinary antibiotics and instrumental analysis was achieved by high performance liquid chromatography. Sulfamethoxazole, sulfadimidine and trimethoprim were quantified in poultry manures from the poultry farms up to 12.7 µg g-1, 16.1 µg g-1 and 33.8 µg g-1, respectively. Sulfamethoxazole and trimethoprim in poultry manure-amended soil presented low risk to Eisenia fetida (earthworm). The ecological effect of sulfamethoxazole for the root length of rice was high in Farm B and medium in Farm A. Sulfamethoxazole presented high risk to aquatic organisms while sulfadimidine and trimethoprim posed medium risk and low risk, respectively to aquatic organisms. The results indicated that residual veterinary antibiotics in poultry manures could have adverse effects on crops after application to agricultural soil. There is a need for effective enlightenment programs for poultry farmers in Nigeria to bring about awareness on the environmental and toxicological impact of the excessive and uncontrolled use of veterinary antibiotics in poultry farming and the adverse ecological implications of poultry manure application on farmlands.

13.
Sci Total Environ ; 828: 154463, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276164

RESUMO

Livestock manure, as a major source of antibiotic resistance genes (ARGs), could further transfer ARGs from soil to vegetables when it's used as fertilizer in field and then pose threat to human health. Meanwhile, manure inputs and vegetable planting also affect soil bacterial communities, but these effects on the transmission of ARGs from soil to vegetable is still lacking. Here, lettuce and endive were cultivated in manure-amended soils using pot experiment. The distribution of bacterial community, ARGs and intI1 gene were studied in manure-amended soil and vegetable roots and leaves at harvest. High-throughput sequencing analysis demonstrated that planting vegetables exerted significant effect on soil bacterial communities, which partly explained the decrease of certain ARGs and the intI1 gene in planted soil than in control soil. ARGs in vegetable and soil were interconnected. The bacterial community compositions among root endophyte, leaf endophyte, and phyllosphere were varied by Hierarchical clustering analysis. Higher abundance of shared bacterial taxa was found between root endophytes and soil microbes, which could lead to a relative higher detection frequency of ARGs in root endophyte. Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were dominant in the plant endophyte and phyllosphere microbes and had intensive correlations with ARGs. Taken together, our findings provided valuable insights into the role of bacterial community structure in the dissemination of ARGs from manure-amended soil to vegetables.


Assuntos
Esterco , Solo , Antibacterianos/análise , Bactérias , Resistência Microbiana a Medicamentos/genética , Endófitos/genética , Genes Bacterianos , Humanos , Esterco/análise , Solo/química , Microbiologia do Solo , Verduras
14.
Chemosphere ; 300: 134529, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35395269

RESUMO

A meta-analysis of 94 published studies was conducted to explore the impacts of farmland application of antibiotic-contaminated manures on antibiotic concentrations and ARG abundances in manure-amended soil. Forty-nine antibiotics were reported, in which chlortetracycline, oxytetracycline, doxycycline, tetracycline, enrofloxacin, ciprofloxacin and norfloxacin were the most prevalent and had relatively high concentrations. The responses of ARG and mobile genetic element (MGE) abundances to farmland application of antibiotic-contaminated manures varied considerably under different management strategies and environmental settings. On average, compared to unamended treatments, farmland application of antibiotic-contaminated manures significantly increased the total ARG and MGE abundances by 591% and 351%, respectively (P < 0.05). Of all the included ARG classes, the largest increase was found for sulfonamide resistance genes (1121%), followed by aminoglycoside (852%) and tetracycline (763%) resistance genes. Correlation analysis suggested that soil organic carbon (SOC) was significantly negatively correlated with antibiotic concentrations in manured soil (P < 0.05) due to the formation of covalent bonds and nonextractable residues. Soil silt content was significantly positively correlated with antibiotic concentration (P < 0.05), which was attributed to greater sorption capacities. The ARG abundances were significantly positively correlated with soil silt content, antibiotic concentrations, mean annual temperature, SOC, MGEs and soil pH (P < 0.05), suggesting that changes in these factors may shape the ARG profiles. Collectively, these findings advanced our understanding of the occurrence of antibiotics and ARGs in manure-amended soil and potential factors affecting them and will contribute to better management of these contaminants in future agricultural production.


Assuntos
Esterco , Solo , Antibacterianos/farmacologia , Carbono , Resistência Microbiana a Medicamentos/genética , Fazendas , Genes Bacterianos , Esterco/análise , Solo/química , Microbiologia do Solo , Tetraciclinas
15.
J Appl Microbiol ; 110(4): 1007-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21276146

RESUMO

AIMS: To establish the fate of Escherichia coli O157:H7 and Salmonella Typhimurium in manure and manure-amended agricultural soils under tropical conditions in Sub-Saharan Africa. METHODS AND RESULTS: Survival of nonvirulent E. coli O157:H7 and Salm. Typhimurium at 4 and 7 log CFU g(-1) in manure and manure-amended soil maintained at ≥80% r.h. or exposed to exclusive field or screen house conditions was determined in the Central Agro-Ecological Zone of Uganda. Maintaining the matrices at high moisture level promoted the persistence of high-density inocula and enhanced the decline of low-density inocula in the screen house, but moisture condition did not affect survival in the field. The large majority of the survival kinetics displayed complex patterns corresponding to the Double Weibull model. The two enteric bacteria survived longer in manure-amended soil than in manure. The 7 log CFU g(-1) E. coli O157:H7 and Salm. Typhimurium survived for 49-84 and 63-98 days, while at 4 log CFU g(-1) , persistence was 21-28 and 35-42 days, respectively. CONCLUSIONS: Under tropical conditions, E. coli O157:H7 and Salm. Typhimurium persisted for 4 and 6 weeks at low inoculum density and for 12 and 14 weeks at high inoculum density, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Persistence in the tropics was (i) mostly shorter than previously observed in temperate regions thus suggesting that biophysical conditions in the tropics might be more detrimental to enteric bacteria than in temperate environments; (ii) inconsistent with published data isothermally determined previously hence indicating the irrelevance of single point isothermal data to estimate survival under dynamic temperature conditions.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Salmonella typhimurium/crescimento & desenvolvimento , Microbiologia do Solo , Clima Tropical , África Subsaariana , Agricultura , Esterco/microbiologia , Viabilidade Microbiana
16.
MethodsX ; 8: 101205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434728

RESUMO

Laboratory soil column experiments have been frequently performed for investigating various soil-related processes. In recent years, the demand for using biochar as a soil amendment for environmental and agricultural purposes has increased significantly. To assess the beneficial impacts of biochar, laboratory column experiments may be conducted using repacked biochar-amended soil before large-scale biochar application. Biochar is a porous material that might have transient hydrophobicity, and particle density, size, and shape that often differ from native soil. These factors might cause several experimental problems in repacked laboratory columns, including unrealistic hydraulic and solute transport and transformation measurements, spatial variation of biochar content, and error in estimating the repacked biochar-amended soil properties. Therefore, it is necessary to modify standard repacked column packing procedures for biochar-amended soil. In this work, several modifications are described for preparing repacked biochar-amended soils. The modifications are rinsing and oven-drying biochar, determining the optimum moisture content to achieve a homogenous mixture, determining the desired bulk density before column packing, and mixing and packing under wet conditions. In addition, repacked columns should be characterized by their inter, intra, and total porosities and pore volume after column packing.•Steps are recommended prior to packing the repacked biochar-amended soil columns: rinsing biochar and pre-determining optimum moisture content and bulk density.•Columns are wet-packed in subsections at the optimum moisture content to the desired bulk density. Following packing, the inter, intra, and total porosities and pore volume should be determined.•These steps will reduce unrealistic transient results, inhibit nonuniform packing and heterogeneity of biochar content, and provide important information for interpreting the performance of biochar-amended media.

17.
Environ Pollut ; 289: 117943, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426179

RESUMO

Microplastics were investigated in an agricultural soil to which three types of sludge were repeatedly applied: fresh municipal sludge (FSS1), fresh mixed sludge (mainly industrial sludge) (FSS2), and dry heat-treated municipal sludge (DSS). The percentages of microplastics <1.0 mm were 24.3 and 28.7-59.1 % in unamended and amended soils, respectively. Particles of this size accounted for 47.1-60.0 % of microplastics in different sludges and polymers of particle size <100 µm occurred in all soil samples and sludges examined. Fibers were the commonest microplastic type, ranging from 66.7 to 82.5 % in soil and 89.4-97.2 % in sludges. Polyester (PES) and polypropylene (PP) accounted for ~80 % of the total microplastics found in soil and poly-(styrene:acrylate) (PS-AC) microspheres were found in all sludge-amended soil samples examined. There was also a pronounced weathering effect on the surfaces of the microplastics in soil. Nine years of repeated sludge application led to the accumulation of microplastics in the soil. The abundance of microplastics was significantly higher in the municipal sludge (149.2 ± 52.5 particles kg-1) than in the mixed (68.6 ± 21.5 particles kg-1) or dried (73.1 ± 15.4 particles kg-1) sludge and this was related to the microplastic abundance in the sludges. This field study confirms that sludges are drivers of soil microplastic pollution and measures are required to minimize the inputs of microplastics to agricultural land.


Assuntos
Microplásticos , Esgotos , Agricultura , Plásticos , Solo
18.
Sci Total Environ ; 772: 145038, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33581523

RESUMO

Agriculture effluents from cleaning and handling equipment used in pesticide applications can contaminate superficial and groundwater sources when not correctly disposed of. Biobeds using soil enriched with amendments represent a viable technology to control and minimize pesticide pollution of soil and water in farmlands. They are usually installed outdoors without protection, making them vulnerable to rain flooding, lack of moisture, drought, and intense heat or cold. Temperature (T) and moisture (M) of the biomixture are considered two of the most important physical factor affecting pesticide dissipation. This study aimed to evaluate the effect of T and M on the dissipation of five of the most used pesticides (carbofuran, atrazine, 2,4-D, diazinon, and glyphosate) in Yucatan State, Mexico. Three experiments using miniaturized biobeds considering optimal temperature and moisture (T of 30 ± 2 °C and 90% water holding capacity [WHC]) were performed. The optimal dissipation time and the effect of T, M variations, and volatilization was determined. The optimal dissipation time was over 14 days. Carbofuran was the least dissipated pesticide and glyphosate the most. The primary factor affecting pesticide dissipation was T (P < 0.05), reaching rates of dissipation of 99% at 45 °C. Variations of M in the biomixture were not significant on pesticide dissipation (P > 0.05). The white-rot fungi were observed; its presence was related to increments of T. Head Space analysis (at 45 °C) showed low pesticide volatilization (≤0.03%) for all pesticide used were quantified; water vapor condensation could reduce the pesticide volatilization for experimental conditions.

19.
Environ Pollut ; 286: 117364, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052651

RESUMO

This study explored biochar (BC) amendment effects on microcystin-LR (MCLR) concentration-dependent sorption and sequential desorption (SDE) by diverse soils to assess MCLR-trapping by BC-amended soils. Soil properties varied with rising BC dose and aging time. As aging proceeded, BC-amended soils shared a generally similar 'firstly increase and then decrease' trend of MCLR sorption and 'firstly decrease and then increase' trend of desorption at most cases. It appeared that MCLR sorption by BC-amended soils was most positively correlated with mesoporosity and surface basic functionality. BC-amendment increased MCLR-trapping for most soils, especially 4% BC at 3 month-aging maximized trapping ratio of GZ, SY and SX to 86.59%-95.43%, 80.01%-87.20% and 78.73%-90.85%, respectively, at 50-500 µg/L MCLR by largely increasing sorption and decreasing desorption. BC-amendment best matched GZ soil because MCLR-trapping of BC-amended GZ exceeded other amended soils at the same BC dose and aging time, but failed to obviously increase MCLR-trapping of HS soil at most cases, except only case with 2% BC at 3 month-aging. Site energy distribution verified that maximally enhanced MCLR-trapping of most soils was due to greatly enhanced sorption affinity during sorption and 1st desorption cycle, making closer MCLR-binding that more resistant to desorption. Contrarily, BC-amendment did not enhance sorption affinity of HS along sorption-SDE to compromise MCLR-trapping increase at most cases. This study validated 3 months as suitable BC-aging time to maximize MCLR-trapping in diverse soils, and elucidated influencing factors and mechanisms from view of site energy distribution, which shed novel insights on MCLR sorption-desorption by BC-amended soils, and guided to optimize BC-amendment strategy for efficient MCLR-immobilization and eco-risk elimination in diverse soils.


Assuntos
Poluentes do Solo , Solo , Adsorção , Carvão Vegetal , Fazendas , Toxinas Marinhas , Microcistinas
20.
Sci Total Environ ; 735: 139566, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485456

RESUMO

Use of imazethapyr and imazamox has been an environmental concern due to their high persistence, water solubility, residue build up and potential to injure the succeeding crops. Hence, it is necessary to develop effective decontamination technology. In present study, effect of ß-cyclodextrin-chitosan biocomposite (LCD) amendment in soil on dissipation of imazethapyr and imazamox and their phytotoxicity on succeeding crop was evaluated. The influence of different experimental variables viz. extractant solution and its concentration, liquid to soil ratio, amount of soil and soil type on dissipation of imazethapyr and imazamox was assessed through chemical assays. Irrespective of herbicide formulation and application rate, amendment of soils with LCD increased the dissipation rate of herbicide and the residues were below the detection limit (<0.005 µg g-1) within 5 to 15 days in aridisol, entisol, inceptisol A, inceptisol B, inceptisol C and 7 to 21 days in alfisol and vertisol. Amendment of soils with LCD significantly reduced the growth inhibition of Brassica juncea (L.) Czern and improved the soil biological activity as evident from increase in dehydrogenase activity and soil bacterial count. Amendment of soils with LCD could be a promising, economically feasible and environmentally benign soil decontamination strategy for imazethapyr and imazamox contaminated soils.


Assuntos
Quitosana , Herbicidas/análise , Poluentes do Solo/análise , beta-Ciclodextrinas , Imidazóis , Ácidos Nicotínicos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA