RESUMO
One of the fundamental steps toward understanding a complex system is identifying variation at the scale of the system's components that is most relevant to behavior on a macroscopic scale. Mutual information provides a natural means of linking variation across scales of a system due to its independence of functional relationship between observables. However, characterizing the manner in which information is distributed across a set of observables is computationally challenging and generally infeasible beyond a handful of measurements. Here, we propose a practical and general methodology that uses machine learning to decompose the information contained in a set of measurements by jointly optimizing a lossy compression of each measurement. Guided by the distributed information bottleneck as a learning objective, the information decomposition identifies the variation in the measurements of the system state most relevant to specified macroscale behavior. We focus our analysis on two paradigmatic complex systems: a Boolean circuit and an amorphous material undergoing plastic deformation. In both examples, the large amount of entropy of the system state is decomposed, bit by bit, in terms of what is most related to macroscale behavior. The identification of meaningful variation in data, with the full generality brought by information theory, is made practical for studying the connection between micro- and macroscale structure in complex systems.
RESUMO
Premelting of ice, a quasi-liquid layer (QLL) at the surface below the melting temperature, was first postulated by Michael Faraday 160 y ago. Since then, it has been extensively studied theoretically and experimentally through many techniques. Existing work has been performed predominantly on hexagonal ice, at conditions close to the triple point. Whether the same phenomenon can persist at much lower pressure and temperature, where stacking disordered ice sublimates directly into water vapor, remains unclear. Herein, we report direct observations of surface premelting on ice nanocrystals below the sublimation temperature using transmission electron microscopy (TEM). Similar to what has been reported on hexagonal ice, a QLL is found at the solid-vapor interface. It preferentially decorates certain facets, and its thickness increases as the phase transition temperature is approached. In situ TEM reveals strong diffusion of the QLL, while electron energy loss spectroscopy confirms its amorphous nature. More significantly, the premelting observed in this work is thought to be related to the metastable low-density ultraviscous water, instead of ambient liquid water as in the case of hexagonal ice. This opens a route to understand premelting and grassy liquid state, far away from the normal water triple point.
RESUMO
Crystallization of polymers from entangled melts generally leads to the formation of semicrystalline materials with a nanoscopic morphology consisting of stacks of alternating crystalline and amorphous layers. The factors controlling the thickness of the crystalline layers are well studied; however, there is no quantitative understanding of the thickness of the amorphous layers. We elucidate the effect of entanglements on the semicrystalline morphology by the use of a series of model blends of high-molecular-weight polymers with unentangled oligomers leading to a reduced entanglement density in the melt as characterized by rheological measurements. Small-angle X-ray scattering experiments after isothermal crystallization reveal a reduced thickness of the amorphous layers, while the crystal thickness remains largely unaffected. We introduce a simple, yet quantitative model without adjustable parameters, according to which the measured thickness of the amorphous layers adjusts itself in such a way that the entanglement concentration reaches a specific maximum value. Furthermore, our model suggests an explanation for the large supercooling that is typically required for crystallization of polymers if entanglements cannot be dissolved during crystallization.
RESUMO
We propose a first-principles model of minimum lattice thermal conductivity ([Formula: see text]) based on a unified theoretical treatment of thermal transport in crystals and glasses. We apply this model to thousands of inorganic compounds and find a universal behavior of [Formula: see text] in crystals in the high-temperature limit: The isotropically averaged [Formula: see text] is independent of structural complexity and bounded within a range from â¼0.1 to â¼2.6 W/(m K), in striking contrast to the conventional phonon gas model which predicts no lower bound. We unveil the underlying physics by showing that for a given parent compound, [Formula: see text] is bounded from below by a value that is approximately insensitive to disorder, but the relative importance of different heat transport channels (phonon gas versus diffuson) depends strongly on the degree of disorder. Moreover, we propose that the diffuson-dominated [Formula: see text] in complex and disordered compounds might be effectively approximated by the phonon gas model for an ordered compound by averaging out disorder and applying phonon unfolding. With these insights, we further bridge the knowledge gap between our model and the well-known Cahill-Watson-Pohl (CWP) model, rationalizing the successes and limitations of the CWP model in the absence of heat transfer mediated by diffusons. Finally, we construct graph network and random forest machine learning models to extend our predictions to all compounds within the Inorganic Crystal Structure Database (ICSD), which were validated against thermoelectric materials possessing experimentally measured ultralow κL. Our work offers a unified understanding of [Formula: see text], which can guide the rational engineering of materials to achieve [Formula: see text].
RESUMO
Although direct generation of high-value complex molecules and feedstock by coupling of ubiquitous small molecules such as CO2 and N2 holds great appeal as a potential alternative to current fossil-fuel technologies, suitable scalable and efficient catalysts to this end are not currently available as yet to be designed and developed. To this end, here we prepare and characterize SbxBi1-xOy clusters for direct urea synthesis from CO2 and N2 via C-N coupling. The introduction of Sb in the amorphous BiOx clusters changes the adsorption geometry of CO2 on the catalyst from O-connected to C-connected, creating the possibility for the formation of complex products such as urea. The modulated Bi(II) sites can effectively inject electrons into N2, promoting C-N coupling by advantageous modification of the symmetry for the frontier orbitals of CO2 and N2 involved in the rate-determining catalytic step. Compared with BiOx, SbxBi1-xOy clusters result in a lower reaction potential of only -0.3 V vs. RHE, an increased production yield of 307.97 µg h-1 mg-1cat, and a higher Faraday efficiency (10.9%), pointing to the present system as one of the best catalysts for urea synthesis in aqueous systems among those reported so far. Beyond the urea synthesis, the present results introduce and demonstrate unique strategies to modulate the electronic states of main group p-metals toward their use as effective catalysts for multistep electroreduction reactions requiring C-N coupling.
RESUMO
Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.
Assuntos
Sedimentos Geológicos , Metano , Sedimentos Geológicos/microbiologia , Anaerobiose , Dióxido de Silício , Hibridização in Situ Fluorescente , Fósseis , Archaea/genética , Oxirredução , Sulfatos , Silicatos , Filogenia , Consórcios MicrobianosRESUMO
Lithium-carbon dioxide (Li-CO2) batteries are regarded as a promising electrochemical system owing to their energy storage capability and CO2 utilization. However, the reported operating voltage of ~2.6 V is increasingly questioned as seemingly beyond the capability of the electrochemical carbon dioxide reduction reaction to carbon. Herein, the real operating voltage of a Li-CO2 battery is reacquainted, and the operating voltage and the equilibrium potential are clarified to be ~1.1 V and ~2.82 V, respectively. The products formed at low voltage are identified to be crystalline Li2CO3, amorphous C, and explicitly amorphous Li2CO3. Moreover, by decoupling small currents, 1% O2, and 500 ppm H2O, the operating voltage plateaus are stimulated to ~2.0 V. An ever-increasing plateau can be achieved up to the reported level of ~2.6 V activated by a minor air leak or residue in test environments. Conclusively, the operating voltages of Li-CO2 batteries are proposed to be deceptive and extremely sensitive to the surrounding environments. This work unveils the real operating voltage and provides the voltage regulation rules to advance next-generation Li-CO2 batteries.
RESUMO
The dinosaur-bird transition involved several anatomical, biomechanical, and physiological modifications of the theropod bauplan. Non-avian maniraptoran theropods, such as Troodon, are key to better understand changes in thermophysiology and reproduction occurring during this transition. Here, we applied dual clumped isotope (Δ47 and Δ48) thermometry, a technique that resolves mineralization temperature and other nonthermal information recorded in carbonates, to eggshells from Troodon, modern reptiles, and modern birds. Troodon eggshells show variable temperatures, namely 42 and 29 ± 2 °C, supporting the hypothesis of an endothermic thermophysiology with a heterothermic strategy for this extinct taxon. Dual clumped isotope data also reveal physiological differences in the reproductive systems between Troodon, reptiles, and birds. Troodon and modern reptiles mineralize their eggshells indistinguishable from dual clumped isotope equilibrium, while birds precipitate eggshells characterized by a positive disequilibrium offset in Δ48. Analyses of inorganic calcites suggest that the observed disequilibrium pattern in birds is linked to an amorphous calcium carbonate (ACC) precursor, a carbonate phase known to accelerate eggshell formation in birds. Lack of disequilibrium patterns in reptile and Troodon eggshells implies these vertebrates had not acquired the fast, ACC-based eggshell calcification process characteristic of birds. Observation that Troodon retained a slow reptile-like calcification suggests that it possessed two functional ovaries and was limited in the number of eggs it could produce; thus its large clutches would have been laid by several females. Dual clumped isotope analysis of eggshells of extinct vertebrates sheds light on physiological information otherwise inaccessible in the fossil record.
Assuntos
Casca de Ovo , Répteis , Animais , Feminino , Carbonato de Cálcio , IsótoposRESUMO
Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction. Here, we use nanobeam X-ray total scattering together with an approach to separate crystalline and amorphous scattering contributions to obtain the spatially resolved atomic pair distribution function (PDF). We resolve three distinct amorphous calcium carbonate compounds, present in the shell of Pinctada margaritifera and attributed to: interprismatic periostracum, young mineralizing units, and mature mineralizing units. From this, we extract accurate bond parameters by reverse Monte Carlo (RMC) modeling of the PDF. This shows that the three amorphous compounds differ mostly in their Ca-O nearest-neighbor atom pair distance. Further characterization with conventional spectroscopic techniques unveils the presence of Mg in the shell and shows Mg-calcite in the final, crystallized shell. In line with recent literature, we propose that the amorphous-to-crystal transition is mediated by the presence of Mg. The transition occurs through the decomposition of the initial Mg-rich precursor into a second Mg-poor ACC compound before forming a crystal.
Assuntos
Pinctada , Animais , Carbonato de Cálcio/química , Moluscos , Raios XRESUMO
The phase state of respiratory aerosols and droplets has been linked to the humidity-dependent survival of pathogens such as SARS-CoV-2. To inform strategies to mitigate the spread of infectious disease, it is thus necessary to understand the humidity-dependent phase changes associated with the particles in which pathogens are suspended. Here, we study phase changes of levitated aerosols and droplets composed of model respiratory compounds (salt and protein) and growth media (organic-inorganic mixtures commonly used in studies of pathogen survival) with decreasing relative humidity (RH). Efflorescence was suppressed in many particle compositions and thus unlikely to fully account for the humidity-dependent survival of viruses. Rather, we identify organic-based, semisolid phase states that form under equilibrium conditions at intermediate RH (45 to 80%). A higher-protein content causes particles to exist in a semisolid state under a wider range of RH conditions. Diffusion and, thus, disinfection kinetics are expected to be inhibited in these semisolid states. These observations suggest that organic-based, semisolid states are an important consideration to account for the recovery of virus viability at low RH observed in previous studies. We propose a mechanism in which the semisolid phase shields pathogens from inactivation by hindering the diffusion of solutes. This suggests that the exogenous lifetime of pathogens will depend, in part, on the organic composition of the carrier respiratory particle and thus its origin in the respiratory tract. Furthermore, this work highlights the importance of accounting for spatial heterogeneities and time-dependent changes in the properties of aerosols and droplets undergoing evaporation in studies of pathogen viability.
Assuntos
Cloreto de Cálcio/química , Modelos Químicos , Aerossóis e Gotículas Respiratórios/química , SARS-CoV-2/química , Albumina Sérica/química , Cloreto de Sódio/química , COVID-19/virologia , Difusão , Desinfecção/métodos , Humanos , Umidade , Cinética , Viabilidade Microbiana , Transição de Fase , Propriedades de SuperfícieRESUMO
We carry out quantum simulations to study the physical properties of diamond-like amorphous carbon by coupling first-principles molecular dynamics with a quantum thermostat, and we analyze multiple samples representative of different defective sites present in the disordered network. We show that quantum vibronic coupling is critical in determining the electronic properties of the system, in particular its electronic and mobility gaps, while it has a moderate influence on the structural properties. We find that despite localized electronic states near the Fermi level, the quantum nature of the nuclear motion leads to a renormalization of the electronic gap surprisingly similar to that found in crystalline diamond. We also discuss the notable influence of nuclear quantum effects on band-like and variable-hopping mechanisms contributing to electrical conduction. Our calculations indicate that methods often used to evaluate electron-phonon coupling in ordered solids are inaccurate to study the electronic and transport properties of amorphous semiconductors composed of light atoms.
RESUMO
The proneness of water to crystallize is a major obstacle to understanding its putative exotic behavior in the supercooled state. It also represents a strong practical limitation to cryopreservation of biological systems. Adding some concentration of glycerol, which has a cryoprotective effect preventing, to some degree, water crystallization, has been proposed as a possible way out, provided the concentration is small enough for water to retain some of its bulk character and/or for limiting the damage caused by glycerol on living organisms. Contrary to previous expectations, we show that, in the "marginal" glycerol molar concentration ≈ 18%, at which vitrification is possible with no crystallization on rapid cooling, water crystallizes upon isothermal annealing even below the calorimetric glass transition of the solution. Through a time-resolved polarized neutron scattering investigation, we extract key parameters, size and shape of the ice crystallites, fraction of water that crystallizes, and crystallization time, which are important for cryoprotection, as a function of the annealing temperature. We also characterize the nature of the out-of-equilibrium liquid phases that are present at low temperature, providing more arguments against the presence of an isocompositional liquidliquid transition. Finally, we propose a rule of thumb to estimate the lower temperature limit below which water crystallization does not occur in aqueous solutions.
RESUMO
The interfacial structure holds great promise in suppressing dendrite growth and parasitic reactions of zinc metal in aqueous media. Current advancements prioritize novel component fabrication, yet the local crystal structure significantly impacts the interfacial properties. In addition, there is still a critical need for scalable synthesis methods for expediting the commercialization of aqueous zinc metal batteries (AZMBs). Herein, we propose a scalable concentration-controlled method for realizing crystalline to amorphous transformation of the Zn metal interface with exceptional scalability (>1 m2) and processing consistency (>30 trials). Theoretical and experimental analyses highlight the advantages of amorphous ZnO, which exhibits moderate adsorption energy, strong desolvation ability, and hydrophilicity. Employing the amorphous ZnO-coated zinc metal anode (AZO-Zn) significantly enhances the cycling performance, impressively maintaining 1000 cycles at 100 mA cm-2. The prototype AZO-Zn||MnO2@CNT pouch cell demonstrates a capacity of 15.7 mAh and maintains 91% of its highest capacity over 100 cycles, presenting promising avenues for the future commercialization of AZMBs.
RESUMO
Nanostructured metals with conventional grain boundaries or interfaces exhibit high strength yet usually poor ductility. Here we report an interface engineering strategy that breaks the strength-ductility dilemma via externally incorporating graphene oxide at lamella boundaries of aluminum (Al) nanolaminates. By forming the binary intergranular films where graphene oxide was sandwiched between two amorphous alumina layers, the Al-based composite nanolaminates achieved ultrahigh compressive strength (over 1 GPa) while retaining excellent plastic deformability. Complementing experimental results with molecular dynamics simulation efforts, the ultrahigh strength was interpreted by the strong blocking effect of the binary intergranular films on dislocation nucleation and propagation, and the excellent plasticity was found to originate from the stress/strain-induced crystalline-to-amorphous transition of graphene oxide and the synergistic deformation between Al nanolamellas and the binary intergranular films.
RESUMO
Atomically disordered diamonds with medium-range order realized in recent experiments extend our knowledge of atomic disorder in materials. However, the current understanding of amorphous carbons cannot answer why paracrystalline diamond (p-D) can be formed inherently different from other tetrahedral amorphous carbons (ta-Cs), and the emergence of p-D seems to be easily hindered by inappropriate temperatures. Herein, we performed atomistic-based simulations to shed light on temperature-dependent paracrystalline nucleation in atomically disordered diamonds. Using metadynamics and two carefully designed collective variables, reversible phase transitions among different ta-Cs can be presented under different temperatures, evidenced by corresponding local minima on the free energy surface and reaction path along the free energy gradient. We found that p-D is preferred in a narrow range of temperatures, which is comparable to real experimental temperatures under the Arrhenius framework. The insights and related methods should open up a perspective for investigating other amorphous carbons.
RESUMO
Oxide ceramics are considered promising candidates as solid electrolytes (SEs) for sodium metal batteries. However, the high sintering temperature induced boundaries and pores between angular grains lead to high grain boundary resistance and pathways for dendrite growth. Herein, we report a grain boundary modification strategy, which in situ generates an amorphous matrix among Na5SmSi4O12 oxide grains via tuning the chemical composition. The mechanical properties as well as electron mitigating capability of modified SE have been significantly enhanced. As a result, the SE achieves a room-temperature total ionic conductivity of 5.61 mS cm-1, the highest value for sodium-based oxide SEs. The Na|SE|Na symmetric cell achieves a high critical current density of 2.5 mA cm-2 and excellent cycle life over more than 2800 h at 0.15 mA cm-2 without dendrite formation. The full cell with Na3V2(PO4)3 as the cathode demonstrates impressive cycling performance, maintaining stability over 3000 cycles at 5C without observable loss of capacity.
RESUMO
Amorphous strategies have been extensively used in improving the dissolution of insoluble drugs for decades due to their high free energy. However, the formation of amorphous small-molecule gels (ASMGs) presents a counter-intuitive discovery that significantly limits their practical application. Recently, ASMGs have garnered attention because of their noncovalent structures, excellent biodegradability, and significant potential in various drug delivery systems in the pharmaceutical field. Hence, a comprehensive review is necessary to contribute to a better understanding of recent advances in ASMGs. This review aimed to introduce the main formation mechanisms, summarize possible influencing factors, generalize unique properties, outline elimination strategies, and discuss clinical application potential with preclinical cases of ASMGs. Moreover, few ASMGs are advanced to clinical stages. Intensive clinical research is needed for further development. We hope that this review can provide more efficient and rational guidance for exploring further clinical applications of ASMGs.
Assuntos
Géis , Solubilidade , Água , Géis/química , Humanos , Água/química , Preparações Farmacêuticas/química , Composição de Medicamentos , Animais , Sistemas de Liberação de Medicamentos , Química Farmacêutica , Descoberta de DrogasRESUMO
Stomatopods are ferocious hunters that use weaponized appendages to strike down their pray. The clubs of species such as Odontodactylus scyllarus undergo tremendous forces, and in consequence they have intricate structures, consisting of hydroxyapatite, chitin, amorphous calcium phosphate and carbonate, and occasionally calcite. These materials are distributed differently across the four major zones of the dactyl club: the impact, periodic lateral and medial, and striated regions. While stomatopod clubs and their structure have been studied for a long time, studies have thus far been constrained to 2D mapping experiments with moderate resolution due to difficulties in preparing whole club thin sections, and absorption tomography that gives information on densities but not molecular length scales. To address this problem, and shed light on the structure of entire clubs, we herein used X-ray powder diffraction computed tomography (XRD-CT) using high energy X-rays at the P07 beamline of PETRA-III to allow penetrating the large samples whilst still obtaining high resolution information. This allowed mapping the 3D distribution of diffraction phases including the biomineral apatite and the semi-crystal chitin matrix. This showed that hydroxyapatite forms an envelope around the club, and that chitin forms 2D sheets in the periodic region of the club.
RESUMO
Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.
Assuntos
Biomimética , Calcificação Fisiológica , Animais , Minerais/química , Osso e Ossos , Materiais Biocompatíveis/químicaRESUMO
As a fundamental product of CO2 conversion through two-electron transfer, CO is used to produce numerous chemicals and fuels with high efficiency, which has broad application prospects. In this work, it has successfully optimized catalytic activity by fabricating an electrocatalyst featuring crystalline-amorphous CoO-InOx interfaces, thereby significantly expediting CO production. The 1.21%CoO-InOx consists of randomly dispersed CoO crystalline particles among amorphous InOx nanoribbons. In contrast to the same-phase structure, the unique CoO-InOx heterostructure provides plentiful reactive crystalline-amorphous interfacial sites. The Faradaic efficiency of CO (FECO) can reach up to 95.67% with a current density of 61.72 mA cm-2 in a typical H-cell using MeCN containing 0.5 M 1-Butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) as the electrolyte. Comprehensive experiments indicate that CoO-InOx interfaces with optimization of charge transfer enhance the double-layer capacitance and CO2 adsorption capacity. Theoretical calculations further reveal that the regulating of the electronic structure at interfacial sites not only optimizes the Gibbs free energy of *COOH intermediate formation but also inhibits HER, resulting in high selectivity toward CO.