Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
Mol Pharm ; 21(7): 3375-3382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885189

RESUMO

Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.


Assuntos
Polímeros , Polímeros/química , Metilcelulose/química , Metilcelulose/análogos & derivados , Cristalização/métodos , Celulose/química , Celulose/análogos & derivados , Resinas Acrílicas/química , Sais/química , Derivados da Hipromelose/química , Solubilidade
2.
Mol Pharm ; 21(9): 4589-4602, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088435

RESUMO

Amorphous solid dispersion (ASD) in a polymer matrix is a powerful method for enhancing the solubility and bioavailability of otherwise crystalline, poorly water-soluble drugs. 6-Carboxycellulose acetate butyrate (CCAB) is a relatively new commercial cellulose derivative that was introduced for use in waterborne coating applications. As CCAB is an amphiphilic, carboxyl-containing, high glass transition temperature (Tg) polymer, characteristics essential to excellent ASD polymer performance, we chose to explore its ASD potential. Structurally diverse drugs quercetin, ibuprofen, ritonavir, loratadine, and clarithromycin were dispersed in CCAB matrices. We evaluated the ability of CCAB to create ASDs with these drugs and its ability to provide solubility enhancement and effective drug release. CCAB/drug dispersions prepared by spray drying were amorphous up to 25 wt % drug, with loratadine remaining amorphous up to 50% drug. CCAB formulations with 10% drug proved effective at providing in vitro solubility enhancement for the crystalline flavonoid drug quercetin as well as ritonavir, but not for the more soluble APIs ibuprofen and clarithromycin and the more hydrophobic loratadine. CCAB did provide slow and controlled release of ibuprofen, offering a simple and promising Long-duration ibuprofen formulation. Formulation with clarithromycin showed the ability of the polymer to protect against degradation of the drug at stomach pH. Furthermore, CCAB ASDs with both loratadine and ibuprofen could be improved by the addition of the water-soluble polymer poly(vinylpyrrolidone) (PVP), with which CCAB shows good miscibility. CCAB provided solubility enhancement in some cases, and the slower drug release exhibited by CCAB, especially in the stomach, could be especially beneficial, for example, in formulations containing known stomach irritants like ibuprofen.


Assuntos
Celulose , Ibuprofeno , Loratadina , Polímeros , Solubilidade , Polímeros/química , Celulose/química , Celulose/análogos & derivados , Ibuprofeno/química , Ibuprofeno/farmacocinética , Loratadina/química , Loratadina/análogos & derivados , Loratadina/farmacocinética , Liberação Controlada de Fármacos , Quercetina/química , Claritromicina/química , Ritonavir/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos
3.
Mol Pharm ; 21(8): 3967-3978, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39018110

RESUMO

The metastability of amorphous formulations poses barriers to their safe and widespread commercialization. The propensity of amorphous solid dispersions (ASDs) to crystallize is directly linked to their molecular structure. Amorphous structures are inherently complex and thus difficult to fully characterize by experiments, which makes structural simulations an attractive route for investigating which structural characteristics correlate with ASD stability. In this study, we use empirical potential structure refinement (EPSR) to create molecular models of ketoprofen-poly(vinylpyrrolidone) (KTP/PVP) ASDs with 0-75 wt % drug loading. The EPSR technique uses X-ray total scattering measurements as constraints, yielding models that are consistent with the X-ray data. We perform several simulations to assess the sensitivity of the EPSR approach to input parameters such as intramolecular bond rotations, PVP molecule length, and PVP tacticity. Even at low drug loading (25 wt %), ∼40% of KTP molecules participate in KTP-KTP hydrogen bonding. The extent of KTP-PVP hydrogen bonding does not decrease significantly at higher drug loadings. However, the models' relative uncertainties are too large to conclude whether ASDs' lower stabilities at high drug loadings are due to changes in drug-excipient hydrogen bonding or a decrease in steric hindrance of KTP molecules. This study illustrates how EPSR, combined with total scattering measurements, can be a powerful tool for investigating structural characteristics in amorphous formulations and developing ASDs with improved stability.


Assuntos
Cetoprofeno , Povidona , Difração de Raios X , Cetoprofeno/química , Povidona/química , Difração de Raios X/métodos , Cristalização , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Modelos Moleculares , Estabilidade de Medicamentos
4.
Mol Pharm ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265053

RESUMO

Hot-melt extrusion (HME) is a widely used method for creating amorphous solid dispersions (ASDs) of poorly soluble drug substances, where the drug is molecularly dispersed in a solid polymer matrix. This study examines the impact of three different copovidone excipients, their reactive impurity levels, HME barrel temperature, and the distribution of colloidal silicon dioxide (SiO2) on impurity levels, stability, and drug release of ASDs and their tablets. Initial peroxide levels were higher in Kollidon VA 64 (KVA64) and Plasdone S630 (PS630) compared to Plasdone S630 Ultra (PS630U), leading to greater oxidative degradation of the drug in fresh ASD tablets. However, stability testing (50 °C, closed container, 50 °C/30% RH, open conditions) showed lower oxidative degradation impurities in ASD tablets prepared at higher barrel temperatures, likely due to greater peroxide degradation. Plasdone S630 is suitable for ASDs with drugs prone to oxidative degradation, while standard purity grades may benefit drugs susceptible to free radical degradation, as they generate fewer free radicals post-HME. ASD tablets exhibited greater physical stability than milled extrudate samples, likely due to reduced exposure to stability conditions within the tablet matrix. Including SiO2 in the extrudate composition resulted in greater physical stability of the ASD system in the tablet; however, it negatively affected chemical stability, promoting greater oxidative degradation and hydroxylation of the drug substance. No impact of the distribution of SiO2 on drug release was observed. The study also confirmed the congruent release of copovidone, the drug substance, and Tween 80 using flow NMR coupled with in-line UV/vis. This research highlights the critical roles of peroxide levels and SiO2 in influencing the dissolution and physical and chemical stability of ASDs. The findings provide valuable insights for developing stable and effective pharmaceutical formulations, emphasizing the importance of controlling reactive impurities and excipient characteristics in ASD products prepared by using HME.

5.
Mol Pharm ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364799

RESUMO

Ternary amorphous solid dispersions (ASDs) consist of a multicomponent carrier with the aim of improving physical stability or dissolution performance. A polymer blend as a carrier that combines a water-insoluble and a water-soluble polymer may delay the drug release rate, minimizing the risk of precipitation from the supersaturated state. Different microstructures of the ternary ASD may result in different drug release performances; hence, understanding the phase morphology of the polymer blend is crucial prior to drug incorporation. The objective of this study is to investigate the miscibility of the water-insoluble p(MMA-co-HEMA) and water-soluble polymers such as HPC, HPMC, HPMC-AS, and Soluplus. To prepare the polymer blends, p(MMA-co-HEMA) was spray dried in 80/20 and 90/10 (w/w) ratios with one of the water-soluble polymers. Thermal analysis (mDSC and DMA) and solid-state (ss)NMR relaxometry were applied to study the miscibility of these blends. No conclusions regarding miscibility could be drawn from the Tg measurements by thermal analysis. However, phase-separation could be demonstrated in all blends by ssNMR relaxometry. Moreover, by measuring both the T1ρH and T1H relaxation times, domain sizes between 5 and 50 nm could be estimated. This work shows the importance of using complementary analytical techniques to investigate polymer miscibility.

6.
Mol Pharm ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39332024

RESUMO

The particle drifting effect, where nanosized colloidal drug particles overcome the diffusional resistance of the aqueous boundary layer adjacent to the intestinal wall and increase drug absorption rates, is drawing increasing attention in pharmaceutical research. However, mechanistic understanding and accurate prediction of the particle drifting effect remain lacking. In this study, we systematically evaluated the extent of the particle drifting effect affected by drug and colloidal properties, including the size, number, and type of the moving species using biphasic diffusion experiments combined with computational fluid dynamics simulations and mass transport analyses. The results showed that the particle drifting effect is a sequential reaction of particle dissolution/dissociation in the diffusional boundary layer, followed by absorption of the free drug. Therefore, factors affecting the rate-limiting step, which can be either process or both under different circumstances, alter the particle drifting effect. Experimental results also agree with the theory that the particle dissolution rate is dependent on particle size, concentration, and drug solubility. In addition, rapid bile micelle dissociation and bile salt absorption facilitated drug absorption by the particle drifting effect. Our findings explain the highly dynamic nature of the particle drifting effect and will contribute to rational formulation development and better bioavailability prediction for formulations containing colloidal particles.

7.
Mol Pharm ; 21(4): 1884-1899, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38512389

RESUMO

Upon dissolution, amorphous solid dispersions (ASDs) of poorly water-soluble compounds can generate supersaturated solutions consisting of bound and free drug species that are in dynamic equilibrium with each other. Only free drug is available for absorption. Drug species bound to bile micelles, polymer excipients, and amorphous and crystalline precipitate can reduce the drug solute's activity to permeate, but they can also serve as reservoirs to replenish free drug in solution lost to absorption. However, with multiple processes of dissolution, absorption, and speciation occurring simultaneously, it may become challenging to understand which processes lead to an increase or decrease in drug solution concentration. Closed, nonsink dissolution testing methods used routinely, in the absence of drug removal, allow only for static equilibrium to exist and obscure the impact of each drug species on absorption. An artificial gut simulator (AGS) introduced recently consists of a hollow fiber-based absorption module and allows mass transfer of the drug from the dissolution media at a physiological rate after tuning the operating parameters. In the present work, ASDs of varying drug loadings were prepared with a BCS-II model compound, ketoconazole (KTZ), and hypromellose acetate succinate (HPMCAS) polymer. Simultaneous dissolution and absorption testing of the ASDs was conducted with the AGS, and simple analytical techniques were utilized to elucidate the impact of bound drug species on absorption. In all cases, a lower amount of crystalline precipitate was formed in the presence of absorption relative to the nonsink dissolution "control". However, formation of HPMCAS-bound drug species and crystalline precipitate significantly reduced KTZ absorption. Moreover, at high drug loading, inclusion of an absorption module was shown to enhance ASD dissolution. The rank ordering of the ASDs with respect to dissolution was significantly different when nonsink dissolution versus AGS was used, and this discrepancy could be mechanistically elucidated by understanding drug dissolution and speciation in the presence of absorption.


Assuntos
Absorção Gastrointestinal , Polímeros , Solubilidade , Cristalização , Liberação Controlada de Fármacos , Polímeros/química
8.
Mol Pharm ; 21(7): 3395-3406, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836777

RESUMO

The incorporation of a counterion into an amorphous solid dispersion (ASD) has been proven to be an attractive strategy to improve the drug dissolution rate. In this work, the generality of enhancing the dissolution rates of free acid ASDs by incorporating sodium hydroxide (NaOH) was studied by surface-area-normalized dissolution. A set of diverse drug molecules, two common polymer carriers (copovidone or PVPVA and hydroxypropyl methylcellulose acetate succinate or HPMCAS), and two sample preparation methods (rotary evaporation and spray drying) were investigated. When PVPVA was used as the polymer carrier for the drugs in this study, enhancements of dissolution rates from 7 to 78 times were observed by the incorporation of NaOH into the ASDs at a 1:1 molar ratio with respect to the drug. The drugs having lower amorphous solubilities showed greater enhancement ratios, providing a promising path to improve the drug release performance from their ASDs. Samples generated by rotary evaporation and spray drying demonstrated comparable dissolution rates and enhancements when NaOH was added, establishing a theoretical foundation to bridge the ASD dissolution performance for samples prepared by different solvent-removal processes. In the comparison of polymer carriers, when HPMCAS was applied in the selected system (indomethacin ASD), a dissolution rate enhancement of 2.7 times by the incorporated NaOH was observed, significantly lower than the enhancement of 53 times from the PVPVA-based ASD. This was attributed to the combination of a lower dissolution rate of HPMCAS and the competition for NaOH between IMC and HPMCAS. By studying the generality of enhancing ASD dissolution rates by the incorporation of counterions, this study provides valuable insights into further improving drug release from ASD formulations of poorly water-soluble drugs.


Assuntos
Liberação Controlada de Fármacos , Metilcelulose , Hidróxido de Sódio , Solubilidade , Hidróxido de Sódio/química , Metilcelulose/química , Metilcelulose/análogos & derivados , Polímeros/química , Portadores de Fármacos/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Pirrolidinas/química
9.
Mol Pharm ; 21(6): 2878-2893, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767457

RESUMO

Understanding the interplay between kinetics and thermodynamics of polymer-mediated liquid-liquid phase separation is crucial for designing and implementing an amorphous solid dispersion formulation strategy for poorly water-soluble drugs. This work investigates the phase behaviors of a poorly water-soluble model drug, celecoxib (CXB), in a supersaturated aqueous solution with and without polymeric additives (PVP, PVPVA, HPMCAS, and HPMCP). Drug-polymer-water ternary phase diagrams were also constructed to estimate the thermodynamic behaviors of the mixtures at room temperature. The liquid-liquid phase separation onset point for CXB was detected using an inline UV/vis spectrometer equipped with a fiber optic probe. Varying CXB concentrations were achieved using an accurate syringe pump throughout this study. The appearance of the transient nanodroplets was verified by cryo-EM and total internal reflection fluoresence microscopic techniques. The impacts of various factors, such as polymer composition, drug stock solution pumping rates, and the types of drug-polymer interactions, are tested against the onset points of the CXB liquid-liquid phase separation (LLPS). It was found that the types of drug-polymer interactions, i.e., hydrogen bonding and hydrophobic interactions, are vital to the position and shapes of LLPS in the supersaturation drug solution. A relation between the behaviors of LLPS and its location in the CXB-polymer-water ternary phase diagram was drawn from the findings.


Assuntos
Celecoxib , Polímeros , Solubilidade , Termodinâmica , Água , Polímeros/química , Água/química , Celecoxib/química , Cinética , Química Farmacêutica/métodos , Transição de Fase , Separação de Fases
10.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38743928

RESUMO

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Assuntos
Cristalização , Água , Cristalização/métodos , Água/química , Cinética , Estabilidade de Medicamentos , Nifedipino/química , Compostos de Vinila/química , Termodinâmica , Pirrolidinas/química , Viscosidade , Química Farmacêutica/métodos , Umidade , Temperatura , Solubilidade , Metilcelulose/química , Metilcelulose/análogos & derivados
11.
Mol Pharm ; 21(2): 957-969, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38173336

RESUMO

One way to increase the slow dissolution rate and the associated low bioavailability of newly developed active pharmaceutical ingredients (APIs) is to dissolve the API in a polymer, leading to a so-called amorphous solid dispersion (ASD). However, APIs are often supersaturated in ASDs and thus tend to crystallize during storage. The kinetics of the crystallization process is determined by the amount of water the ASD absorbs during storage at relative humidity (RH), storage temperature, polymer type, and the drug load of the ASD. Here, the crystallization kinetics and shelf life of spray-dried ASDs were investigated for ASDs consisting of nifedipine (NIF) or celecoxib (CCX) as the APIs and of poly(vinylpyrrolidone-co-vinyl acetate) or hydroxypropyl methylcellulose acetate succinate as polymers. Samples were stored over 2 years at different RHs covering conditions above and below the glass transition of the wet ASDs. Crystallization kinetics and onset time of the crystallization were qualitatively studied by using powder X-ray diffraction and microscopic inspection and were quantitatively determined by using differential scanning calorimetry. It was found that the NIF ASDs crystallize much faster than CCX ASDs at the same drug load and at the same storage conditions due to both higher supersaturation and higher molecular mobility in the NIF ASDs. Experimental data on crystallization kinetics were correlated using the Johnson-Mehl-Avrami-Kolmogorov equation. A detailed thermodynamic and kinetic modeling will be performed in Part 2 of this paper series.


Assuntos
Polímeros , Água , Cristalização , Água/química , Estabilidade de Medicamentos , Solubilidade , Polímeros/química
12.
Mol Pharm ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360744

RESUMO

Using the time-temperature-transformation diagrams, we demonstrated a correlation between molecular mobility and crystallization in amorphous solid dispersions of nifedipine (NIF) with each polyvinylpyrrolidone vinyl acetate (PVPVA64) and polyvinyl caprolactam polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus). The behavior was compared with the NIF dispersions prepared with each polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) [Lalge et al., Mol. Pharmaceutics 2023, 20(3), 1806-1817]. Each system was characterized by a unique temperature at which the crystallization onset time was the shortest. Below this temperature, a coupling was observed between the α-relaxation time determined by dielectric spectroscopy and crystallization onset time. Above this temperature, the activation barrier for crystallization had a more significant role than molecular mobility. In the solid state, PVP and PVPVA64 dispersion exhibited higher resistance to crystallization than HPMCAS and Soluplus. The role of polymers in inhibiting crystal growth in nucleated systems was discerned by monitoring crystallization following wetting of the amorphous dispersion with the dissolution medium. PVPVA64 and Soluplus dispersions exhibited higher resistance to crystal growth than PVP and HPMCAS.

13.
Mol Pharm ; 21(4): 1900-1918, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469754

RESUMO

The use of amorphous solid dispersions (ASDs) in commercial drug products has increased in recent years due to the large number of poorly soluble drugs in the pharmaceutical pipeline. However, the release behavior of ASDs is complex and remains not well understood. Often, the drug release from ASDs is rapid and complete at lower drug loadings (DLs) but becomes slow and incomplete at higher DLs. The DL where release becomes hindered is termed the limit of congruency (LoC). Currently, there are no approaches to predict the LoC. However, recent findings show that one potential cause leading to the LoC is a change in phase morphology after water-induced phase separation at the ASD/solution interface. In this study, the phase behavior of ASDs in contact with aqueous solutions was described thermodynamically by constructing experimental and computational ternary phase diagrams, and these were used to predict morphology changes and ultimately the LoC. Experimental ternary phase diagrams were obtained by equilibrating ASD/water mixtures over time. Computational ternary phase diagrams were obtained by Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT). The morphology of the hydrophobic phase was studied with fluorescence confocal microscopy. It was demonstrated that critical point (plait point) composition approximately corresponded to the ASD DL, where the hydrophobic phase, formed during phase separation, became interconnected and hindered ASD release. This work provides mechanistic insights into the ASD release behavior and highlights the potential of in silico ASD design using phase diagrams.


Assuntos
Água , Solubilidade , Liberação Controlada de Fármacos , Água/química , Interações Hidrofóbicas e Hidrofílicas , Composição de Medicamentos
14.
Pharm Res ; 41(1): 141-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040879

RESUMO

BACKGROUND & PURPOSE: Different methods have been exploited to generate amorphous solid dispersions (ASDs) of poorly water-soluble drugs. However, the impact of processing methods on drug stability and dissolution hasn't been studied extensively. The purpose of the current study is to investigate the impact of the two common ASD processing methods, hot-melt extrusion (HME) and spray drying, on the chemical/physical stability and supersaturation of Posaconazole (Posa) based ASDs. METHODS & RESULTS: ASDs with 25% drug loading in hydroxypropylmethylcellulose acetate succinate were prepared using HME, and two types of spray dryers, a Procept Sprayer (ASD-Procept) and a Nano Sprayer (ASD-Nano). The relative physical stability of these ASDs upon exposure to heat and crystalline API seeding followed the order: ASD-Nano > ASD-Procept ≈HME. ASD-Procept and ASD-Nano showed similar chemical stability, slightly less stable than HME under 40°C/75%RH. All three ASDs demonstrated similar supersaturation induction times, and de-supersaturation kinetics with or without crystalline seeds. CONCLUSIONS: Posa ASDs prepared via spray drying were chemically less stable compared with HME, which can be attributed to their smaller particle size and hollow structure allowing oxygen penetration. For ASD-Procept and HME, the detailed phase changes involving recrystallization of amorphous Posa and a solid-solid phase transition from Posa Form I to Form Ia during the seed-induced studies were proposed. Similar dissolution and supersaturation-precipitation kinetics of three Posa ASDs indicated that any residual nanocrystals in the bulk ASDs were not enough to induce crystallization to differentiate ASDs made by three processing methods.


Assuntos
Triazóis , Solubilidade , Cristalização , Transição de Fase , Composição de Medicamentos/métodos
15.
Pharm Res ; 41(6): 1233-1245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744732

RESUMO

PURPOSE: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.


Assuntos
Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Ibuprofeno , Polímeros , Preparações de Ação Retardada/química , Ibuprofeno/química , Ibuprofeno/administração & dosagem , Polímeros/química , Composição de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Tecnologia de Extrusão por Fusão a Quente/métodos , Compostos de Vinila/química , Pirrolidinas/química , Química Farmacêutica/métodos , Povidona/química
16.
Chem Pharm Bull (Tokyo) ; 72(7): 681-688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39019599

RESUMO

Clarithromycin (CLA) is the preferred drug for treating respiratory infections in pediatric patients, but it has the drawbacks of extreme bitterness and poor water solubility. The purpose of this study was to improve solubility and mask the extreme bitterness of CLA. We use Hot Melt Extrusion (HME) to convert CLA and Eudragit® E100 into Solid Dispersion (SD). Differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) were used to identify the crystalline form of the prepared SDs, which showed that the crystalline CLA was converted to an amorphous form. At the same time, an increase in dissolution rate was observed, which is one of the properties of SD. The results showed that the prepared SD significantly increased the dissolution rate of crystalline CLA. Subsequently, the SD of CLA was prepared into a dry suspension with excellent suspending properties and a taste-masking effect. The bitterness bubble chart and taste radar chart showed that the SD achieved the bitter taste masking of CLA. Principal components analysis (PCA) of the data generated by the electronic tongue showed that the bitter taste of CLA was significantly suppressed using the polymer Eudragit® E100. Subsequently, a dry suspension was prepared from the SD of CLA. In conclusion, this work illustrated the importance of HME for preparing amorphous SD of CLA, which can solve the problems of bitterness-masking and poor solubility. It is also significant for the development of compliant pediatric formulations.


Assuntos
Claritromicina , Solubilidade , Suspensões , Paladar , Paladar/efeitos dos fármacos , Claritromicina/química , Claritromicina/farmacologia , Suspensões/química , Tecnologia de Extrusão por Fusão a Quente , Polímeros/química , Composição de Medicamentos , Temperatura Alta , Acrilatos
17.
Drug Dev Ind Pharm ; 50(3): 192-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305806

RESUMO

OBJECTIVE: To investigate the in-situ physicochemical interaction of Rifampicin and Ritonavir - Lopinavir Solid dispersion administered for the treatment of comorbid conditions i.e. Tuberculosis and HIV/AIDS. METHODS: pH-shift dissolution of Rifampicin (RIF) in presence of Ritonavir-Lopinavir solid dispersion (RL-SD) was carried out in USP phosphate buffer 6.8 and FaSSIF. Equilibrium and amorphous solubility were determined for the drugs. Pure drugs, their physical mixtures, and pH-shifted co-precipitated samples were characterized using DSC, PXRD, and FTIR. Fluorescence spectroscopy was used to investigate drug-rich and drug-lean phases. In-vitro and ex-vivo flux studies were also carried out. RESULTS: The results showed significant differences in the solubility and dissolution profiles of RTV and LOP in the presence of RIF, while RIF profile remained unchanged. Amorphicity, intermolecular interaction and aggregate formation in pH-shifted samples were revealed in DSC, XRD and FTIR analysis. Fluorescence spectroscopy confirmed the formation of drug-rich phase upon pH-shift. In-vitro and ex-vivo flux studies revealed significant reduction in the flux of all the drugs when studied in presence of second drug. CONCLUSION: RIF, RTV and LOP in presence of each other on pH-shift, results in co-precipitation in the amorphous form (miscible) which leads to reduction in the highest attainable degree of supersaturation. This reduction corresponds to the mole fraction of the RIF, RTV and LOP within the studied system. These findings suggest that the concomitant administration of these drugs may lead to physicochemical interactions and possible ineffective therapy.


Assuntos
Rifampina , Ritonavir , Ritonavir/química , Lopinavir/química , Solubilidade
18.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612460

RESUMO

In this study, binary amorphous solid dispersions (ASDs, fisetin-Eudragit®) and ternary amorphous solid inclusions (ASIs, fisetin-Eudragit®-HP-ß-cyclodextrin) of fisetin (FIS) were prepared by the mechanochemical method without solvent. The amorphous nature of FIS in ASDs and ASIs was confirmed using XRPD (X-ray powder diffraction). DSC (Differential scanning calorimetry) confirmed full miscibility of multicomponent delivery systems. FT-IR (Fourier-transform infrared analysis) confirmed interactions that stabilize FIS's amorphous state and identified the functional groups involved. The study culminated in evaluating the impact of amorphization on water solubility and conducting in vitro antioxidant assays: 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-ABTS, 2,2-diphenyl-1-picrylhydrazyl-DPPH, Cupric Reducing Antioxidant Capacity-CUPRAC, and Ferric Reducing Antioxidant Power-FRAP and in vitro neuroprotective assays: inhibition of acetylcholinesterase-AChE and butyrylcholinesterase-BChE. In addition, molecular docking allowed for the determination of possible bonds and interactions between FIS and the mentioned above enzymes. The best preparation turned out to be ASI_30_EPO (ASD fisetin-Eudragit® containing 30% FIS in combination with HP-ß-cyclodextrin), which showed an improvement in apparent solubility (126.5 ± 0.1 µg∙mL-1) and antioxidant properties (ABTS: IC50 = 10.25 µg∙mL-1, DPPH: IC50 = 27.69 µg∙mL-1, CUPRAC: IC0.5 = 9.52 µg∙mL-1, FRAP: IC0.5 = 8.56 µg∙mL-1) and neuroprotective properties (inhibition AChE: 39.91%, and BChE: 42.62%).


Assuntos
Adenoma , Benzotiazóis , Flavonóis , Ácidos Polimetacrílicos , Ácidos Sulfônicos , beta-Ciclodextrinas , Humanos , Acetilcolinesterase , Antioxidantes/farmacologia , Butirilcolinesterase , Simulação de Acoplamento Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474022

RESUMO

In this study, amorphous solid dispersions (ASDs) of pterostilbene (PTR) with polyvinylpyrrolidone polymers (PVP K30 and VA64) were prepared through milling, affirming the amorphous dispersion of PTR via X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Subsequent analysis of DSC thermograms, augmented using mathematical equations such as the Gordon-Taylor and Couchman-Karasz equations, facilitated the determination of predicted values for glass transition (Tg), PTR's miscibility with PVP, and the strength of PTR's interaction with the polymers. Fourier-transform infrared (FTIR) analysis validated interactions maintaining PTR's amorphous state and identified involved functional groups, namely, the 4'-OH and/or -CH groups of PTR and the C=O group of PVP. The study culminated in evaluating the impact of amorphization on water solubility, the release profile in pH 6.8, and in vitro permeability (PAMPA-GIT and BBB methods). In addition, it was determined how improving water solubility affects the increase in antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays) and neuroprotective (inhibition of cholinesterases: AChE and BChE) properties. The apparent solubility of the pure PTR was ~4.0 µg·mL-1 and showed no activity in the considered assays. For obtained ASDs (PTR-PVP30/PTR-PVPVA64, respectively) improvements in apparent solubility (410.8 and 383.2 µg·mL-1), release profile, permeability, antioxidant properties (ABTS: IC50 = 52.37/52.99 µg·mL-1, DPPH: IC50 = 163.43/173.96 µg·mL-1, CUPRAC: IC0.5 = 122.27/129.59 µg·mL-1, FRAP: IC0.5 = 95.69/98.57 µg·mL-1), and neuroprotective effects (AChE: 39.1%/36.2%, BChE: 76.9%/73.2%) were confirmed.


Assuntos
Antioxidantes , Benzotiazóis , Povidona , Ácidos Sulfônicos , Resveratrol , Povidona/química , Polímeros/química , Solubilidade , Difração de Raios X , Água , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542923

RESUMO

Our research aimed to develop an amorphous solid dispersion (ASD) of myricetin (MYR) with Polyvinylpyrrolidone K30 (PVP30) to enhance its solubility, dissolution rate, antioxidant, and neuroprotective properties. Employing a combination of solvent evaporation and freeze drying, we successfully formed MYR ASDs. XRPD analysis confirmed complete amorphization in 1:8 and 1:9 MYR-PVP weight ratios. DSC thermograms exhibited a single glass transition (Tg), indicating full miscibility. FT-IR results and molecular modeling confirmed hydrogen bonds stabilizing MYR's amorphous state. HPLC analysis indicated the absence of degradation products, ensuring safe MYR delivery systems. Solubility, dissolution rate (pH 1.2 and 6.8), antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays), and in vitro neuroprotective activities (inhibition of cholinesterases: AChE and BChE) were significantly improved compared to the pure compound. Molecular docking studies revealed that MYR had made several hydrogen, hydrophobic, and π-π stacking interactions, which could explain the compound's potency to inhibit AChE and BChE. MYR-PVP 1:9 w/w ASD has the best solubility, antioxidant, and neuroprotective activity. Stability studies confirmed the physical stability of MYR-PVP 1:9 w/w ASD immediately after dissolution and for two months under ambient conditions. Our study showed that the obtained ASDs are promising systems for the delivery of MYR with the potential for use in alleviating the symptoms of neurodegenerative diseases.


Assuntos
Antioxidantes , Flavonoides , Povidona , Espectroscopia de Infravermelho com Transformada de Fourier , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Solubilidade , Povidona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA