Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(2): 102, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231433

RESUMO

Mpox virus (MPXV) is a zoonotic DNA virus that caused human Mpox, leading to the 2022 global outbreak. MPXV infections can cause a number of clinical syndromes, which increases public health threats. Therefore, it is necessary to develop an effective and reliable method for infection prevention and control of epidemic. Here, a Cas12a-based direct detection assay for MPXV DNA is established without the need for amplification. By targeting the envelope protein gene (B6R) of MPXV, four CRISPR RNAs (crRNAs) are designed. When MPXV DNA is introduced, every Cas12a/crRNA complex can target a different site of the same MPXV gene. Concomitantly, the trans-cleavage activity of Cas12a is triggered to cleave the DNA reporter probes, releasing a fluorescence signal. Due to the application of multiple crRNAs, the amount of active Cas12a increases. Thus, more DNA reporter probes are cleaved. As a consequence, the detection signals are accumulated, which improves the limit of detection (LOD) and the detection speed. The LOD of the multiple crRNA system can be improved to ~ 0.16 pM, which is a decrease of the LOD by approximately ~ 27 times compared with the individual crRNA reactions. Furthermore, using multiple crRNAs increases the specificity of the assay. Given the outstanding performance, this assay has great potential for Mpox diagnosis.


Assuntos
Monkeypox virus , Mpox , Humanos , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , DNA Viral/genética , Vírus de DNA , RNA
2.
Methods ; 197: 63-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182140

RESUMO

Cell-free nucleic acids (cfNAs) such as short non-coding microRNA (miRNA) and circulating tumor DNA (ctDNA) that reside in bodily fluids have emerged as potential cancer biomarkers. Methods for the rapid, highly specific, and sensitive monitoring of cfNAs in biofluids have, therefore, become increasingly attractive as clinical diagnosis tools. As a next generation technology, we provide a practical guide for an amplification-free, single molecule Förster resonance energy transfer (smFRET)-based kinetic fingerprinting approach termed intramolecular single molecule recognition through equilibrium Poisson sampling, or iSiMREPS, for the rapid detection and counting of miRNA and mutant ctDNA with virtually unlimited specificity and single molecule sensitivity. iSiMREPS utilizes a pair of fluorescent detection probes, wherein one probe immobilizes the target molecules on the surface, and the other probe transiently and reversibly binds to the target to generate characteristic time-resolved fingerprints as smFRET signal that are detected in a total internal reflection fluorescence microscope. Analysis of these kinetic fingerprints enables near-perfect discrimination between specific binding to target molecules and nonspecific background binding. By accelerating kinetic fingerprinting using the denaturant formamide and reducing background signals by removing target-less probes from the surface via toehold-mediated strand displacement, iSiMREPS has been demonstrated to count miR-141 and EGFR exon 19 deletion ctDNA molecules with a limit of detection (LOD) of ~1 and 3 fM, respectively, as well as mutant allele fractions as low as 0.0001%, during a standard acquisition time of only ~10 s per field of view. In this review, we provide a detailed roadmap for implementing iSiMREPS more broadly in research and clinical diagnostics, combining rapid analysis, high specificity, and high sensitivity.


Assuntos
MicroRNAs , Ácidos Nucleicos , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Limite de Detecção , MicroRNAs/análise , MicroRNAs/genética , Nanotecnologia , Ácidos Nucleicos/genética
3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901903

RESUMO

Conventional methods for the detection and differentiation of Bacillus cereus group species have drawbacks mostly due to the complexity of genetic discrimination between the Bacillus cereus species. Here, we describe a simple and straightforward assay based on the detected unamplified bacterial 16S rRNA by DNA nanomachine (DNM). The assay uses a universal fluorescent reporter and four all-DNA binding fragments, three of which are responsible for "opening up" the folded rRNA while the fourth stand is responsible for detecting single nucleotide variation (SNV) with high selectivity. Binding of the DNM to 16S rRNA results in the formation of the 10-23 deoxyribozyme catalytic core that cleaves the fluorescent reporter and produces a signal, which is amplified over time due to catalytic turnover. This developed biplex assay enables the detection of B. thuringiensis 16S rRNA at fluorescein and B. mycoides at Cy5 channels with a limit of detection of 30 × 103 and 35 × 103 CFU/mL, respectively, after 1.5 h with a hands-on time of ~10 min. The new assay may simplify the analysis of biological RNA samples and might be useful for environmental monitoring as a simple and inexpensive alternative to amplification-based nucleic acid analysis. The DNM proposed here may become an advantageous tool for detecting SNV in clinically significant DNA or RNA samples and can easily differentiate SNV under broadly variable experimental conditions and without prior amplification.


Assuntos
Bacillus , Bacillus/genética , Bacillus cereus/genética , RNA Ribossômico 16S/genética , DNA Ribossômico/genética , DNA Bacteriano
4.
Angew Chem Int Ed Engl ; 62(17): e202214987, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36710268

RESUMO

Polymerase chain reaction (PCR)-based nucleic acid testing has played a critical role in disease diagnostics, pathogen surveillance, and many more. However, this method requires a long turnaround time, expensive equipment, and trained personnel, limiting its widespread availability and diagnostic capacity. On the other hand, the clustered regularly interspaced short palindromic repeats (CRISPR) technology has recently demonstrated capability for nucleic acid detection with high sensitivity and specificity. CRISPR-mediated biosensing holds great promise for revolutionizing nucleic acid testing procedures and developing point-of-care diagnostics. This review focuses on recent developments in both fundamental CRISPR biochemistry and CRISPR-based nucleic acid detection techniques. Four ongoing research hotspots in molecular diagnostics-target preamplification-free detection, microRNA (miRNA) testing, non-nucleic-acid detection, and SARS-CoV-2 detection-are also covered.


Assuntos
Técnicas Biossensoriais , COVID-19 , MicroRNAs , Humanos , Sistemas CRISPR-Cas , Patologia Molecular , SARS-CoV-2 , Teste para COVID-19
5.
Mikrochim Acta ; 189(4): 171, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364748

RESUMO

Gold nanotriangles (AuNTs) functionalized with dithiolated oligonucleotides have been employed to develop an amplification-free electrochemical biosensor for SARS-CoV-2 in patient samples. Gold nanotriangles, prepared through a seed-mediated growth method and exhaustively characterized by different techniques, serve as an improved electrochemical platform and for DNA probe immobilization. Azure A is used as an electrochemical indicator of the hybridization event. The biosensor detects either single stranded DNA or RNA sequences of SARS-CoV-2 of different lengths, with a low detection limit of 22.2 fM. In addition, it allows to detect point mutations in SARS-CoV-2 genome with the aim to detect more infective SARS-CoV-2 variants such as Alpha, Beta, Gamma, Delta, and Omicron. Results obtained with the biosensor in nasopharyngeal swab samples from COVID-19 patients show the possibility to clearly discriminate between non-infected and infected patient samples as well as patient samples with different viral load. Furthermore, the results correlate well with those obtained by the gold standard technique RT-qPCR, with the advantage of avoiding the amplification process and the need of sophisticated equipment.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Hibridização de Ácido Nucleico , Oligonucleotídeos , SARS-CoV-2/genética
6.
Angew Chem Int Ed Engl ; 61(32): e202203826, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35559592

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have recently received notable attention for their applications in nucleic acid detection. Despite many attempts, the majority of current CRISPR-based biosensors in infectious respiratory disease diagnostic applications still require target preamplifications. This study reports a new biosensor for amplification-free nucleic acid detection via harnessing the trans-cleavage mechanism of Cas13a and ultrasensitive graphene field-effect transistors (gFETs). CRISPR Cas13a-gFET achieves the detection of SARS-CoV-2 and respiratory syncytial virus (RSV) genome down to 1 attomolar without target preamplifications. Additionally, we validate the detection performance using clinical SARS-CoV-2 samples, including those with low viral loads (Ct value >30). Overall, these findings establish our CRISPR Cas13a-gFET among the most sensitive amplification-free nucleic acid diagnostic platforms to date.


Assuntos
COVID-19 , Grafite , Ácidos Nucleicos , Sistemas CRISPR-Cas , Humanos , Vírus Sinciciais Respiratórios , SARS-CoV-2/genética
7.
Anal Bioanal Chem ; 409(14): 3497-3505, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28349168

RESUMO

The detection and profiling of microRNAs are of great interest in disease diagnosis and prognosis. In this paper, we present a method for the rapid amplification-free detection of microRNAs from total RNA samples. In a two-step sandwich assay approach, fluorescently labeled reporter probes were first hybridized with their corresponding target microRNAs. The reaction mix was then added to a microarray to enable their specific capture and detection. Reporter probes were Tm equalized, enabling specificity by adjusting the length of the capture probe while maintaining the stabilizing effect brought about by coaxial base stacking. The optimized assay can specifically detect microRNAs in spiked samples at concentrations as low as 1 pM and from as little as 100 ng of total RNA in 2 h. The detection signal was linear between 1 and 100 pM (R2 = 0.99). Our assay data correlated well with results generated by qPCR when we profiled a select number of breast cancer related microRNAs in a total RNA sample.


Assuntos
MicroRNAs/análise , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Análise de Sequência com Séries de Oligonucleotídeos/economia , Sondas de Oligonucleotídeos/química , Espectrometria de Fluorescência/economia , Espectrometria de Fluorescência/métodos , Fatores de Tempo
8.
ACS Sens ; 9(3): 1602-1610, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38451864

RESUMO

Solid-state (SS-) nanopore sensing has gained tremendous attention in recent years, but it has been constrained by its intrinsic lack of selectivity. To address this, we previously established a novel SS-nanopore assay that produces translocation signals only when a target biotinylated nucleic acid fragment binds to monovalent streptavidin (MS), a protein variant with a single high-affinity biotin-binding domain. While this approach has enabled selective quantification of diverse nucleic acid biomarkers, sensitivity enhancements are needed to improve the detection of low-abundance translational targets. Because the translocation dynamics that determine assay efficacy are largely governed by constituent charge characteristics, we here incorporate a polyhistidine-tagged MS (hMS) to alter the component detectability. We investigate the effects of buffer pH, salt concentration, and SS-nanopore diameter on the performance with the alternate reagent, achieve significant improvements in measurement sensitivity and selectivity, and expand the range of device dimensions viable for the assay. We used this improvement to detect as little as 1 nM miRNA spiked into human plasma. Overall, our findings improve the potential for broader applications of SS-nanopores in the quantitative analyses of molecular biomarkers.


Assuntos
Histidina , Nanoporos , Ácidos Nucleicos , Humanos , Estreptavidina/química , Biomarcadores
9.
J Hazard Mater ; 469: 134037, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521032

RESUMO

Simple yet ultrasensitive and contamination-free quantification of environmental pathogenic bacteria is in high demand. In this study, we present a portable clustered regularly interspaced short palindromic repeats-associated protein 12a (CRISPR/Cas12a) powered Air-displacement enhanced Evanescent wave fluorescence Fiber-embedded microfluidic Biochip (AEFB) for the high-frequency and nucleic acid amplification-free ultrasensitive detection of Escherichia coli O157:H7. The performance of AEFB was dramatically enhanced upon employing a simple air-solution displacement process. Theoretical assays demonstrated that air-solution displacement significantly enhances evanescent wave field intensity on the fiber biosensor surface and increases the V-number in tapered fiber biosensors. Consequently, light-matter interaction is strengthened, and fluorescence coupling and collection efficiency are improved, considerably enhancing sensitivity. By integrating the CRISPR biosensing mechanism, AEFB facilitated rapid, accurate, nucleic acid amplification-free detection of E.coli O157:H7 with polymerase chain reaction (PCR)-level sensitivity (176 cfu/mL). To validate its practicality, AEFB was used to detect E.coli O157:H7 in surface water and wastewater. Comparison with RT-PCR showed a strong linear relationship (R2 = 0.9871), indicating the excellent accuracy and reliability of this technology in real applications. AEFB is highly versatile and can be easily extended to detect other pathogenic bacteria, which will significantly promote the high-frequency assessment and early-warning of bacterial contamination in aquatic environments.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Ácidos Nucleicos , Escherichia coli O157/genética , Sistemas CRISPR-Cas , Reprodutibilidade dos Testes , Microfluídica
10.
Anal Chim Acta ; 1245: 340864, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36737140

RESUMO

Nucleic acid markers have been widely used in the detection of various virus-related diseases, including hepatitis B virus (HBV), which is spreading worldwide. The trans-activated CRISPR-Cas system has shown excellent sensitivity and specificity in nucleic acid detection. However, nucleic acid testing usually requires amplification of the target nucleic acid for more accurate and specific detection; furthermore, current nucleic acid assays are time-consuming, costly, and are limited by non-specific cross-reactivity. We developed an amplification-free viral DNA biosensor-based diagnostic method that uses a clustered regularly interspaced short palindromic repeats-associated system (CRISPR/Cas)-based approach with surface enhanced Raman spectroscopy. This method can specifically identify the target site by changing the crRNA sequence. In addition, the incubation period and development of the disease can be determined by quantitative detection of viral DNA. This system could achieve rapid and highly sensitive detection of HBV DNA within 50 min and vast detection range from 0.1 pM to 1 nM. Therefore, a combined CRISPR/Cas12a-SERS-based assay would improve the sensitivity of detection in assays using multiple biomarkers. In conclusion, our CRISPR/Cas12a-based biosensor would enable rapid, simple, and sensitive detection of HBV nucleic acids.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , DNA Viral/genética , Sistemas CRISPR-Cas , Análise Espectral Raman , Bioensaio , Vírus da Hepatite B/genética , Técnicas de Amplificação de Ácido Nucleico
11.
ACS Sens ; 8(4): 1489-1499, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37027291

RESUMO

Quantitative polymerase chain reaction as a powerful tool for DNA detection has been pivotal to a vast range of applications, including disease screening, food safety assessment, environmental monitoring, and many others. However, the essential target amplification step in combination with fluorescence readout poses a significant challenge to rapid and streamlined analysis. The discovery and engineering of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) technology have recently paved the way for a novel approach to nucleic acid detection, but the majority of current CRISPR-mediated DNA detection platforms are limited by insufficient sensitivity and still require target preamplification. Herein, we report a CRISPR-Cas12a-mediated graphene field-effect transistor (gFET) array, named CRISPR Cas12a-gFET, for amplification-free, ultrasensitive, and reliable detection of both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) targets. CRISPR Cas12a-gFET leverages the multiturnover trans-cleavage activity of CRISPR Cas12a for intrinsic signal amplification and ultrasensitivity of gFET. As demonstrated, CRISPR Cas12a-gFET achieves a limit of detection of 1 aM for the ssDNA human papillomavirus 16 synthetic target and 10 aM for the dsDNA Escherichia coli plasmid target without target preamplification. In addition, an array of 48 sensors on a single 1.5 cm × 1.5 cm chip is employed to improve data reliability. Finally, Cas12a-gFET demonstrates the capability to discriminate single-nucleotide polymorphisms. Together, the CRISPR Cas12a-gFET biosensor array provides a detection tool for amplification-free, ultrasensitive, reliable, and highly specific DNA detections.


Assuntos
Sistemas CRISPR-Cas , Grafite , Humanos , Sistemas CRISPR-Cas/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , DNA/genética , DNA de Cadeia Simples/genética , Escherichia coli/genética , Nucleotídeos
12.
ACS Sens ; 8(12): 4420-4441, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37978935

RESUMO

CRISPR/Cas system is becoming an increasingly influential technology that has been repositioned in nucleic acid detection. A preamplification step is usually required to improve the sensitivity of CRISPR/Cas-based detection. The striking biological features of CRISPR/Cas, including programmability, high sensitivity and sequence specificity, and single-base resolution. More strikingly, the target-activated trans-cleavage could act as a biocatalytic signal transductor and amplifier, thereby empowering it to potentially perform nucleic acid detection without a preamplification step. The reports of such work are on the rise, which is not only scientifically significant but also promising for futuristic end-user applications. This review started with the introduction of the detection methods of nucleic acids and the CRISPR/Cas-based diagnostics (CRISPR-Dx). Next, we objectively discussed the pros and cons of preamplification steps for CRISPR-Dx. We then illustrated and highlighted the recently developed strategies for CRISPR/Cas-powered amplification-free detection that can be realized through the uses of ultralocalized reactors, cascade reactions, ultrasensitive detection systems, or others. Lastly, the challenges and futuristic perspectives were proposed. It can be expected that this work not only makes the researchers better understand the current strategies for this emerging field, but also provides insight for designing novel CRISPR-Dx without a preamplification step to win practicable use in the near future.


Assuntos
Ácidos Nucleicos , Humanos , Ácidos Nucleicos/genética , Sistemas CRISPR-Cas/genética , Biocatálise , Pesquisadores
13.
Biosens Bioelectron ; 240: 115637, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669587

RESUMO

At present, the 100% case fatality and the cross-infection of virus strains make the ASFV 's harm to society continue to expand. The absence of an effective commercial vaccine poses early detection remains the most effective means of curbing ASFV infection. Here, we report a cascaded detection platform based on the CRISPR-Cas12a system combined with graphene field-effect transistor sensors. The cascade platform could detect ASFV as low as 0.5 aM within 30 min and achieve typing of wild and vaccine strains of ASFV in a single detection system. The evaluation of 16 clinical samples proved that, compared with the gold standard Real-time PCR method, this platform has outstanding advantages in sensitivity, specificity and typing. Combining CRISPR-Cas12a's high specificity with the bipolar electric field effect of graphene field-effect transistor, the cascade platform is expected to achieve clinical application in the field of DNA disease detection, and provides a new direction for multi-strain disease typing.


Assuntos
Técnicas Biossensoriais , Grafite , Sistemas CRISPR-Cas/genética , Eletricidade , Reação em Cadeia da Polimerase em Tempo Real
14.
Biosensors (Basel) ; 12(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448297

RESUMO

We demonstrate detection and quantification of bacterial load with a novel microfluidic one-pot wash-free fluorescence in situ hybridization (FISH) assay in droplets. The method offers minimal manual workload by only requiring mixing of the sample with reagents and loading it into a microfluidic cartridge. By centrifugal microfluidic step emulsification, our method partitioned the sample into 210 pL (73 µm in diameter) droplets for bacterial encapsulation followed by in situ permeabilization, hybridization, and signal detection. Employing locked nucleic acid (LNA)/DNA molecular beacons (LNA/DNA MBs) and NaCl-urea based hybridization buffer, the assay was characterized with Escherichia coli, Klebsiella pneumonia, and Proteus mirabilis. The assay performed with single-cell sensitivity, a 4-log dynamic range from a lower limit of quantification (LLOQ) at ~3 × 103 bacteria/mL to an upper limit of quantification (ULOQ) at ~3 × 107 bacteria/mL, anda linearity R2 = 0.976. The total time-to-results for detection and quantification was around 1.5 hours.


Assuntos
DNA , Microfluídica , Escherichia coli/genética , Hibridização in Situ Fluorescente/métodos , Microfluídica/métodos , Oligonucleotídeos
15.
Biosens Bioelectron ; 194: 113659, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571443

RESUMO

In this study, we developed a novel DNA microarray system that does not require fluorophore-labeling, amplification, or washing of the target nucleic acid fragments. Two types of DNA probes (so-called "signaling probes") labeled with a fluorescence dye (Cy3) and quencher molecule (BHQ2) were spotted on the DNA microarray such that fluorescent signals of Cy3 could be quenched by BHQ2 due to duplex formation between the probes. The addition of the target DNA or RNA fragments disrupted the duplex formed by the probes, resulting in the generation of fluorescence signals. We examined the assay conditions of the signaling probe-based DNA microarray, including the design of the probes, hybridization temperatures, and methods for fragmentation of target molecules. Since this approach does not require time-consuming processes, including labeling, amplification, and washing, the assay achieved specific detection of 16S rDNA and 16S rRNA extracted from Escherichia coli within 60 min, which was significantly rapid compared to conventional PCR-dependent DNA microarrays.


Assuntos
Técnicas Biossensoriais , Genes Bacterianos , Sondas de DNA/genética , DNA Ribossômico , Análise de Sequência com Séries de Oligonucleotídeos , RNA Ribossômico 16S/genética
16.
ACS Nano ; 15(8): 13475-13485, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34369760

RESUMO

Nucleic acid biomarkers have been widely used to detect various viral-associated diseases, including the recent pandemic COVID-19. The CRISPR-Cas-based trans-activating phenomenon has shown excellent potential for developing sensitive and selective detection of nucleic acids. However, the nucleic acid amplification steps are typically required when sensitive and selective monitoring of the target nucleic acid is needed. To overcome the aforementioned challenges, we developed a CRISPR-Cas12a-based nucleic acid amplification-free biosensor by a surface-enhanced Raman spectroscopy (SERS)-assisted ultrasensitive detection system. We integrated the activated CRISPR-Cas12a by viral DNA with a Raman-sensitive system composed of ssDNA-immobilized Raman probe-functionalized Au nanoparticles (RAuNPs) on the graphene oxide (GO)/triangle Au nanoflower array. Using this CRISPR-based Raman-sensitive system improved the detection sensitivity of the multiviral DNAs such as hepatitis B virus (HBV), human papillomavirus 16 (HPV-16), and HPV-18 with an extremely low detection limit and vast detection range from 1 aM to 100 pM without the amplification steps. We suggest that this ultrasensitive amplification-free detection system for nucleic acids can be widely applied to the precise and early diagnosis of viral infections, cancers, and several genetic diseases.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Ácidos Nucleicos , Humanos , Análise Espectral Raman/métodos , DNA Viral/genética , Ouro/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA