Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Med Virol ; 95(3): e28589, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799263

RESUMO

Cervical cancer is caused by a persistent infection with high-risk types of human papillomavirus (HPV) and an accumulation of (epi)genetic alterations in the host cell. Acquisition of anchorage-independent growth represents a critical hallmark during HPV-induced carcinogenesis, thereby yielding the most valuable biomarkers for early diagnosis and therapeutic targets. In a previous study, we found that miR-193a-3p and miR-193b-3p were involved in anchorage-independent growth. This study aimed to delineate the role of miR-193a/b-3p in HPV-induced carcinogenesis and to identify their target genes related to anchorage-independent growth. Cell viability and colony formation were assessed in SiHa cancer cells and HPV-16 and -18 immortalized keratinocytes upon miR-193a/b-3p overexpression. Both microRNAs reduced cell growth of all three cell lines in low-attachment conditions and showed a minor effect in adherent conditions. Online target-predicting programs and publicly available expression data were used to find candidate messenger RNA (mRNA) targets of miR-193a/b-3p. Seven targets showed reduced mRNA expression upon miR-193a/b-3p overexpression. For three targets, Western blot analysis was also performed, all showing a reduced protein expression. A direct interaction was confirmed using luciferase assays for six genes: LAMC1, PTK2, STMN1, KRAS, SOS2, and PPP2R5C, which are phosphatidylinositol 3-kinase/protein kinase B (PI3K-AKT) regulators. All six targets were overexpressed in cervical cancers and/or precursor lesions. Together with an observed downregulation of phosphorylated-AKT upon miR-193a/b-3p overexpression, this underlines the biological relevance of miR-193a/b-3p downregulation during HPV-induced cervical carcinogenesis. In conclusion, the downregulation of miR-193a-3p and miR-193b-3p is functionally involved in the acquisition of HPV-induced anchorage independence by targeting regulators of the PI3K-AKT pathway.


Assuntos
MicroRNAs , Infecções por Papillomavirus , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Baixo , Fosfatidilinositol 3-Quinases/metabolismo , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinogênese/genética , RNA Mensageiro , Proliferação de Células/genética
2.
J Pathol ; 256(2): 164-173, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34698384

RESUMO

Cancer cells have an altered metabolic state that supports their growth, for example, aerobic glycolysis, known as the Warburg effect. Colorectal cancer cells have been reported to exhibit the Warburg effect and mainly rely on glycolysis for progression and have dysfunctional mitochondria. So far, how mitochondrial function influences the properties of colorectal cancer cells is unclear. Here, we demonstrated that mitochondria maintain histone acetylation, in particular acetylated histone H3 lysine 27 (H3K27ac), a surrogate epigenomic marker of active super-enhancers, in colorectal cancer cells. Immunohistochemistry was used on human colorectal adenocarcinoma specimens and showed that mitochondrial mass and H3K27ac marks were increased in adenocarcinoma lesions compared with adjacent non-neoplastic mucosa. Immunoblotting after using inhibitors of the mitochondrial respiratory complex or mitochondrial DNA-depleted human colorectal cancer cells revealed that mitochondria maintained pan-histone acetylation and H3K27ac marks. Notably, anchorage-independent growth, a feature of cancer, increased mitochondrial mass and H3K27ac marks in human colorectal cancer cells. These findings indicate that mitochondria in human colorectal cancer cells are not dysfunctional, as formerly believed, but function as inducers of histone acetylation. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Colorretais/metabolismo , Histonas/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Adenocarcinoma/genética , Adenocarcinoma/patologia , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Efeito Warburg em Oncologia
3.
Exp Cell Res ; 411(2): 113005, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979107

RESUMO

Metastatic spread of cancer cells is the main cause of cancer-related death. As cancer cells adapt themselves in a suspended state in the blood stream before penetration and regrowth at distal tissues, understanding their survival strategy in an anchorage-independent condition is important to develop appropriate therapeutics. We have previously generated adapted suspension cells (ASCs) from parental adherent cancer cells to study the characteristics of circulating tumor cells. In this study, we explored metabolic rewiring in MDA-MB-468 ASCs to adapt to suspension growth conditions through extracellular flux analyses and various metabolic assays. We also determined the relationship between AKT activation and metabolic rewiring in ASCs using the AKT inhibitor, MK2206. ASCs reprogramed metabolism to enhance glycolysis and basal oxygen consumption rate. RNA-sequencing analysis revealed the upregulation in the genes related to glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The changes in the metabolic program led to a remarkable dependency of ASCs on carbohydrates as an energy source for proliferation as compared to parental adherent cells (ADs). AKT activation was observed in ASCs and those generated from pancreatic and other breast cancer cells, and AKT activation inhibition in ASCs decreased glycolysis and oxygen consumption. AKT activation is an important strategy for obtaining energy through the enhancement of glycolysis in ASCs. The regulation of AKT activity and/or glycolysis may provide a strong therapeutic strategy to prevent the metastatic spread of cancer cells.


Assuntos
Células Neoplásicas Circulantes/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adaptação Fisiológica , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular , Doxorrubicina/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Humanos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Fosforilação Oxidativa , Consumo de Oxigênio , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores
4.
Biol Res ; 56(1): 44, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542350

RESUMO

BACKGROUND: Malignant cells adopt anoikis resistance to survive anchorage-free stresses and initiate cancer metastasis. It is still unknown how varying periods of anchorage loss contribute to anoikis resistance, cell migration, and metabolic reprogramming of cancerous cells. RESULTS: Our study demonstrated that prolonging the anchorage-free lifetime of non-small-cell lung cancer NCI-H460 cells for 7 days strengthened anoikis resistance, as shown by higher half-life and capability to survive and grow without anchorage, compared to wild-type cells or those losing anchorage for 3 days. While the prolonged anchorage-free lifetime was responsible for the increased aggressive feature of survival cells to perform rapid 3-dimensional migration during the first 3 h of a transwell assay, no significant influence was observed with 2-dimensional surface migration detected at 12 and 24 h by a wound-healing method. Metabolomics analysis revealed significant alteration in the intracellular levels of six (oxalic acid, cholesterol, 1-ethylpyrrolidine, 1-(3-methylbutyl)-2,3,4,6-tetramethylbenzene, ß-alanine, and putrescine) among all 37 identified metabolites during 7 days without anchorage. Based on significance values, enrichment ratios, and impact scores of all metabolites and their associated pathways, three principal metabolic activities (non-standard amino acid metabolism, cell membrane biosynthesis, and oxidative stress response) offered potential links with anoikis resistance. CONCLUSIONS: These findings further our insights into the evolution of anoikis resistance in lung cancer cells and identify promising biomarkers for early lung cancer diagnosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Anoikis , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Metabolômica
5.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445693

RESUMO

Nudt2 encodes a diadenosine tetraphosphate (Ap4A) hydrolase that catalyzes the hydrolysis of Ap4A and is involved in the lysyl tRNA synthetase-Ap4A-Nudt2 (LysRS-Ap4A-Nudt2) signaling pathway. We have previously demonstrated that this pathway is active in non-small cell lung cancer. Nudt2 was shown to be involved in cell proliferation in breast cancer, making it an important target in cancer therapy. Currently, the function of Nudt2 in malignant melanoma has not been demonstrated. Therefore, we investigated the role played by Nudt2 in the growth of human melanoma. Our study showed that Nudt2 knockdown suppressed anchorage-independent growth of human melanoma cells in vitro. The in vivo effect of Nudt2 was determined by investigating the role played by Nudt2 knockdown on the ability of the cells to form tumors in a mice xenograft model. Nudt2 knockdown significantly suppressed tumor growth in this model. Moreover, overexpression of Nudt2 resulted in an increase in anchorage-independent growth of these cells, whereas Nudt2 knockdown decreased their migration. In addition, Nudt2 knockdown reduced vimentin expression. Vimentin is one of the mesenchymal markers that are involved in the epithelial mesenchymal transition (EMT) process. Thus, Nudt2 plays an important role in promoting anchorage-independent growth and cell migration in melanoma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Humanos , Camundongos , Animais , Vimentina , Melanoma/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética
6.
Chin J Physiol ; 65(4): 209-214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36073569

RESUMO

Antrodia salmonea (AS) is a fungus, which belongs to a fungal family of Taiwanofungus salmoneus with the features of anti-oxidant, anti-inflammatory, and anticancer. Recent studies have shown that AS has anti-cancer functions in ovarian and breast cancer. However, the effects of AS on prostate cancer (PCa) proliferation remain unknown. Therefore, we investigated the role of AS in PCa proliferation through apoptosis, and cell cycle regulation in PCa cell lines. Our results showed that Antrodia salmonea extract (ASE) inhibited PCa cells growth with a dose-dependent manner. In addition, ASE decreased the anchorage-independent growth formation ability in PC3 cells. Moreover, ASE-induced cell growth inhibition in PCa cells (DU145, PC3) was correlated to decreased cell cycle-related proteins such as cyclin A/B and cyclin-dependent kinase CDK1/2/4, and increased cell cycle inhibitor proteins p21. Besides, ASE decreased the total protein level of epidermal growth factor receptor and its downstream signaling pathways Akt and Erk in both PCa cells. We found that apoptotic markers such as cleaved-PARP protein levels increased significantly in DU145 cells indicating ASE might induce apoptosis. In conclusion, our results suggest that ASE may have the ability to induce PCa cell death through regulating cell cycle arrest and apoptosis pathways.


Assuntos
Apoptose , Neoplasias da Próstata , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Extratos Vegetais/farmacologia , Polyporales , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
7.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563182

RESUMO

The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96- and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development.


Assuntos
Alphapapillomavirus , MicroRNAs , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Ágar , Alphapapillomavirus/genética , Transformação Celular Neoplásica/genética , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Papillomaviridae/genética , Infecções por Papillomavirus/metabolismo , Neoplasias do Colo do Útero/patologia
8.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432003

RESUMO

The most prevalent lung cancer is non-small cell lung cancer (NSCLC). This lung cancer type often develops other organ-specific metastases that are critical burdens in the treatment process. Orchid species in the genus Vanda have shown their potential in folkloric medication of diverse diseases but not all its species have been investigated, and little is known about their anticancer activities against NSCLC. Here, we firstly profiled the specialized metabolites of Vanda bensonii and examined their capability to inhibit growth and metastasis of NSCLC using NCI-H460 cells as a study model. Four phytochemicals, including phloretic acid methyl ester (1), cymbinodin-A (2), ephemeranthoquinone B (3), and protocatechuic acid (4), were isolated from the whole plant methanolic extract of V. bensonii. The most distinguished cytotoxic effect on NCI-H460 cells was observed in the treatments with crude methanolic extract and compound 2 with the half maximal inhibitory concentrations of 40.39 µg mL−1 and 50.82 µM, respectively. At non-cytotoxic doses (10 µg mL−1 or 10 µM), only compound 1 could significantly limit NCI-H460 cell proliferation when treated for 48 h, while others excluding compound 4 showed significant reduction in cell proliferation after treating for 72 h. Compound 1 also significantly decreased the migration rate of NCI-H460 cells examined through a wound-healing assay. Additionally, the crude extract and compound 1 strongly affected survival and growth of NCI-H460 cells under anchorage-independent conditions. Our findings proved that natural products from V. bensonii could be promising candidates for the future pharmacotherapy of NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
9.
Biochem Biophys Res Commun ; 536: 14-19, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360093

RESUMO

Glioblastoma multiforme (GBM), the most common brain tumor in adults, has an extremely poor prognosis, which is attributed to the aggressive properties of GBM cells, such as dysregulated proliferation and disseminative migration. We recently found that peptide TNIIIA2, derived from tenascin-C (TNC), which is highly expressed in GBM, contributes to the acquisition of these aggressive properties through ß1-integrin activation. In general, cancer cells often acquire an additional malignant property that confers resistance to apoptosis due to loss of adhesion to the extracellular matrix, termed anoikis resistance. Our present results show that regulation of ß1-integrin activation also plays a key role in both the development and loss of anoikis resistance in GBM cells. Despite being derived from a GBM with an extremely poor prognosis, the human GBM cell line T98G was susceptible to anoikis but became anoikis resistant via treatment with peptide TNIIIA2, which is able to activate ß1-integrin. The TNIIIA2-conferred anoikis resistance of T98G cells was disrupted by further addition of peptide FNIII14, which has the ability to inactivate ß1-integrin. Moreover, anchorage-independent survival of GBM cells in suspension culture was abrogated by peptide FNIII14, but not by RGD and CS-1 peptides, which are antagonistic for integrins α5ß1, αvß3, and α4ß1. These results suggest that GBM cells develop anoikis resistance through activation of ß1-integrin by TNC-derived peptide TNIIIA2, which is abundantly released into the tumor microenvironment of GBM. Inactivation of ß1-integrin may provide a promising strategy to overcome the apoptosis resistance of cancer cells, including GBM.


Assuntos
Anoikis , Integrina beta1/metabolismo , Peptídeos/farmacologia , Tenascina/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fibronectinas/química , Humanos
10.
BMC Cancer ; 21(1): 310, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761896

RESUMO

BACKGROUND: Chromosomal inversions involving anaplastic lymphoma kinase (ALK) and echinoderm microtubule associated protein like 4 (EML4) generate a fusion protein EML4-ALK in non-small cell lung cancer (NSCLC). The understanding of EML4-ALK function can be improved by a functional study using normal human cells. METHODS: Here we for the first time conduct such study to examine the effects of EML4-ALK on cell proliferation, cellular senescence, DNA damage, gene expression profiles and transformed phenotypes. RESULTS: The lentiviral expression of EML4-ALK in mortal, normal human fibroblasts caused, through its constitutive ALK kinase activity, an early induction of cellular senescence with accumulated DNA damage, upregulation of p16INK4A and p21WAF1, and senescence-associated ß-galactosidase (SA-ß-gal) activity. In contrast, when EML4-ALK was expressed in normal human fibroblasts transduced with telomerase reverse transcriptase (hTERT), which is activated in the vast majority of NSCLC, the cells showed accelerated proliferation and acquired anchorage-independent growth ability in soft-agar medium, without accumulated DNA damage, chromosome aberration, nor p53 mutation. EML4-ALK induced the phosphorylation of STAT3 in both mortal and hTERT-transduced cells, but RNA sequencing analysis suggested that the different signaling pathways contributed to the different phenotypic outcomes in these cells. While EML4-ALK also induced anchorage-independent growth in hTERT-immortalized human bronchial epithelial cells in vitro, the expression of EML4-ALK alone did not cause detectable in vivo tumorigenicity in immunodeficient mice. CONCLUSIONS: Our data indicate that the expression of hTERT is critical for EML4-ALK to manifest its in vitro transforming activity in human cells. This study provides the isogenic pairs of human cells with and without EML4-ALK expression.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/metabolismo , Telomerase/metabolismo , Animais , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Proliferação de Células/genética , Senescência Celular/genética , Dano ao DNA , Modelos Animais de Doenças , Células Epiteliais , Feminino , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Neoplasias Pulmonares/patologia , Camundongos , Proteínas de Fusão Oncogênica/genética , RNA-Seq , Telomerase/genética , Homeostase do Telômero/genética , Transfecção
11.
BMC Cancer ; 21(1): 790, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238275

RESUMO

BACKGROUND: Currently it is unclear how in situ breast cancer progresses to invasive disease; therefore, a better understanding of the events that occur during the transition to invasive carcinoma is warranted. Here we have conducted a detailed molecular and cellular characterization of two, patient-derived, ductal carcinoma in situ (DCIS) cell lines, ETCC-006 and ETCC-010. METHODS: Human DCIS cell lines, ETCC-006 and ETCC-010, were compared against a panel of cell lines including the immortalized, breast epithelial cell line, MCF10A, breast cancer cell lines, MCF7 and MDA-MB-231, and another DCIS line, MCF10DCIS.com. Cell morphology, hormone and HER2/ERBB2 receptor status, cell proliferation, survival, migration, anchorage-independent growth, indicators of EMT, cell signalling pathways and cell cycle proteins were examined using immunostaining, immunoblots, and quantitative, reverse transcriptase PCR (qRT-PCR), along with clonogenic, wound-closure and soft agar assays. RNA sequencing (RNAseq) was used to provide a transcriptomic profile. RESULTS: ETCC-006 and ETCC-010 cells displayed notable differences to another DCIS cell line, MCF10DCIS.com, in terms of morphology, steroid-receptor/HER status and markers of EMT. The ETCC cell lines lack ER/PR and HER, form colonies in clonogenic assays, have migratory capacity and are capable of anchorage-independent growth. Despite being isogenic, less than 30% of differentially expressed transcripts overlapped between the two lines, with enrichment in pathways involving receptor tyrosine kinases and DNA replication/cell cycle programs and in gene sets responsible for extracellular matrix organisation and ion transport. CONCLUSIONS: For the first time, we provide a molecular and cellular characterization of two, patient-derived DCIS cell lines, ETCC-006 and ETCC-010, facilitating future investigations into the molecular basis of DCIS to invasive ductal carcinoma transition.


Assuntos
Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos
12.
Int J Mol Sci ; 22(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435156

RESUMO

Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.


Assuntos
Anoikis , Neoplasias/genética , RNA não Traduzido/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Neoplasias/fisiopatologia
13.
J Biol Chem ; 294(15): 5935-5944, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30819803

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) suppresses apoptosis and plays key roles in the development, growth, migration, and invasion of cancer cells. Therefore, XIAP has recently attracted much attention as a potential antineoplastic therapeutic target, requiring elucidation of the molecular mechanisms underlying its biological activities. Here, using shRNA-mediated gene silencing, immunoblotting, quantitative RT-PCR, anchorage-independent growth assay, and invasive assay, we found that XIAP's RING domain, but not its BIR domain, is crucial for XIAP-mediated up-regulation of c-Myc protein expression in human bladder cancer (BC) cells. Mechanistically, we observed that the RING domain stabilizes c-Myc by inhibiting its phosphorylation at Thr-58 and that this inhibition is due to activated ERK1/2-mediated phosphorylation of glycogen synthase kinase-3ß (GSK-3ß) at Ser-9. Functional studies further revealed that c-Myc protein promotes anchorage-independent growth and invasion stimulated by the XIAP RING domain in human BC cells. Collectively, the findings in our study uncover that the RING domain of XIAP supports c-Myc protein stability, providing insight into the molecular mechanism and role of c-Myc overexpression in cancer progression. Our observations support the notion of targeting XIAP's RING domain and c-Myc in cancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/biossíntese , Neoplasias da Bexiga Urinária/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Invasividade Neoplásica/genética , Fosforilação/genética , Domínios Proteicos , Estabilidade Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
14.
Toxicol Appl Pharmacol ; 362: 116-124, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365975

RESUMO

The capacity of cancer cells to resist detachment-induced apoptosis, i.e. anoikis, as well as anchorage-independent growth are crucial prerequisites for tumor metastasis. Therefore, agents interfering these properties may provide novel anti-metastatic strategies. Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, is known as a potent chemopreventive agent, but its effect on anoikis resistance has not been investigated. In this study, two non-small cell lung cancer (NSCLC) cell lines, A549 and CL1-5 cells, were treated with SFN under either suspension or adhesion conditions. SFN exhibited more potent cytotoxicity against suspending rather than adherent cancer cells. The selective cytotoxicity was due to the induction of anoikis, as evident by chromatin condensation, Annexin V binding, and activation of the mitochondrial apoptotic pathway. SFN also inhibited NSCLC cell to form spherical colonies, suggesting that anchorage-independent growth was prevented by SFN. Consistently, SFN treatment led to inactivation of FAK and Akt, down-regulation of ß-catenin, and up-regulation of the cyclin-dependent kinase inhibitor p21. Because A549 cells with wild-type p53 are more sensitive to SFN than p53-mutant CL1-5 cells, p53 dependency of SFN responses were determined in p53-knockdown A549 cells. Knockdown of p53 attenuated the ability of SNF to inhibit anoikis resistance and sphere formation in A549 cancer cells, suggesting that the presence of p53 in NSCLC cancer cells is involved in the sensitivity to SFN. These results provide new insight into mechanisms underlying the chemopreventive ability of SFN and suggest a potential benefit of SFN to interfere with tumor metastasis.


Assuntos
Anticarcinógenos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Isotiocianatos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Anoikis/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Sulfóxidos , Proteína Supressora de Tumor p53/genética
15.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100813

RESUMO

The L-type calcium channel blocker fendiline has been shown to interfere with Ras-dependent signaling in K-Ras mutant cancer cells. Earlier studies from our lab had shown that treatment of pancreatic cancer cells with fendiline causes significant cytotoxicity and interferes with proliferation, survival, migration, invasion and anchorage independent growth. Currently there are no effective therapies to manage PDACs. As fendiline has been approved for treatment of patients with angina, we hypothesized that, if proven effective, combinatorial therapies using this agent would be easily translatable to clinic for testing in PDAC patients. Here we tested combinations of fendiline with gemcitabine, visudyne (a YAP1 inhibitor) or tivantinib (ARQ197, a c-Met inhibitor) for their effectiveness in overcoming growth and oncogenic characteristics of PDAC cells. The Hippo pathway component YAP1 has been shown to bypass K-Ras addiction, and allow tumor growth, in a Ras-null mouse model. Similarly, c-Met expression has been associated with poor prognosis and metastasis in PDAC patients. Our results presented here show that combinations of fendiline with these inhibitors show enhanced anti-tumor activity in Panc1, MiaPaCa2 and CD18/HPAF PDAC cells, as evident from the reduced viability, migration, anchorage-independent growth and self-renewal. Biochemical analysis shows that these agents interfere with various signaling cascades such as the activation of Akt and ERK, as well as the expression of c-Myc and CD44 that are altered in PDACs. These results imply that inclusion of fendiline may improve the efficacy of various chemotherapeutic agents that could potentially benefit PDAC patients.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Fendilina/farmacologia , Pirrolidinonas/farmacologia , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Verteporfina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinógenos , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfoproteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas de Sinalização YAP , Gencitabina
16.
Acta Neuropathol ; 135(2): 285-298, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29288440

RESUMO

Mutations of isocitrate dehydrogenase 1 (IDH1) gene are most common in glioma, arguably preceding all known genetic alterations during tumor development. IDH1 mutations nearly invariably target the enzymatic active site Arg132, giving rise to the predominant IDH1R132H. Cells harboring IDH1 R132H -heterozygous mutation produce 2-hydroxyglutarate (2-HG), which results in histone and DNA hypermethylation. Although exogenous IDH1 R132H transduction has been shown to promote anchorage-independent growth, the biological role of IDH1R132H in glioma remains debatable. In this study, we demonstrate that heterozygous IDH1 R132H suppresses but hemizygous IDH1 R132H promotes anchorage-independent growth. Whereas genetic deletion of the wild-type allele in IDH1 R132H -heterozygous cells resulted in a pronounced increase in neurosphere genesis, restoration of IDH1 expression in IDH1 R132H -hemizygous cells led to the contrary. Conversely, anchorage-independent growth was antagonistic to the mutant IDH1 function by inhibiting gene expression and 2-HG production. Furthermore, we identified that in contrast to IDH1 R132H -hemizygous neurosphere, IDH1 R132H -heterozygous cells maintained a low level of reducing power to suppress neurosphere genesis, which could be bypassed, however, by the addition of reducing agent. Taken together, these results underscore the functional importance of IDH1 mutation heterozygosity in glioma biology and indicate functional loss of mutant IDH1 as an escape mechanism underlying glioma progression and the pathway of redox homeostasis as potential therapeutic targets.


Assuntos
Homeostase/fisiologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Animais , Encéfalo/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Adesão Celular/genética , Adesão Celular/fisiologia , Células Cultivadas , Galinhas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Progressão da Doença , Expressão Gênica/genética , Expressão Gênica/fisiologia , Glutaratos/metabolismo , Heterozigoto , Homeostase/genética , Humanos , Camundongos Transgênicos , Mutação , Oxirredução
17.
Cancer Cell Int ; 18: 193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479571

RESUMO

BACKGROUND: Anoikis resistance has been demonstrated to facilitate distant metastases of cancers. MicroRNA-133b (miR-133b) is found to be down-regulated in various tumors, including esophageal squamous cell carcinoma (ESCC), and closely correlates with the malignant phenotype of ESCC. This study aimed to evaluate the roles of miR-133b in metastases of ESCC via regulating anoikis. METHODS: The expression of miR-133b and related molecules were detected in ESCC tissues and cells. The target relationship between miR-133b and epidermal growth factor receptor (EGFR) was verified by dual luciferase reporter assay. Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Anoikis and anchorage-independent growth were assessed by anoikis assay and soft agar assay. Migration and invasion were evaluated by scratch and transwell assays. The expressions of related molecules were detected by reverse transcription-quantitative polymerase chain reaction and western blotting. The in vivo results were determined by tumor xenografts in nude mice. RESULTS: MiR-133b level was decreased in ESCC tissues and cells, which negatively correlated with EGFR, integrin ß4 (ITGB4), and phosphorylated focal adhesion kinase levels. Moreover, miR-133b down-regulated EGFR expression in ESCC cells. Overexpression of miR-133b inhibited the anoikis resistance, migration, invasion and epithelial-mesenchymal transition of ESCC cells via targeting EGFR. Finally, miR-133b overexpression suppressed tumor growth and lung metastases of ESCC in vivo. ITGB4/FAK/growth factor receptor-bound protein 2 (Grb2), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) pathways were involved in the regulatory mechanisms of miR-133b/EGFR axis in ESCC metastases in vitro and in vivo. CONCLUSIONS: The results suggested that miR-133b/EGFR axis regulated metastases of ESCC by affecting anoikis resistance via ITGB4/FAK/Grb2, AKT, and ERK pathways.

18.
BMC Cancer ; 18(1): 221, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482519

RESUMO

BACKGROUND: Cancer cell aggregation is a key process involved in the formation of clusters of circulating tumor cells. We previously reported that cell-cell adhesion proteins, such as E-cadherin, and desmosomal proteins are involved in cell aggregation to form clusters independently of cell migration or matrix adhesion. Here, we investigated the involvement of gap junction intercellular communication (GJIC) during anchorage-independent clustering of MCF7 breast adenocarcinoma cells. METHODS: We used live cell image acquisition and analysis to monitor the kinetics of MCF7 cell clustering in the presence/absence of GJIC pharmacological inhibitors and to screen a LOPAC® bioactive compound library. We also used a calcein transfer assay and flow cytometry to evaluate GJIC involvement in cancer cell clustering. RESULTS: We first demonstrated that functional GJIC are established in the early phase of cancer cell aggregation. We then showed that pharmacological inhibition of GJIC using tonabersat and meclofenamate delayed MCF7 cell clustering and reduced calcein transfer. We also found that brefeldin A, an inhibitor of vesicular trafficking, which we identified by screening a small compound library, and latrunculin A, an actin cytoskeleton-disrupting agent, both impaired MCF7 cell clustering and calcein transfer. CONCLUSIONS: Our results demonstrate that GJIC are involved from the earliest stages of anchorage-independent cancer cell aggregation. They also give insights into the regulatory mechanisms that could modulate the formation of clusters of circulating tumor cells.


Assuntos
Adenocarcinoma/fisiopatologia , Neoplasias da Mama/fisiopatologia , Comunicação Celular , Junções Comunicantes , Adenocarcinoma/metabolismo , Antígenos CD , Neoplasias da Mama/metabolismo , Caderinas , Adesão Celular , Movimento Celular , Feminino , Humanos , Células MCF-7
19.
Mol Pharm ; 15(8): 3046-3059, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29863884

RESUMO

The small GTPase RalA is a known mediator of anchorage-independent growth in cancers and is differentially regulated by adhesion and aurora kinase A (AURKA). Hence, inhibiting AURKA offers a means of specifically targeting RalA (over RalB) in cancer cells. MLN8237 (alisertib) is a known inhibitor of aurora kinases; its specificity for AURKA, however, is compromised by its poor solubility and transport across the cell membrane. A polymer nanovesicle platform is used for the first time to deliver and differentially inhibit AURKA in cancer cells. For this purpose, polysaccharide nanovesicles made from amphiphilic dextran were used as nanocarriers to successfully administer MLN8237 (VMLN) in cancer cells in 2D and 3D microenvironments. These nanovesicles (<200 nm) carry the drug in their intermembrane space with up to 85% of it released by the action of esterase enzyme(s). Lysotracker experiments reveal the polymer nanovesicles localize in the lysosomal compartment of the cell, where they are enzymatically targeted and MLN released in a controlled manner. Rhodamine B fluorophore trapped in the nanovesicles hydrophilic core (VMLN+RhB) allows us to visualize its uptake and localization in cells in a 2D and 3D microenvironment. In breast cancer, MCF-7 cells VMLN inhibits AURKA significantly better than the free drug at low concentrations (0.02-0.04 µM). This ensures that the drug in VMLN at these concentrations can specifically inhibit up to 94% of endogenous AURKA without affecting AURKB. This targeting of AURKA causes the downstream differential inhibition of active RalA (but not RalB). Free MLN8237 at similar concentrations and conditions failed to affect RalA activation. VMLN-mediated inhibition of RalA, in turn, disrupts the anchorage-independent growth of MCF-7 cells supporting a role for the AURKA-RalA crosstalk in mediating the same. These studies not only identify the polysaccharide nanovesicle to be an improved way to efficiently deliver low concentrations of MLN8237 to inhibit AURKA but, in doing so, also help reveal a role for AURKA and its crosstalk with RalA in anchorage-independent growth of MCF-7 cells.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Azepinas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Azepinas/farmacocinética , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Dextranos/química , Dextranos/farmacologia , Portadores de Fármacos/farmacologia , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Feminino , Humanos , Células MCF-7 , Nanopartículas/química , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/farmacocinética , Solubilidade , Tensoativos/química , Tensoativos/farmacologia , Proteínas ral de Ligação ao GTP/metabolismo
20.
Biol Pharm Bull ; 41(9): 1379-1383, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175774

RESUMO

Previous studies have shown that hyperglycemia is connected to the malignant progression of breast cancer; however, the effects of hyperglycemia on tumorigenic potential in breast cancer cells are largely unknown. Here, we demonstrated that the ability of the human breast cancer cell line MCF-7 to undertake anchorage-independent colony growth was significantly enhanced when cultured under high-glucose conditions compared with that under physiological glucose conditions. The high-glucose conditions also promoted phosphorylation of Akt, suggesting that MCF-7 cells cultured in these conditions acquired an increased ability to undergo anchorage-independent growth at least in part through Akt activation, which has been linked to the development of breast cancer. These results raise the possibility that regulation of Akt activity contributes to the tumorigenesis of breast cancer under high-glucose conditions, and we propose that additional analyses of high glucose-induced tumor formation would provide novel strategies for the diagnosis and therapy of breast cancer with hyperglycemia.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Glucose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA